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A continuous model of biomass size spectra
governed by predation,

and the e�ects of �shing on them
Eric Benoît∗ Marie-Joëlle Rochet†

Abstract
A new time-dependent continuous model of biomass size spectra is

developed. In this model, predation is the single process governing the
energy �ow in the ecosystem, as it causes both growth and mortality.
The ratio of predator to prey is assumed to be distributed: predators may
feed on a range of prey sizes. Under these assumptions, it is shown that
linear size spectra are stationary solutions of the model. Exploited �sh
communities are simulated by adding �shing mortality to the model: it
is found that realistic �shing should a�ect the curvature and stability of
the size spectrum rather than its slope.

1 Introduction
Biomass size spectra, the distribution of biomass across body size classes in a
community, have been the subject of continuous interest since the �rst devel-
opments by Sheldon and colleagues [Sheldon et al., 1972, Sheldon et al., 1977].
This is both because it appears to be a very conservative feature of marine com-
munities, and because of the strong appeal of summarising complex commu-
nities, comprising numerous species with complex trophic interactions, within
a simple plot and one or two numbers such as the slope and intercept of the
spectrum.

Biomass size spectra have been widely used both in marine and freshwater
ecosystems for estimating production at di�erent trophic levels, especially
�sh production [Sheldon et al., 1977, Borgman, 1982, Leach et al., 1987,
Sprules et al., 1991, Boudreau and Dickie, 1992, Cyr and Peters, 1996], pre-
dicting the e�ects of various human perturbations [Borgman and Whittle, 1983,
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Model of biomass size spectrum 2

Cottingham, 1999], and for more basic purposes such as analysing
ecosystem structure [Schwinghamer, 1981, Sprules and Munawar, 1986]
and dynamics [Denman et al., 1989], or estimating mortality rates
[Peterson and Wroblewski, 1984]. Moreover, there is growing concern that
�sheries management should consider ecosystems rather than individual
populations, and biomass size spectra are considered a potentially pow-
erful tool for assessing human impacts on exploited aquatic communities
[Kerr and Dickie, 2001, Caddy and Mahon, 1996]. Pioneering works suggested
that size spectra are regular and conservative within a �shery, but vary
between systems [Pope and Knights, 1982, Murawski and Idoine, 1992]. These
variations may be ascribed to �shing. Several authors have hypothesised
that exploitation should decrease the slope of a �sh community biomass
size spectrum, and reported decreasing trends of this slope in exploited
systems [Pope et al., 1988, Anonymous, 1995, Greenstreet and Hall, 1996,
Anonymous, 1996, Rice and Gislason, 1996], although this pattern is not
consistent across all systems [Bianchi et al., 2000].

These studies are mainly based on empirical observations. However, an
underlying theory is needed to be fully able to predict and assess the e�ect of
�shing on the size spectrum, and also to determine reference points (how steep
should the size spectrum be or not be ?). This theory should also explain why
size spectra are regular.

Existing theories of biomass size spectra rely on the �ow of biomass
from the smallest- to the largest-sized organisms through size-dependent pro-
cesses. Some of them consider discrete trophic levels and the processes con-
sidered include growth, production, respiration, predation and even reproduc-
tion [Kerr, 1974, Borgman, 1982, Borgman, 1983, Thiebaux and Dickie, 1992,
Thiebaux and Dickie, 1993]. However, applying them to real situations is
complicated by the problem of de�ning trophic levels [Borgman, 1982]. A
continuous biomass �ow model avoiding this di�culty has been developed
[Platt and Denman, 1978, Silvert and Platt, 1978]. In this model, the size-
dependent processes governing the energy �ow in the ecosystem are loss (mainly
by respiration), and a "generalised growth function", which implicitly includes
growth and predation. However, to predict the e�ect of additional mortality on
a large community encompassing several size scales, it is desirable to explicitly
describe predation processes. Silvert and Platt [Silvert and Platt, 1980] devel-
oped a continuous, time-dependent, non-linear model of the size spectrum where
the energy �ow is governed only by predation, and the associated growth and
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mortality. They predicted that biomass size spectra can be linear, assuming a
�xed prey-predator size ratio.

In this paper, this assumption is relaxed and a continuous model of the
size spectrum is developed, where the energy �ow is governed by predation,
with a distributed prey-predator size ratio. This means that predators may
feed not only on preys of a given unique size, but on a range of prey sizes. In
this model, reproduction is assumed constant and independent of the biomass
present in the system. We �rst develop the model and establish some of its
mathematical properties: it is predicted that size-spectra can still be linear ;
other ecological consequences of the model are also examined to appraise the
consistency and realism of the assumptions. We then perform some numerical
simulations to predict the e�ect of �shing on a �sh community. The model is
developed for �sh in the broad meaning of "animals swimming and foraging in
the open water".

