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INTRODUCTION

Benthic microalgae are generally the main primary
producers in European intertidal mudflats. They con-
stitute a significant amount of photosynthetic biomass
in the uppermost centimetre of the mud, and are char-
acterised by a large variability at different spatial and
temporal scales (Colijn & De Jonge 1984, De Jonge &
Colijn 1994, MacIntyre et al. 1996, Underwood &
Kromkamp 1999, Blanchard et al. 2001). Most of this
biomass experiences aphotic conditions in the sedi-
ment because light usually does not penetrate below a
depth of a few hundred microns into mud (Colijn 1982,
De Jonge & Colijn 1994). The majority of microalgae,
down to a depth of 0.5 or 1 cm, are nevertheless
capable of a photosynthetic activity when they are
artificially exposed to light (Riaux-Gobin et al. 1993,

Blanchard & Cariou-Le Gall 1994), and this potential
activity allows us to define this pool of microalgae
as the ‘photosynthetically competent biomass’ (PCB)
(MacIntyre & Cullen 1995).

To cope with the restricted light conditions prevail-
ing in intertidal mudflats within the sediment, the
motile fraction of epipelic microalgae has developed
an endogenous vertical migration rhythm, according to
which part of the PCB moves upwards to the surface of
the sediment during diurnal emersions to form a tem-
porary biofilm (Serôdio et al. 1997, Perkins et al. 2001,
Defew et al. 2002). This biofilm actually performs
photosynthesis and represents the ‘photosynthetically
active biomass’, or PAB (Guarini et al. 2000). At the
end of low tide, 2 situations have been described so far:
(1) microalgae migrate downward back into the sedi-
ment or (2) they can remain at the sediment surface.
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contains the photosynthetic competent biomass (PCB). Part of this biomass migrates upward to the
surface of the sediment during diurnal emersion periods to form a temporary biofilm: the photosyn-
thetic active biomass (PAB). The present study tests the hypothesis that the size of the biofilm (PAB)
is functionally dependent on PCB. Therefore, we have plotted PAB as a function of PCB for a range
of different environmental conditions: 3 seasons and 5 tidal situations, representing a total of 600
cores. This investigation points out that, in spring and autumn, there was a simple linear relationship
between PAB and PCB, thus indicating that the maximum size of the biofilm represents a constant
fraction (between 13 and 18%) of the available biomass in the top centimetre of the mud. The rela-
tionship was more complex in winter, but the general trend remained the same. The dependence of
the size of the biofilm on PCB might have important ecological implications in terms of primary
productivity and also the monitoring of intertidal microalgal biomass at large spatial scales.
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With the incoming tide they can be resuspended into
the water column and then constitute an important
food source for the pelagic trophic web (Consalvey et
al. 2004b).

This basic pattern of vertical migration, which peri-
odically transforms part of the PCB into PAB, has been
qualitatively described many times by looking at the
presence of microalgal cells or biomass at the surface
of the sediment (Palmer & Round 1965, 1967, Paterson
et al. 1986, Serôdio et al. 1997, De Brouwer & Stal 2001,
Perkins et al. 2001, Tolhurst et al. 2003, Herlory et al.
2004) and has been reviewed recently by Consalvey et
al. (2004b). However, the quantitative and dynamic
aspects of the relationship between PCB and PAB have
so far been overlooked. The question as to whether the
biofilm size is independent or functionally dependent
on the available PCB is fundamental for understanding
the dynamics of the system’s productivity. It is, there-
fore, necessary to determine, on a simple but general
basis, how much of the PCB is actually mobilised in the
biofilm to contribute to primary production.

Therefore, the objective of the present study is to
determine the extent to which biofilm size is function-
ally dependent on the available PCB. Our investigation
is based on the analysis of the concomitant variations
of both PCB and PAB, to take advantage of the natural
variability of microphytobenthic biomass at different
scales. So, to ensure a large range of biomass variation,
sampling was carried out over different seasons and
tidal situations; on the spatial scale, local patchiness
also accounts for the observed variability.

MATERIALS AND METHODS

Study site and sampling. The study was undertaken
in Aiguillon Bay, which is located along the French
Atlantic coast (47° 00’ N, 1° 05’ W). The bay is domi-
nated by bare intertidal mudflats composed of very
fine muds (Lorin 1968). Sampling was performed in 3
different seasons (spring 2003, autumn 2003 and win-
ter 2004). For each season, 5 samplings were carried
out over half a lunar cycle (ca. 14 d): (1) at spring
tides, (2) a few days after spring tides, (3) at neap
tides, (4) a few days after neap tides and (5) at the fol-
lowing spring tides. In Aiguillon Bay, low tide occurs at
midday during spring tides, so that there is only 1 long
diurnal emersion period in the middle of the day, with
a maximum sunlight input at the surface of the sedi-
ment. On the contrary, during neap tides, high tide
occurs at midday, so that there are 2 short diurnal
emersion periods, one early in the morning and the
other late in the afternoon. Hence, the total amount of
light that reaches the sediment surface during neap
tides is lower than during spring tides.

