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Abstract:  
 
During parallel sampling of seawater samples in bottles and in free water (1000-2000 m3 clay ponds), 
we have measured phytoplankton biomass, Ribulose biphosphate carboxylase (Rubisco), 
phosphoenol pyruvate carboxylase, and phosphoenol pyruvate carboxykinase activities and major 
nutrients (ammonium, nitrate, phosphate, silicate). This was done in two ecosystems: one with high 
grazing pressure due to the presence of oysters and another with low grazing pressure (no oysters). In 
the ecosystem subjected to high grazing pressure, anaplerotic carbon fixation by phytoplankton in free 
water was higher in the light period and could represent 25% of total carbon fixation. Incubating 
samples in bottles led to a major increase in Rubisco activity (80% in 3 h) relative to values measured 
in free water, a decrease in β-carboxylases activity (70% in 24 h) due to ammonium exhaustion, as 
well as disappearance of its diel periodicity. This indicates a contrario that grazers, which are excluded 
from incubation bottles, drive ecosystems toward heterotrophy in situ by favoring the β-carboxylation 
pathway through excretion products such as ammonium. Therefore, incubations in high grazing 
environments (characterized by a grazing rate near 2 day-1) change the way carbon is fixed by 
unicellular algae within 3 h through a change in the form of nitrogen taken up.  
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Two major pathways of carbon assimilation are responsible for phytoplankton 

growth in aquatic systems. One is the ribulose biphosphate carboxylase (Rubisco) 

pathway (Calvin-Benson cycle), and the other one is the ßcarboxylase (anaplerotic) 

pathway. The latter one is generally considered to be quantitatively of minor 

importance [1], excepted in transient situations of nitrogen supply [2] which are often 

considered to dominate in aquatic ecosystems [3, 4, 5] and in heterotrophic nutrition [6, 

7, 8]. Rubisco uses light as an energy source, while the ßcarboxylases use internal or 

external metabolites [8]. ßcarboxylases activities are also known to depend on 

ammonium in the medium of cultures of unicellular algae [9, 10]. This anaplerotic 

carbon fixation allows the synthesis of molecules that are essential for growth and 

cannot be provided by the Calvin-Benson cycle [11]. Here we examine the possibility 

that enclosing water samples has an effect on the activities of those enzymes and the re-

routing of carbon relative to the situation in situ, where macrograzers are present [12, 

13]. Traditional measurements of primary production in aquatic ecosystems are 

generally carried out by adding isotopic carbon  tracers to water samples and incubating 

those in containers of various sizes and materials [14, 15]. While this approach has been 

criticized in many respects, it still remains the main way by which global fluxes of 

carbon are estimated in the oceans [16, 17]. One difficulty of validating the widely used 

incubation method comes from the movement of water masses in situ which makes 

comparisons between free water and incubated water impossible to carry out. Here we 

report such comparisons by using enzymatic measurements which do not require 

incubations and mesocosms which are large enough to support several trophic levels 

[18] but are still manageable in terms of homogeneity and size to allow large scale 

extrapolations from point sampling. 

 



Materials and methods 

 

To test the effect of incubation on carboxylating enzymes, we compared 

changes in bulk nutrients, phytoplankton biomass and carboxylase activities with 

changes in the same variables measured on samples enclosed in bottles and incubated in 

the same water body. Sampling took place from two mesocosms which had been filled 

with fresh seawater during the previous high tide [19]. These were 1000-2000 m3 clay 

ponds on the Atlantic coast of France (CREMA experimental site). The main difference 

between the two mesocosms was the presence of oysters and sediment filter feeders in 

one (high grazing system), which made it similar to a continous culture, with relatively 

low steady-state chlorophyll a levels (4-10 µg chl a/l) but nevertheless high 

phytoplankton growth rates [20]. The other one (low grazing system) acted more like a 

batch culture, with high phytoplankton biomass levels (20-150 µg chl a/l) reached 

within a few days after filling and isolation from the feed channel. Preliminary tests 

showed the water column of the mesocosms to be homogenous in chemical and 

biological properties [19]. Measurements took place in the summer (July) and lasted 

about 40 h, with a sampling interval ranging from 2 to 12 h. 