2 The model
2.1 Notations

Symbol De�nition Unit
w weight of a �sh g
x logarithm of w ln(g)
t time year=y

u(x, t) number of �shes at time t by unit volume, by unit of
x

m−3

∫ x2

x1
u(x, t)dx number of �shes with weight in [ex1 , ex2 ], at time t,

by unit volume
m−3

g(x, t) growth rate y−1

µ(x, t) mortality rate y−1

ϕ(q) probability of predation when a predator size x
meets a prey size x− q

Table 1: De�nition of the mathematical variables

The fundamental independent variables are time t and x, where x is the
(natural) logarithm of the weight w of a �sh. The derivative with respect to x

is related to the derivative with respect tow by

∂

∂x
= w

∂

∂w
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The fundamental unknown isu(x, t), the distribution of the number of �sh with
respect to x. Then, the number of �sh in the weight range [w1, w2] is given by
the formula ∫ ln w2

ln w1

u(x, t)dx

The mathematical change of variable x = ln w shows that this expression is
equivalent to ∫ w2

w1

1
w

u(ln(w), t)dw (1)

The mass of a �sh is w = ex, so the biomass of all �sh in the weight range
[w1, w2] is given by

∫ x2

x1

exu(x, t)dx or, equivalently
∫ w2

w1

u(ln(w), t)dw (2)

The function u can be considered either as the distribution inx of the number
of �sh or as the distribution in w of the biomass.

Consider a �sh of weight W (t), and X(t) = ln(W (t)). The growth function
g is given by

dX

dt
= g(X(t), t) (3)

or, using weight,
dW

dt
= W (t) g(ln(W (t)), t)

The function µ(x, t) is the mortality rate of �sh at weight ex.

2.2 Balance
At time t, the number of �sh in the weight range [ex1 , ex2 ] is given by

∫ x2

x1

u(x, t)dx

Some �sh die and at time t + dt, the remaining number of �sh is
∫ x2

x1

(1− µ(x, t)dt)u(x, t)dx

Because, in the same time, they grow, these remaining �sh are exactly the �sh
in the weight range [ex1+g(x1,t)dt, ex2+g(x2,t)dt] at time t + dt. This number is

∫ x2+g(x2,t)dt

x1+g(x1,t)dt

u(x, t + dt)dx
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We equate these numbers and compute the derivative with respect todt at the
value dt = 0 :

−
∫ x2

x1

µ(x, t)u(x, t)dx =
∫ x2

x1

∂u

∂t
(x, t)dx + g(x2, t)u(x2, t)− g(x1, t)u(x1, t)

Derive with respect to x2 :
∂u

∂t
= −∂ (gu)

∂x
− µu (4)

This equation is well known in hydrodynamics (mass-balance in a trans-
port equation) and in population dynamics (see [Silvert and Platt, 1978,
Silvert and Platt, 1980] and Mc Kendrick-von Foerster equation, see e.g.
[Kot, 2001]).

2.3 Predation
In this model, predation is the unique driving force of growth and mortality.
Each predation event implies two individuals. One (with weightey) will grow,
the other (with weight ex) will die. The ratio of the weights of the two individu-
als is supposed to be distributed independently of the weights of the individuals:
when two individuals of weights ex and ey meet, the probability that a preda-
tion happens is given by a function ϕ which depends only on the ratio of the
weights ey−x. We denote y−x by q. The function ϕ (�gure 2.3) is chosen dome-
shaped, positive, having a unique maximum which implies an e�ective search
for a preferred prey size. Because preys are generally smaller than predators,
the function ϕ is almost zero for negative values of q. But we do not need that
ϕ is exactly zero for negative q. For numerical simulations, we take :

ϕ(q) =

{
en

(
q
q0

)n

e−n q
q0 if q ≥ 0

0 if q ≤ 0
(5)

This function ϕ peaks at 1 for q0. The parameter n determines the width of
the peak of ϕ.

Let us consider a predator of weight ey in a period of time dt. The volume
searched is supposed to be an allometric function of weight: it is given by
Aeαydt. This allometry was derived by [Ware, 1978] based on considerations
about the bioenergetics of �sh. Then the number of encounters with possible
preys of weight in [ex, ex+dx] is Aeαyu(x, t)dtdx. The number of preys eaten
in the weight range [ex, ex+dx] is Aeαyϕ(y − x)u(x, t)dtdx. The distribution of
predation events is given by

Aeαyϕ(y − x)u(x, t)u(y, t) dx dy dt (6)
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Figure 1: Graph of ϕ, the probability that a predator of weight ey meeting a
prey of weight ey−q will eat it.

2.4 Mortality
From the point of view of the prey, expression (6) gives the mortality rate by
predation :

µ(x, t) =
∫ ∞

−∞
Aeαyϕ(y − x)u(y, t) dy

which is equivalent to

µ(x, t) = Aeαx

∫ ∞

−∞
eαqϕ(q)u(x + q, t) dq (7)

Non predation mortality is accounted for by an additional mortality rate

µ0e
αxu(x, t) ,

which increases allometrically with body size and also increases with the number
of animals in the ecosystem (density-dependence mortality). The allometric
coe�cient was chosen to allow the mathematical analysis in section 3.

In simulations, we will add a �shing mortality rateµf (x, t).

2.5 Growth
From distribution (6), the mass of preys eaten by one predator is :

Aeαydt

∫ ∞

−∞
exϕ(y − x)u(x, t) dx (8)
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(ex is the weight of one prey).
The increase in weight of the predator is given byeyg(y, t)dt (confer section

2.1). If the biomass eaten is used to grow with a constant e�ciencyK, then

g(y, t) = KAeαy

∫ ∞

−∞
e−qϕ(q)u(y − q, t) dq (9)

2.6 Conclusion
Combining equations (4), (7) and (9), we obtain the following model

∂u

∂t
(x, t) = − ∂

∂x

[
KAeαx

∫ ∞

−∞
e−qϕ(q) u(x− q, t) u(x, t) dq

]
(10)

−Aeαx

∫ ∞

−∞
eαqϕ(q) u(x + q, t) u(x, t) dq

−µ0e
αxu(x, t)2 − µf (x, t)

Equation (10) is an equation of evolution, ∂u
∂t = A(u), whereA is an operator

on the functions of one variable x. The di�culty lies in this operator being not
local : it includes convolutions.