For each diurnal emersion, sediment samples were
collected within a 1 m2 quadrat. Ten 3 cm diameter
cores were taken within this quadrat at each of the
following times: at the beginning of emersion, 1 h after
the beginning of air exposure, 1 h before immersion
and at the end of emersion just before flooding time.
For each core, the sediment was frozen with liquid
nitrogen, so as not to disturb the microalgal assem-
blage. Cores were then stored in the dark at –20°C
until further processing.

Biomass measurements. Samples were freeze-dried
before pigment analyses. For each core, 3 blocks were
cut up (8 × 8 mm, 1.5 cm height), then placed in a
microtome and sectioned into a surface layer (0 to
200 µm) and a sub-surface layer (200 µm to 1 cm).
The sediment sectioned from the 3 blocks was then
pooled for pigment analysis. Pigments were extracted
in 90% acetone in the dark overnight at 5°C, and then
chl a and pheopigments were detected fluorometri-
cally and quantified using Lorenzen’s (1966) equa-
tions. PAB was assumed to be in the upper 200 µm
layer and was expressed in milligrams of chl a per
square metre per 200 µm; PCB was calculated as the
sum of the surface and sub-surface layers and was
expressed in milligrams of chl a per square meter per
1 cm.

Statistical analyses. To test the relationship between
the biofilm (PAB) and the available biomass (PCB), a
Model II linear regression was applied, because both
variables were random and measured with error.
Linear regression parameters were estimated by the
ranged major axis (RMA) method described in
Legendre & Legendre (1998) and computed according
to Legendre’s (2001) program1.

RESULTS AND DISCUSSION

Variability in the migration pattern and biofilm
constitution

The dynamics of the basic migration pattern, moni-
tored over 3 seasons and under different tidal condi-
tions, is presented in Fig. 1. The analysis of the results
points out 4 main characteristics:

(1) Most importantly, for the different observed field
situations (i.e. individual curves in Fig. 1), the highest
value of PAB was very variable from one situation to the
other, and ranged from about 5 mg chl a m–2 (4 to 6 mg
chl a m–2, 95% CL) to about 33 mg chl a m–2 (30 to
36 mg chl a m–2, 95% CL). As such, PAB is a very
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important state variable, which could be used to monitor
the dynamics of the biofilm. This large variability of the
biofilm size is in agreement with previous observations
(De Brouwer & Stal 2001, Honeywill et al. 2002).

(2) It appears that the combination of the tidal and
diel cycles partly controlled the formation of the
biofilm, since, for each season, the amount of PAB was
the lowest when the duration of the diurnal emersion

was shorter than 4 h. So, for short diurnal emersions,
there was only a very low mobilisation of microalgae to
constitute the biofilm, which did not develop com-
pletely (Fig. 1A: 25 April 2003, Fig. 1B: 2 December
2003 and 5 December 2003, Fig. 1C: 1 March 2004).
This is in agreement with the general observation that
a minimum of light exposure is required for microalgae
to move upwards (Round & Palmer 1966, Consalvey et
al. 2004b, Mitbavkar & Anil 2004).

(3) When the duration of the diurnal emersion was
longer than 4 h, the biofilm developed during the first
hour of emersion (80% of observed situations). But the
maximum amounts of PAB were measured 1 h before
immersion (91% of observed situations). These ob-
servations suggest that the biomass at the surface of
sediment is very dynamic as observed by chlorophyll
fluorescence imaging and LTSEM in Oxborough et al.
(2000), Perkins et al. (2002), Consalvey et al. (2004a) or
by chl a measurements in Herlory et al. (2004).

(4) Finally, at the end of the observed emersion
periods, 2 situations can be distinguished (Fig. 1): on the
one hand, the biofilm disappeared as epipelic micro-
algae left the sediment surface and buried into the mud
(the biomass decreased in the upper 200 µm during the
last hour of emersion; 1-tailed t-test, α < 0.05) in 50% of
the observed situations; on the other hand, the biofilm
remained at the sediment surface in the other 50% of the
observed situations (the biomass did not decrease in the
upper 200 µm during the last hour of emersion; 1-tailed
t-test, α < 0.05). This apparent lack of downward migra-
tion has been observed in previous studies (Consalvey
et al. 2004b and references therein).

Testing the functional dependence of the biofilm on
the available PCB

PAB was plotted as function of PCB to test whether
the size of the biofilm was functionally dependent on
the available biomass in the top centimetre of the
sediment (Fig. 2A). However, since the biofilm was
very dynamic during emersion periods, only the maxi-
mum size values were taken into account (defined as
the relevant variable, see above). Thus, the emersions,
which did not allow the biofilm to develop completely,
are not considered (25 April 2003, 2 December 2003,
5 December 2003 and 1 March 2004) (Fig. 2B).

Under such conditions, the results clearly show that,
on a seasonal basis, there was a functional relationship
between the maximum biomass that concentrated at
the surface of the sediment and the total available
biomass in the top centimetre of mud (Fig. 2B).