 Samples were taken directly from the mesocosms (referred to as "in situ" in the 

text) and from mesocosm water enclosed in bottles. Large volume (4 to 8 liter) 

transparent polycarbonate bottles were filled at time zero with surface seawater, sealed  

and incubated at the surface of the mesocosms. Aliquots were taken for nutrients 

(ammonium, nitrate, soluble reactive phosphorus, silicate), particulate matter and 

enzymatic analysis. Chlorophyll a (collected on Whatman GF/F filters) was extracted in 

90% acetone [21] within 30 min of collection. Bacteria were estimated by 

epifluorescence direct counting [22]. Nutrients (ammonium, nitrate, phosphate, silicate) 



were measured on a continuous flow analyzer [23].  

 For carboxylating enzyme assays, samples were collected by filtering 250 to 750 

ml of sea water through GF/F filters which were placed immediately in cryotubes and 

stored in liquid nitrogen. This storage did not affect the enzyme activities [24]. 

Activities were determined by measuring the incorporation of radioactive bicarbonate at 

25°C into stable products. Ribulose biphosphate carboxylase (Rubisco), phosphoenol 

pyruvate carboxylase (PEPC), and phosphoenol pyruvate carboxykinase (PEPCK) 

activities were measured in the same extract [8, 24].  

We did not have replicate bottles, but we used several bottles in series because 

of the large volumes required for all analyses. Those bottles were all monitored by in 

vivo fluorescence in order to have an idea of the reproducibility, at least at the level of 

chlorophyll a fluorescence. From this variability, we could compute a coefficient of 

variation of about 8% at the beginning of incubation to about 3% at the highest values 

observed.  

 

Results 

 

 Table 1 shows the range of variables during the experiment. In the low grazing 

system, the large phytoplankton was dominated by Prorocentrum minimum, 

Scrippsiella trochoidea and Gymnodinium spp. In the high grazing system, the diatom 

Surirella et Diploneis genera dominated. Water temperature ranged between 21.8 and 

24.5°C. Soluble reactive phosphorus (SRP) and silicate concentrations remained high 

and were not limiting phytoplankton growth. 

In the low grazing mesocosm, the incubation did not change the phytoplankton 

biomass or the activities of either Rubisco or ßcarboxylases relative to the free water  



situation, at least on time scales of 1-2 days used here (Fig. 1). In contrast, in the 

mesocosm under high grazing pressure, the first obvious effect of incubation was a 

large (five fold) increase in phytoplankton biomass (Fig. 1) which was due to release of 

macrograzing pressure. In the free water, the biomass remained low (4-8 µg/l)  and 

exhibited a diel periodicity with lower values at night than during the day.  

At the level of carbon fixation enzymes, Rubisco/chla activity in the bottles 

increased by about 80% relative to free water activity within 3 h (Fig. 2), overriding the 

strong diel periodicity observed in the free water and related to the day-night cycle. 

Over the longer term (days), this activity decreased  because of nutrient depletion 

(dissolved inorganic nitrogen decreased from about 8 to 1 µmolN.l-1). In parallel, 

ßcarboxylase activities decreased by about 70% in incubation bottles relative to their 

activities in the free water on the second day (Fig. 3). We have expressed ßcarboxylase 

activity on the basis of chl a because bacterial biomass decreased over the experiment 

[25], so that the trends shown are mostly due to phytoplankton. The higher 

ßcarboxylase activity during the day also confirms that anaplerotic carbon fixation is 

higher in the light than in the dark [26]. In the low grazing system, ßcarboxylase 

activity remained low and similar in bottles and in free water over the duration of the 

experiment (Fig. 3).  

 The activity of ßcarboxylases was closely related to ammonium concentrations 

in the high grazing system (r = 0.887, p = 0.0001) while much more loosely in the low 

grazing system (r = 0.617, p = 0.0326). As ammonium decreased with time both in 

incubation bottles and in free water, ßcarboxylase activity also decreased with time, but 

in a faster way in the incubation bottles because the ammonium supply from 

macrograzers was missing and ammonium concentration decreased in a faster way than 

in free water. 



 In fact, the relationship between ammonium in free water and in bottles was 

much more variable in the high grazing system (r = 0.704, p = 0.0131) than in the low 

grazing system (r = 0.975, p = 0.0001), which is expected because the ammonium 

excreted by the grazers in free water is not present in incubation bottles where the major 

grazers (oysters and sediment filter feeders) are excluded with 100% efficiency. In 

addition, the slope of the relationship was not different from unity in the low grazing 

system, while ammonium decreased more rapidly (by about 30%) in bottles than in free 

water in the high grazing system. 