3 Some mathematical properties of the model
without �shing

To allow a mathematical study, we �rst assume that the solution u(x, t) is
de�ned for all real x, i.e., for all positive weights. Actually, it is not realistic:
we need another model for lower levels (plankton) in the ecosystem (see section
5.4).

For the sake of generality, ϕ is kept as a parameter-function. Let Dϕ be
the set of real numbers ` such that the integral

∫∞
−∞ ϕ(q)e`qdq is convergent.

For the explicit ϕ given above, Dϕ = (−∞, n/q0) ; if ϕ has a compact support,
Dϕ = (−∞, +∞).

3.1 Relationship between rate and concentration
As the operator A is homogeneous quadratic with respect to u, the following
lemma is obvious :

Lemma 1 If u(x, t) is a solution of the model, and if c is a constant, then,
cu(x, ct) is also a solution of the model.
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The biological meaning of this lemma is : if the concentration of �sh, biomass
and nutrients is multiplied by a constant factor c, the biomass dynamics
will be similar, at a rate multiplied by c, consistently with the �ndings by
[Silvert and Platt, 1980] for a �xed prey-predator size ratio. Another conse-
quence of this lemma is that if we change the parameterA to cA and µ0 to cµ0,
the solution u(x, t) becomes u(x, t/A), or Au(x, t). Then, the parametersA and
u0 do not in�uence the qualitative behaviour of the model, they determine only
the rate of biomass �ow.

3.2 Stationary linear spectrum
Lemma 2 If ϕ(q) is zero for negative values of q, there exists a unique real λ
such that for any u0, the function u(x, t) = u0e

λx is a solution of equation (10).
This λ is the unique real solution of

(2λ + α)K
∫ ∞

−∞
e−(λ+1)qϕ(q) dq +

∫ ∞

−∞
e(α+λ)qϕ(q) dq +

µ0

A
= 0 (11)

Moreover, λ < −α/2.

Proof The proof that a function eλx is a solution of the model if and only if
condition (11) is satis�ed is easy.

To prove the existence and unicity of λ, we study the function

F (λ) = (2λ + α)K
∫ ∞

−∞
e−(λ+1)qϕ(q) dq +

∫ ∞

−∞
e(α+λ)qϕ(q) dq +

µ0

A
.

With the hypothesis on ϕ, the domain Dϕ has no lower bound. We can then
prove that

• the domain of F is

{λ such that − 1− λ ∈ Dϕ and α + λ ∈ Dϕ}

and it contains (−∞,−α/2),

• for λ ≥ −α/2, the function F is nonnegative,

• the derivative F ′(λ) is positive for all λ < −α/2,

• when λ decreases towards −∞ the second integral in F goes to 0, and F

goes to −∞.

From this follow the existence and unicity of a real solution ofF (λ) = −µ0/A,
because −µ0/A < 0.
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When ϕ takes positive values for some negative q (when small predators
can eat large preys) the lemma above is not valid (the sign ofF ′(λ) becomes
not obvious). In some cases, F can have a global negative minimum, so both
existence and unicity can be wrong. For example, it is the case for

ϕ(q) =
{

q exp(−q) if q > 0
1/10 |q| exp(−q) if q < 0 .

Although this is not the only solution (nor the only stationary solution :
see below), lemma 2 shows that a linearly decreasing size spectrum can appear,
even if the predators are allowed to prey on a weight range rather than a single
weight, and whatever the shape of the predator-prey size ratio distribution.

3.3 Other special solutions
3.3.1 Weak slope

Be C the constant

C = µ0 + A

∫ +∞

−∞

(
1− αKe−(1−α)q

)
ϕ(q)dq

(assuming that 0 ∈ Dϕ and α − 1 ∈ Dϕ the integral is convergent). If both
α < 1, K < 1, and the probability of eating large preys is negligible, then
C > 0. It is easy to show that

u(x, t) =
u0e

−αx

1 + Cu0t

is a solution of equation (10) with u(0, 0) = u0.
Because C is positive, the solution is decreasing towards zero. It is a linear

spectrum with a slope weaker than the stationary solution. This means that
if for any reason the slope of the spectrum becomes less steep (i.e., more large
�sh and less small �sh), there is a risk of all biomass being washed out of the
system by predators eating preys faster than they are created by growth. Only
the input from the boundary condition (recruitment) can keep some biomass in
the ecosystem. This solution can appear unrealistic, but would it happen, it
would be transient and hence not easy to observe.

If C is negative, the slope will be greater than the slope of the stationary
solution, and the population will increase inde�nitely and tend towards in�nity.
This solution is mathematically correct, but the input of biomass in the small
weights must also increase towards in�nity.
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3.3.2 Gaps in the spectrum

Let us assume (for this section) that the functionϕ has a compact support, i.e.,
ϕ(q) is zero except for q in some positive range [qm, qM ]. In this case, if u(0, x)
is a function which is zero except on some intervals of length less thanqm and
with gaps of length at least qM , then the solution of the system is

u(t, x) =
u(0, x)

1 + µ0eαxtu(0, x)
.

It corresponds to size spectra where no predation, hence no growth, can occur,
because the weights of the �sh do not match predators requirements. The only
process ongoing is mortality due to the termµ0e

αxu2.