In spring and autumn, the functional relationship
between PAB and PCB was determined by Model II
linear regression, such that:
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Fig. 1. Basic pattern of vertical migration and biofilm consti-
tution during different diurnal emersion periods for 3 seasons:
(A) spring, (B) autumn and (C) winter. For each season, 5 tidal
conditions were monitored: f and e for spring tides, j and h
between spring and neap tides, × for neap tides. For each
emersion, biomass in the biofilm (mg chl a m–2) was mea-
sured at the beginning of the emersion, 1 h later, 1 h before 

immersion and just before the flooding tide
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PABspring = 0.18 (±0.07, 95% CL) × PCB – 3.24
(±5.1, 95% CL)

PABautumn = 0.13 (±0.07, 95% CL) × PCB + 0.78
(±3.6, 95% CL)

Such a linear model indicates that the maximum size
of the biofilm during diurnal emersions tends to be a

constant fraction of the biomass available in
the top centimetre of the mud (PCB), over
a large range of observed values (ca. 20 to
120 mg chl a m–2 cm–1). This fraction is
given by the regression coefficient and is
about 18% (±7%, 95% CL) in spring and
almost 13% (±7%, 95% CL) in autumn.

In winter, the relationship between the
maximum size of the biofilm and PCB was
more complex. There was still a positive cor-
relation, but there was also an increase of
PAB variability as a function of PCB. Conse-
quently, it was not possible to adjust a simple
relationship as for the other seasons. All
observed winter data nevertheless fit within a
well defined area: the grey triangle, which
has been drawn around the data (Fig. 2B).
The dispersion of the data in this area
(Fig. 2B) shows that the variability of the max-
imum size of the biofilm increased up to about
100 mg PCB m–2; then, beyond this thresh-
old, the variability decreased because the dis-
persion of the data points suggests that the
maximum size of the biofilm levelled out
at about 40 mg chl a m–2. Therefore, even
though the maximum size of the biofilm
seems to depend on the available biomass in
the top centimetre of the sediment (general
trend), there was obviously at least another
controlling variable, which could not be iden-
tified on the basis of the sampling strategy,
but which accounted for the extra variability
on a seasonal scale. These first results also
raise the issue of the maximum amount of bio-
mass that can concentrate at the surface of the
sediment, whatever the available PCB.

CONCLUSIONS

The present results constitute the first
report that, in some instances, there is a func-
tional relationship between the maximum
size that the biofilm can reach during
emersions and the total available biomass in
the sediment. However, even though they
encompass various environmental condi-
tions, they are based on observations from a

single site; therefore, additional investigations from
different places are needed for further generalisation.

The variability in the maximum size of the biofilm is
very likely to have a strong impact on its productivity,
since the accumulation and packing of microalgal cells
is known to induce auto-absorption of light and to
decrease the photosynthetic yield (Hartig et al. 1998,
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Fig. 2. PAB (photosynthetic active biomass, mg chl a m–2 per 200 µm)
plotted as function of PCB (photosynthetic competent biomass, mg chl a
m–2 cm–1) on a seasonal basis: individual observations are represented by
n for spring, h for autumn and f for winter. In (A), all cores sampled in
every season and tidal condition are displayed. In (B), only the maximum
size values of biofilm are shown to characterise the statistical relationship
between PAB and PCB (see ‘Results and discussion’ for details). Linear re-
gressions are represented by dotted lines for spring and by dashed lines
for autumn. In winter, the size of the biofilm was positively correlated with
PCB, but the increasing variability of PAB as a function of PCB did not
allow adjustment of the linear regression. We drew an arbitrary box
around the data, which assumes the shape of a triangle. The solid line
represents the theoretical limit of the system should the entire biomass
contained in the top centimetre of the mud (PCB) concentrate at the
surface of the sediment to form a thick biomass layer (whatever its thick-
ness, it is between the air and the sediment); as the biofilm is only a frac-
tion of the PCB, the observed regression lines always have a coefficient <1
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Kromkamp et al. 1998, Barranguet & Kromkamp 2000,
Serôdio & Catarino 2000, Honeywill et al. 2002). On the
contrary, an increase of productivity is likely to occur
since protection of the biofilm on the whole can be
afforded by the uppermost cells in the biofilm (Perkins
et al. 2001). It is therefore necessary to assess the
physiological consequences of such variations, i.e. the
quantification of the interactions between the structure
and the function of the intertidal primary production
system.

The existence of these kinds of simple relationships
also has potentially very important consequences for
the monitoring of the microphytobenthos. The use of
remote sensing techniques (Paterson et al. 1998,
Méléder et al. 2003a,b) now allows detection of chl a
at the surface of the exposed sediment on intertidal
mudflats; hence, assessment of biomass accumulated
in the biofilm is possible. Therefore, the use of func-
tional relationships such as those reported here, by
deducing the total available biomass from that of the
biofilm, really open new and important perspectives
for monitoring microphytobenthic biomass at large
spatial scales and at high frequency.
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