 

Discussion 

 

 The high phytoplankton growth rate (2.6 divisions.day-1, or 1.8 day-1) estimated 

for the high grazing environment was obtained from net increases in chl a 

concentrations in bottles. The lack of a similar increase in phytoplankton biomass in 

situ (Fig. 1) implies that grazing is in equilibrium with growth and is also equal to 1.8 

day-1. This value is in the high range of grazing rates recorded in aquatic environments 

[27] and is close to the value of 2.1 day-1 observed by others at an oyster farming site 

[28]. The discrepancy in phytoplankton growth estimates between incubation and in 

free water  methods is likely to be a function of the grazing intensity of grazers that are 

excluded from bottles. Our high grazing mesocosm is therefore probably a worst case 

scenario exemplified by the wide divergence between the evolutions of biomass (Fig. 1) 

Rubisco (Fig. 2) and ßcarboxylases (Fig. 3). Concerning rates of carbon fixation, Fig. 2 

and 3 show that such rates begin to diverge widely beyond 3 hours of incubation. This 

duration would then be the upper limit for obtaining representative estimates of rates 

when using incubation bottles in such environments. The effect of grazing of 



microzooplankton in incubation bottles can be accounted for by using the so called 

dilution method [29]. However, this does not account for grazers outside incubation 

bottles. In a recent review of zooplankton grazing [30], it was estimated that the latter 

consumed about 40% of phytoplankton daily growth in coastal environments.  

Concerning the ecological implications of the use of bottle incubations in 

relation with the ammonium/heterotrophy link, the diverging trends in Rubisco activity 

between incubated and free water in the high grazing system (Fig. 2) indicate that the 

enclosed phytoplankton is less dependent on ammonium or dissolved organic matter 

excreted by the excluded grazers (less heterotrophy) due to the confinement in bottles 

and relies more on inorganic carbon (and nitrate) for its nutrition. In addition, the rapid 

decrease in ammonium concentrations in bottles in the high grazing system leads to a 

decrease in ßcarboxylase activity. This results in a greater reliance on other nitrogen 

forms such as nitrate and a switch from regenerated production (on ammonium) to new 

production (on nitrate). Therefore, incubations in high grazing environments change the 

way carbon is fixed by unicellular algae through a change in the form of nitrogen taken 

up.  

A strong feedback thus exists between macrograzers and carbon assimilation 

pathways in phytoplankton, through excreted nitrogenous nutrients, here represented by 

ammonium. As ßcarboxylase activity is generally associated with heterotrophy [6, 7, 8], 

the above relationship can also be considered as representing heterotrophy on the 

nitrogen level. The traditional “incubation cum tracer” method thus severs the 

regeneration link and the ammonium supply from macrograzers. This further leads to 

underestimate heterotrophy whose importance has been shown by other approaches in 

both marine [31] and freshwater [32] ecosystems.  
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Table 1. Ranges of chemical and biological variables during the experiment 

SRP: soluble reactive phosphorus; µmax: maximum net growth rate from increases in 

chlorophyll a. 

 

 

Low grazing   High grazing 

 

Ammonium (µmol N.l-1)  1.1 – 7.1  0.6 – 5.7 

Nitrate     0.1 – 4.0  0.5 – 2.2 

Phosphate (SRP)   4.1 – 9.0  1.3 – 2.6 



Silicate     14.9 – 36.0  13 – 25.4 

Chl a (µg.l-1)    16 – 27  4 – 22 

µmax (div.day-1)   3.8   2.6 

Phytoplankton  

Large     dinoflagellates  diatoms 

Small 3 – 5 µm (106 cells.l-1)  150   1.5  

Bacteria (107 cells.ml-1)  2.5 – 3.3  8.3 – 9.7 

 

 

 

 

 

 

 

Figure legends 

 

Figure 1. Changes in phytoplankton biomass with time in the high grazing mesocosm in 

situ (squares) and incubated (circles) samples, and in the low grazing mesocosm in situ 

(diamonds) and incubated (triangles) samples. Dark bars represent night time.  

 

Figure 2. Changes in ribulose biphosphate carboxylase (Rubisco) activity per unit 

chlorophyll a with time in the high grazing mesocosm in situ (squares) and incubated 

(circles) samples, and in the low grazing mesocosm in situ (diamonds) and incubated 

(triangles) samples. Units in nmol CO2 µg Chl a-1 h-1. Dark bars represent night time.  

 



Figure 3. Changes in ßcarboxylase activity per unit chlorophyll a with time in the high 

grazing mesocosm in situ (squares) and incubated (circles) samples, and in the low 

grazing mesocosm in situ (diamonds) and incubated (triangles) samples. Units in nmol 

CO2 µg Chl a-1 h-1. Dark bars represent night time.  
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