3.4 Total biomass
The total biomass in one cubic meter is :

B(t) =
∫ +∞

−∞
exu(x, t)dx

This integral is divergent, but from an ecological point of view it is not a prob-
lem: there is a maximum and a minimum size in any ecosystem. When the
density u is given by u0e

−x for x belonging to some range [xmin, xmax] (it is
almost the case for the stationary solution computed above), the biomass of �sh
of weight w in [w0, 2w0] is u0 ln 2, independent of w0 : the biomass is homo-
geneous with respect to the weight of �sh. When u = eλx, with λ < −1, the
concentration is higher in small weights.

For a spectrum u which is zero outside a bounded interval, we can compute
the variation of the biomass. Using equation (10) :

dB

dt
=

∫ +∞

−∞
ex ∂u

∂t
(x, t)dx =

= −
∫ +∞

−∞

[
ex ∂

∂x
(KAeαxI1) + AexeαxI2 + µ0e

(α+1)xu(x, t)2
]

dx

with
I1 =

∫ ∞

−∞
e−qϕ(q) u(x− q, t)u(x, t) dq

I2 =
∫ ∞

−∞
eαqϕ(q)u(x + q, t)u(x, t) dq

Integrating by parts, using u(±∞, t) = 0, we obtain

dB

dt
=

∫ +∞

−∞

[
exKAeαxI1 −AexeαxI2 − µ0e

(α+1)xu(x, t)2
]
dx
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Changing x to y − q in the integral
∫

exeαxI2dx gives
∫∫

e(α+1)xeαqϕ(q)u(x+q, t)u(x, t) dq dx =
∫∫

e(α+1)(y−q)eαqϕ(q)u(y, t) u(y−q, t)dq dy

Then we conclude that
dB

dt
= −A(1−K)

∫ ∞

−∞

∫ ∞

−∞
e(1+α)ye−qϕ(q)u(y − q, t)u(y, t)dqdy −

− µ0

∫
e(α+1)xu(x, t)2dx

From this result, it follows that, if K = 1 and µ0 = 0, total biomass is
invariant. This is a corollary of the model : ifK = 1, the biomass is conservative
for each individual predation event. In fact, there are losses when converting
food into body mass, hence K < 1 and the biomass decreases with time. To
avoid that, an external input of biomass in the small weights is needed : it
is given by small �sh food (e.g. plankton). This is related to the boundary
condition for small x.

3.5 Individual life history
Here we give some consequences of the model for an individual �sh: its growth
curve, life expectancy (average time the �sh will live, given it is alive at time t),
and food ration. All this quantities can be computed for an individual �sh in a
given environment u(x, t). We �rst assume that this environment is a solution
of equation (10); then we make e�ective computations for the stationay solution
of equation (10).

We already de�ned the growth functionX(t) of an individual �sh (equation
(3)). Combining with g (equation (9)), this gives a di�erential equation forX(t)
which can be solved with the initial conditionX(0) = x0. It gives the weight
W (t) = eX(t) as a function of time.

The food ration or instant amount of prey ingested is given by equation (8).
Equation (7) gives the functionm(t) = µ(X(t), t)+µ0e

αX(t)u(X(t), t) which
is the mortality rate at time t for the individual �sh. The probability of living
until time t for a �sh is given by exp

∫ t

0
−m(τ)dτ .

The distribution of the random variable "age of death" is given byp(t) =
m(t) exp

(∫ t

0
−m(τ)dτ

)
.

Then classical formulae give the life expectancy : E(x0) =
∫∞
0

tp(t)dt. An
integration by parts makes the computation easier :

E(x0) =
∫ ∞

0

exp
(
−

∫ t

0

m(τ)dτ

)
dt
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Let us apply this to compute the life expectancy in the case of the stationary
exponential solution u(x, t) = u0e

λx. Following the procedure above, equation
(9) gives:

g(x, t) = KAC1u0e
(α+λ)x

where C1 =
∫ ∞

−∞
e−(λ+1)qϕ(q)dq

Equation (3) is now:
dX

dt
= KAC1u0e

(α+λ)X(t)

and we can compute the solution with initial conditionx0:

X(t) = − ln(−C1KAu0 (α + λ) t + e−x0 (α+λ))
α + λ

W (t) = (−C1KAu0 (α + λ) t + W
−(α+λ)
0 )−1/(α+λ) (12)

The mortality rate at time t for a �sh of weight W (t) is given by equation (7)

m(t) =
C3

C4t + C0

where C3 = AC2u0 C4 = KAC1u0(−α− λ) C0 = W
−(α+λ)
0

and C2 =
µ0

A
+

∫ ∞

−∞
e(α+λ)qϕ(q)dq

Then, the life expectancy for a �sh of weightW0 is:

E(W0) =
C0

C3 − C4

It is easy to check that C3 > C4 if we remember that λ is a solution of equation
(11).

4 Parameters
For numerical analyses below, we used values of the parameters based on pub-
lished literature (table 2). The parameters of the model are broad features of a
food web and cannot be measured for a given community ; rather, the values in
table 2 are reasonable, given the published knowledge on marine organisms and
food webs. Both experimental and theoretical sources are reported, as previ-
ous theoretical studies performed valuable compilations of former experimental
results.
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The value of µ0 is set such that the non-predation mortality rate for
a 500g �sh is 0.2, an assumption in the range of residual mortality rates
usually assumed in multispecies models e.g. for the North Sea and Baltic
Sea (0.1-0.2) [Gislason and Helgason, 1985, Gislason, 1999, Anonymous, 2002,
Andersen and Ursin, 1977].

Para- De�nition see Unit Ref. Lower Upper Sources
meter § value limit limit

α Exponent of weight
in volume of water
searched

(2.3) � 0.82 0.6 0.9 [Ware, 1978]

A Volume searched by
unit weight

(2.3) m3.y−1 640 [Ware, 1978]

eq0 Modal ratio of
predator size to
prey size

(2.3) � 100 10 1000 [Daan, 1973, Ware, 1978,
Silvert and Platt, 1980,
Borgman, 1982,
Cohen et al., 1993,
Thiebaux and Dickie, 1993,
Vignes, 1998]

n An inverse measure
of the width of the
predator-prey size
ratio distribution

(2.3) � 5 1 10 guessed from the distri-
bution of prey size in
predator stomach from
[Daan, 1973, Cohen et al., 1993]

K Growth e�ciency (2.5) � 0.2 0.1 0.6 [Paloheimo and Dickie, 1966,
Ware, 1978, Borgman, 1982,
Gurney et al., 1990,
Buckel et al., 1995]

µ0 natural mortality
rate

(2.4) m3.y−1 80 0 200 [Gislason and Helgason, 1985,
Gislason, 1999,
Anonymous, 2002,
Andersen and Ursin, 1977]

Table 2: Values of the parameters used in model simulations. Lower and higher
limits refer to the range of values used in the sensitivity analysis.

5 Numerical simulations
5.1 Slope of the stationary solution
The slope λ of the stationary size spectrum was computed from equation (11)
with function ϕ given by (5), for di�erent values of the parameters (table 3).

The slope of the size spectrum is not sensitive to individual variations in the
parameters, especially the width of the predator-prey size ratio distribution.
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n eq0 α K µ0 λ

5 100 0.82 0.2 80 -1.0500
10 100 0.82 0.2 80 -1.0589
1 100 0.82 0.2 80 -1.0117
5 1000 0.82 0.2 80 -1.0105
5 10 0.82 0.2 80 -1.1569
5 100 0.6 0.2 80 -0.9558
5 100 0.9 0.2 80 -1.0847
5 100 0.82 0.1 80 -1.1099
5 100 0.82 0.6 80 -0.9560
5 100 0.82 0.2 0 -1.0439
5 100 0.82 0.2 200 -1.0589
10 10 0.9 0.1 200 -1.3710
10 1000 0.6 0.6 0 -0.8376

Table 3: Numerical computation of the stationary slopeλ

Predators eating larger preys, searching in volumes increasing steeper with size,
and having a lower growth e�ciency result in steeper spectra than the opposite
settings. A higher non predation residual mortality rate also results in a steeper
slope. Keeping all but one of the parameters to their reference value results in
slopes of approximately -1, which is consistent with published data:

• slopes of log numbers versus log length class ranging from −4 to −10
for weakly to heavily exploited �sh communities [Anonymous, 1996,
Rice and Gislason, 1996, Bianchi et al., 2000]. Indeed, assuming that
body weight is related to body length by w ∝ L3, the slope λ of the
density of �sh with respect to log weight is related to the slopeσ of the
log density of �sh with respect to length by 3λ = σ + 1.

• the slope of log biomass density versus log body mass in various aquatic
ecosystems being very close to 0 [Boudreau and Dickie, 1992].

• the slope of normalized biomass spectra (log biomass per range of weight
classes versus log weight) being close to -1 or steeper in various plankton
communities as well as in benthic �sh assemblages in the Benguela System
[Macpherson and Gordoa, 1996, Zhou and Huntley, 1997].

Simultaneous changes in the parameters result in wider variations in the
slope. However, combining extreme values of all parameters still results in
consistently slowly decaying size spectra. The reference valueλ = −1.0500 was
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taken for the simulations below.

5.2 Initial intercept of the spectrum
The intercept u0 of the biomass spectrum at time t = 0 was estimated from
average densities estimated from published size spectra (table 4). Fish densities
are usually estimated from trawl surveys and reported in numbers or biomass
per swept area, i.e. per m2. Trawls usually have a vertical opening of a few
meters, but considering that most �sh are found close to the bottom, the density
per m2 can be considered very similar to the density in the �rst meter of the
water column, i.e. per m3. The estimated intercepts vary by three orders
of magnitude, depending on ecosystems : it is determined both by primary
production and food web structure [Sprules et al., 1991, Cyr and Peters, 1996].

For the stationary linear spectrum, the abundance of �sh with weight in
[w1, w2] or length in [L1, L2] is given by formula (1) i.e., assuming that w =
0.005L3,

u0

(
w2

λ

λ
− w1

λ

λ

)
= 0.005λu0

(
L2

3λ

λ
− L1

3λ

λ

)

and the biomass is given by formula (2) i.e.

u0

(
w2

λ+1

λ + 1
− w1

λ+1

λ + 1

)
= 0.005λ+1u0

(
L2

3λ+3

λ + 1
− L1

3λ+3

λ + 1

)

Assuming that the values of the parameters are the reference values (hence
λ = −1.0500), u0 was computed for each observation (table 4).

Spectrum Ecosystem Source Size range Density Estimated
intercept

Length Weight Number Biomass
(cm) (g) (fish m−2) (g m−2) (g m−3)

Demersal
�sh

Mediterranean
Sea

[Rochet and Lembo, 2003] 1-100 0.5 0.002

All �sh Lakes [Cyr and Peters, 1996] 0.2-790 1 0.14
Planktivorous
�sh

Lake Michi-
gan

[Sprules et al., 1991] 5-20 6 1.56

Piscivorous
�sh

Lake Michi-
gan

[Sprules et al., 1991] 30-80 0.2 0.09

Table 4: Intercepts estimated from published size spectra.

For all simulations below, u0 = 0.01 was taken as reference value.
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5.3 Individual life history
The life history of a hypothetical individual �sh with initial weightW (0) =
10−3g was estimated in terms of growth, annual food ration and life ex-
pectancy (Table 5). The predicted growth and life expectancy were checked
against the data in [Pauly, 1980], who compiled the parameters of the von
Bertalan�y growth model and natural mortality rate estimates for 175 �sh
species encompassing a wide range of taxonomic groups and environmental
conditions. We partitioned the species into 10 groups of increasing natural
mortality rate. Based on the growth parameters, the weight at age for each
group was then computed, as well as the life expectancy for �sh near their
asymptotic weight. The growth curves compare satisfactorily, except in ages
below one year (Figure 2). This is partly due to the von Bertalan�y growth
model not being appropriate to describe early growth of �sh. Similarly, the
life expectancy predicted by the model �ts rather well the data for large �sh,
but overestimates it in small sizes. This is due to small �sh in the model
being a mix of small short-lived adult �sh and young longer-lived animals.
Furthermore, the food ration estimated by the model is consistent with the
range of published data, from 30 − 70% of the body weight daily for �sh
larvae [Pepin and Penney, 2000] to 1 − 7% for adult �sh of various species
[Gislason and Helgason, 1985, Daan, 1973, Essington et al., 2001]. Hence the
model individual �sh seem to have a reasonable life history.

Weight 1mg 1g 10g 100g 1kg 10kg
Age (from weight 1mg) 0 142d 266d 1y112d 2y106d 3y349d
Annual food ration 0.22g 45g 262g 1.55kg 9.10kg 53.6kg
Life expectancy 8d 39d 66d 113d 191d 324d

Table 5: Life history of an individual �sh, for reference values of the parameters
(table 2)

5.4 Boundary conditions
Equation (10) cannot be used for numerical computations : sizes have to be
discretized, hence x is bound in an interval [xmin, xmax]. Subsequently, equation
(10) has no meaning because of the convolution integrals. To circumvent this
di�culty, function ϕ is truncated and the model is changed at both ends of the
interval. In addition, an input of biomass to the system is needed.
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Figure 2: The model growth curve of an individual �sh (line), compared with es-
timated weights at age derived from the data compiled by [Pauly, 1980] (circles)
(For explanations see text).

In small size, the population of plankton up(x, t) is assumed to control the
system. In large size, the biomass should be almost independent of time. This
is described by two simple models, the di�erential equationB for plankton, and
C for very large animals.

∂u

∂t
= B(u) where B(u) =

1
τp

(up − u) with τp small

∂u

∂t
= C(u) where C(u) =

1
τm

(um − u) with τm large

The parameters τp (resp. τm) is the characteristic time to return to equilibrium
after a perturbation, for plankton (resp. large animals).

Call A the operator describing the dynamics in the �sh size spectrumu in
equation (10):

A(u)(x) = − d

dx

[
KAeαx

∫ ∞

−∞
e−qϕ(q)u(x− q)u(x) dq

]

−Aeαx

∫ ∞

−∞
eαqϕ(q)u(x + q)u(x) dq

−µ0e
αxu(x, t)2

Models B and C were chosen similar toA to allow a smooth transition between
the populations of plankton, �sh and big �sh. The complete model is then
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∂u

∂t
(x, t) = ψp(x)ψm(x)A(u)(x) + (1−ψp(x)) B(u, t)(x)+ (1−ψm(x)) C(u, t)(x)

(13)
where ψp and ψm are smooth functions with:





0 ≤ ψp(x) ≤ 1
ψp(x) = 1 for x > x2

ψp(x) = 0 for x < x1





0 ≤ ψm(x) ≤ 1
ψm(x) = 1 for x < x3

ψm(x) = 0 for x > x4

The functions ψp and ψm used in simulations are cubic spline.
Hence the size spectrum governed by predation processes only is simulated in

the size range [x2, x3] only. For small sizes lower than x1, model B is simulated,
and model C for sizes larger than x4. Over ranges [x1, x2] and [x3, x4] transition
processes occur.

In addition, function ϕ is truncated in simulations to ensure that ϕ(q) = 0
while q > x1−xmin and q > xmax−x4. This ensures that the composite operator
in equation (13) is de�ned for all derivable functions over [xmin, xmax].

5.5 Fishing mortality
For simulations, �shing mortality rateµf (x, t) is given by

µf (x, t) = max(0, a(x− b))

where a and b are parameters. It is a linearly increasing function of log weight
with recruitment to �shing at weight exp(b). The parameters a and b were
estimated by linear regression of �shing mortality rate F at age versus log
weight at age, combining all stocks assessed by the International Council for
the Exploration of the Sea in i) the North Sea and ii) the Bay of Biscay. The
resulting estimates did not to di�er signi�cantly (Table 6).

5.6 Di�usion
From a strictly mathematical view, equation (13) may not have a solution at
any time t. At some time t0, the slope of the size spectrum may become in�-
nite in some point, then the solution would not be de�ned any more. This is
well known for the Burgers equation ∂u/∂t = u∂u/∂x. As a consequence, in
some simulations, the population of �sh of weight ex0 disappears at time t0.
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Para- De�nition Unit Ref. Sources
meter value

b log weight at recruitment
to the �shery

� ln(10) Estimated from
[Anonymous, 1998b,
Anonymous, 1998a]

a Slope of the �shing mor-
tality as a function of log
weight

y−1 0.1 Estimated from
[Anonymous, 1998b,
Anonymous, 1998a]

Table 6: Values of the parameters of �shing mortality used in model simulations.

This problem was circumvented by introducing di�usion in the model. This
amounts to assume that two �sh of similar weight, eating the same prey, will
not grow exactly by the same amount. Hence this will add realism to the model.
Mathematically, this introduces an additional term∂2u/∂x2 in operator A.

Simulated size spectra with non predation mortality (µ0 > 0) are more regu-
lar than those without non predation mortality (µ0 = 0). When µ0 > 0, di�usion
is not needed to obtain a solution de�ned for all positive t. Unfortunately, we
have no mathematical explanation for this observation.

5.7 Simulated size spectra
Size spectra were simulated following equation (13) usingC++ on a Personal
Computer with an order 4 Runge-Kutta method and log weight x discretized
by an elementary method (dx = dw/w = 0.5). The size and time steps were
determined by trial and error, small enough so that the observed patterns be
independent of the value of the steps, and large enough to allow simulation
of some years within a reasonable computing time. The process parameters
were selected in table 2 and the boundary conditions parameters and limits are
reported in table 7.

Parameter name wmin w1 w2 w3 w4 wmax

Value 10−12g 10−6g 10−3g 106g 109g 1012g
Parameter name τp up(x, t) τm um(x, t)

Value 10 days u0e
λx 3 years u0e

λx

Table 7: Parameters and limits of the boundary conditions �xed for all simula-
tions. (see section 5.4 for explanations)

A �rst series of simulations was run to check that the results conformed to
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the theoretical expectations. Linear spectrau0e
λx were found to be stationary.

A weaker slope initial spectrum decreased uniformly for all weights, conforming
to section 3.3.1. For µ0 = 0, an initial spectrum with appropriate gaps was
stationary, conforming to section 3.3.2 as well.

Further simulations were run i) to study the stability of the stationary so-
lution and ii) to predict the e�ect of �shing on the stationary solution (Fig.
3).

When the initial spectrum is perturbed by a sine function around the sta-
tionary slope, the peaks move downwards the spectrum and are rapidly damped,
especially in small sizes (Fig. 3.a). On the other hand, if the plankton input
to the spectrum oscillates in time following a sine function, the oscillations
expand while propagating through the spectrum (Fig. 3.b) and may result
in in�nite values if their amplitude is too large. This con�rms a conjecture
of [Silvert and Platt, 1980] that small oscillations in the food supply can drive
large swings in populations. Note that the amplitude of the perturbations added
is very large as the �gures span 14 orders of magnitude (from 10−10 to 10+4) on
the y-axis. Introducing either di�usion or larger non predation mortality sta-
bilises the solution (not shown). A strong �shing mortality results in a steeper
slope of the stationary solution in larger sizes. Introducing �shing mortality
starting at weight 1g causes a change in slope for weights larger than10kg (Fig.
3.c). However, a more realistic �shing mortality (as estimated from the North
Sea and Bay of Biscay stocks) has no apparent e�ect on the slope of the spec-
trum, but rather on its curvature (Fig. 3.d). This e�ect is not larger than
the oscillations created by perturbations added to the model, which can have a
fairly large amplitude (Fig. 3.e and f).

6 Discussion
That a regular size spectrum can be the result of regularity in the predation
processes along the food web was suspected by [Beyer, 1989], who found that if
the size spectrum is linear and if growth and mortality rates are allometric, then
mortality rate has to be proportional to growth rate (ie, they should have the
same allometric exponent). [Silvert and Platt, 1980] formally started from the
processes to prove that given allometric growth and mortality and a constant
predator to prey size ratio, a linear size spectrum is stationary. In an unpub-
lished paper, Beyer further proved that his result is still valid when predators
select their preys according to a log-normal (symmetric) suitability rather than
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a single size (J. Beyer, 1990. Size spectrum theory and multispecies assessment:
basic concepts and perspectives. Working paper No 21 to the ICES Multi-
species Working Group hold in Woods Hole, dec. 1990). The present study still
relaxes this assumption and proves that a linear spectrum can be stationary for
any distribution of prey size suitability, provided this distribution is consistent
throughout the whole size spectrum. This is an important contribution as �eld
data show that there is a wide variability in predator to prey size ratio, and
that predator size - prey size distributions are asymmetric [Scharf et al., 2000].
Furthermore, we demonstrate that a linear spectrum is still possible while tak-
ing account of non predation mortality, provided the latter has an appropriate
allometric exponent. Thus improving the realism of the assumptions does not
necessarily increase the complexity of the solution.

Under the same assumptions, size spectra can also be oscillating, both in time
and along the size axis. Perturbations that are likely to occur in the real world,
such as seasonal primary production, can result in oscillations in the spectrum.
Size spectra observed from various marine communities frequently show oscilla-
tions [Pope and Knights, 1982, Murawski and Idoine, 1992, Drgas et al., 1998,
Saiz-Salinas and Ramos, 1999, Rochet and Lembo, 2003]. On the other hand,
solutions oscillating in size can also be stationary. This has to do with the "mul-
tispectrum" theory developed by [Dickie et al., 1987, Boudreau et al., 1991].
They assumed discrete jumps of energy between relatively �xed size ranges
of prey and predator, resulting in a secondary structure of the body size spec-
trum consisting of a series of stationary biomass domes periodically spaced. The
data from several ecosystems verify this theory (see review of theory and data
in [Kerr and Dickie, 2001]). Our results show that there is no need to assume
discrete trophic levels to obtain periodic spectra.

Although assuming a variable rather than �xed predator to prey size ratio
improves the regularity of the size spectrum model, it is still unstable. Simu-
lations frequently resulted in ecosystem crash and this is justi�ed theoretically
(see section 5.6). However, introducing di�usion in the model stabilised the
solution: once again, the more realistic assumption that all �sh are not simi-
lar but have a variable e�ciency in food assimilation improves the realism of
the solution. Moreover, this is a contribution to the never-ended debate about
biodiversity and ecosystem stability [Johnson et al., 1996]. In this model, in-
troducing biodiversity (although a small amount of it) improves the stability of
the system. Surprisingly, the non predation mortality term also improves the
stability of the solution. This may be due to the density-dependence introduced
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thereby, providing a week feedback control of numbers in the spectrum.
Introducing a simple size-dependent �shing mortality results in a steeper

slope of the spectrum, as inferred a long time ago by �sheries scientists. This
change of slope occurs in a range of sizes larger than the size at recruitment.
Given the parametrisation of the model in the present study, a realistic �shing
mortality as estimated from the North Sea and Bay of Biscay does not result
in a change in the slope of the spectrum. Rather, its curvature and regularity
are a�ected by �shing. These impacts are expected to be larger if di�usion
and oscillations in primary production are assumed. Moreover, it might be
underestimated in the simulations, due to assuming a process that keeps the
biomass invariant in large sizes (section 5.4). Hence we conclude that realistic
�shing pressures could cause disruptions in the size spectrum, consistently with
the increasing awareness that �shing depletes large predators in world �sheries
[Myers and Worm, 2003, Pauly et al., 1998].

Our result di�ers from the study by Gislason and Rice
[Gislason and Rice, 1998] who predicted, based on a Multi Species Vir-
tual Population Analysis (MSVPA) model, that the change in slope of the
size spectrum in the North Sea would be proportional to the change in �shing
intensity by a factor of -1.3 to -3. This might be due to the completely di�erent
structures of the models. MSVPA describes the age-structured dynamics of
a few commercial species; the less well known remainder of the food web is
�xed. Hence compensations and species replacements in diets assumed to
occur in any case in the present model are completely neglected in MSVPA.
This hypothesis is con�rmed by the results by [Shin and Cury, ress]. These
authors developed a multispecies individual-based model where predation
is a size-based opportunistic process. Their simulations show that �shing
impacts the slope of the size spectrum if it is assumed linear, and its curvature
if it is assumed quadratic. This would explain why published evidences of
�shing e�ects on the slope of size spectra are not consistent (see review in
[Rochet and Trenkel, 2003]). If, as shown by our work, the main e�ects of
�shing on size spectra are to increase their curvature and to make them vary
through time, the linearity assumption would result in erroneous and variable
slope estimates that would not be straightforward to interpret. This would
be an argument not to use the slope of size spectra, but rather some other
characteristic, if we are to monitor �shing impacts.

The main predicted e�ect of a realistic �shing pressure in the present model
is to increase oscillations in the size spectrum in large sizes. These oscillations
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are caused by the depletion of large �sh, allowing the numbers in the lower
size-classes to increase due to decreased predation. These increased numbers
in turn exert an increased predation on the next lower size-classes, and so on.
These e�ects then propagate backwards to large sizes as a depleted size class
will cause food scarcity for the next larger size class. Indeed, many published
size spectra from exploited �sh communities show oscillations, but a comparison
of the magnitude of these oscillations with less exploited communities or with
the predictions of the model would hardly be feasible. An interesting feature
of this model is that controls occur both top-down (predators controlling prey
numbers) and bottom-up (preys limiting predator growth) and in this way may
re�ect the complexity of real food webs.
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Panel First Last Time Initial Left boundary Fishing
time time step condition condition mortality

plotted plotted parameters
(y) (y) (d) a b

a) 0 3 2 u0e
λx(1 + sin x) u0e

λx 0 0
b) 0 3 2 u0e

λx u0e
λx(1 + 0.3 sin(2πt)) 0 0

c) 10 15 3 u0e
λx u0e

λx 0.5 log 1
d) 10 15 3 u0e

λx u0e
λx 0.1 log 10

e)f) 10 15 3 u0e
λx(1 + sin x) u0e

λx(1 + 0.3 sin(2πt)) 0.1 log 10

Table 8: Parameters for the simulations plotted in �gure 3.
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Figure 3: Simulated size spectra using reference parameters of Tables 2 and 7,
unless otherwise speci�ed in table 8.
The dynamics of the spectrum is represented by plotting the model solution for
successive steps dt, 2dt,..., Ndt with a grey shading from white at dt to black
at Ndt.
Dashed line: initial condition.
Gray bold line : stationary solution.
a) Oscillatory initial spectrum.
b) Oscillatory plankton input.
c) Strong �shing e�ort.
d) Realistic �shing e�ort.
e) Realistic �shing e�ort with oscillatory initial condition and oscillatory plank-
ton input.
f) The same as e) focused on a �sh-like size range.


