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Abstract: Archival tagging provides a unique way to study the spatial dynamics and habitat of pelagic 
fish. This technique generates lagrangian data of a particular type in marine ecology: although highly 
informative about processes at different scales (e.g. horizontal movements versus diving behaviour), 
such data are impaired by location errors and the lack of combination with actual environmental 
variability. The present paper introduces a framework for modelling bluefin tuna movement in relation 
to its habitat, using records of light, depth and temperature from archival tags. Based on data 
assimilation concepts and methods, we show how an explicit formulation of the observation process 
and the statistics of external variables (e.g. ambient temperature) can improve precision in 
geolocation. The proposed method is tested on synthetic data: significant reduction (40 to 50%) in the 
initial root-mean square error is achieved under different noise scenarios. Assimilating sea surface 
temperature also allows to perform on-line estimation of a range of observation biases. The 
performance of the model greatly benefits from the adequate formalisation of different variability 
sources, and allows potentially to reveal interactions between the fish and its habitat. Using this 
probabilistic approach, we, however, show that some patterns of interest (e.g. foraging in surface 
fronts) can hardly be retrieved in a context of large observational and environmental noise. 
 
 
Keywords: Bluefin tuna, movement, habitat, archival, tag 
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Northern bluefin tuna (BFT) is a pelagic migratory species distributed in the Atlantic 

ocean and the Mediterranean sea (Mather, et al. 1995). Its population has undergone a 

sustained exploitation since the Antiquity, through coastal traps, and recently longlining and 

purse seining (Fromentin 2003). Like other top predators, its habitat and spatial dynamics are 

still poorly known, due to the scarcity of direct observations. How large migratory animals 

make use of the spatio-temporal variability of their physical environment and prey resources 

is still an open question (Bakun 1996). Knowledge on migration behaviour and long range 

displacements is not only of particular importance for ecological purposes (see e.g. Ravier 

and Fromentin 2004), but also for management issues (ICCAT 2003). However, the study of 

such lagrangian processes remains difficult, both in term of observation and understanding 

(Nathan, et al. 2003). Advances in this field depend on our ability to link fish behaviour and 

oceanographic variability over a wide range of temporal and spatial scales. Conventional 

fishing data (e.g. catches or Catch-Per-Unit-Effort from commercial fleets and research 

surveys) are either too coarse-grained or collected over insufficiently large areas for this 

specific purpose. Various dispersal processes as well as demographic and oceanographic 

stochasticity are embedded in the incomplete space/time snapshots derived from survey or 

fisheries data (Tyre, et al. 2001). In an analysis of fishery-independent data from aerial 

surveys and high-resolution remote-sensing, Royer et al. (2004) stressed out the difficulty of 

inferring ecological processes from static observed patterns or occupancy data.  

Archival tags (ATs) and Pop-up Satellite Archival Tags (PSATs) offer a more direct 

way to study fish behaviour, through the combined records of light (to estimate geolocation), 

depth and ambient temperature (see Block and Stevens 2001 for a review). While displaying 

significant drawbacks (e.g. price per unit, premature detachment, satellite transmission 

failures), this technology has provided valuable insights in the extension and duration of 

transatlantic migration of BFT, as well as indications about depth and thermal preferences 

(Block, et al. 2001, De Metrio, et al. 2002, Lutcavage, et al. 1999). Still, these recent results 

remain largely descriptive and are inferred from a relatively small number of tags. Moreover, 

individual trajectory is indirectly derived from light-based positions, and is often incomplete 

or impaired by large observation errors (see e.g. Sibert and Fournier 2001). Challenging tasks 

are: (1) to reduce uncertainties in locating a tag from light records and other variables, (2) to 

define a statistical framework taking in account location errors, process errors of movement 

models and partially observed oceanic variability, to derive useful estimates of global and 
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local (time-varying) movement parameters, (3) to develop protocols to link observed patterns 

with ecological processes of interest, and (4) to investigate the question of optimally designed 

tagging strategies. We show here how a general class of Bayesian filters (Evensen 1994, 

Jonsen, et al. 2003,  Morales, et al. 2004) can maximize the output of PSAT data analysis, 

using non-linear and possibly non-stationary motion models. This approach provides a 

general framework for jointly exploiting light, environmental and behavioural information 

from archival tags. First, the theoretical basis of such state-space models is detailed. An 

example based on simulated PSAT data is then given to assess the performance of the 

proposed Bayesian filter, using sea surface temperature fields from an Ocean General 

Circulation Model. We show how such methods can potentially cope with some critical 

problems induced by archival tagging, conditionally on some specific preliminary work. We 

seek in particular the inference of high-level information from low-level positional data, to 

use the track as a random sample of the habitat of the animal. 

 

METHODS 

1. State-space modelling 

1.1 Generalities 

Data assimilation aims at optimally combining information from imperfect models and 

imperfect measurements (Tarantola and Valette 1984). It provides a sound approach to 

location estimation when only low-level sensors and inaccurate representations of the 

environment are available. Data assimilation can be formulated in a Bayesian context, for 

example using the following parametric state space model: 

Xt+1 = f(Xt,θt) + vt           (1) 

Yt = g(Xt,θt) + et          (2) 

where Xt is the model state vector including animal location, f(Xt,θt) is a function describing 

the fish state dynamics, g(Xt,θt) is an observation function, and vt, et are process and 

measurement errors. θt is an unknown parameter vector, potentially dependant on the 

environment. In the Bayesian framework, solving this problem is equal to estimating a 

posterior probability density p(Xt|Y1:t), where Y1:t={Y1,…,Yt} is the historical observation 

vector. This is done using a two-step algorithm, or filter. A prediction step (eq. 3) is first 
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performed by computing p(Xt|Y1:t-1) knowing p(Xt-1|Y1:t-1) and a transition probability  

p(X

1 

2 t|Xt-1): 

p(Xt|Y1:t-1)=∫ p(Xt|Xt-1) p(Xt-1|Y1 :t-1)dXt-1  3 

4 

5 

      (3) 

The Bayes rule (eq. 4) is then used to update p(Xt|Yt) with the newly available observation 

vector Y1:t. This is known as the correction step: 

)Y|p(Y
)Y|)p(XX|p(Y)Y|p(X
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The density p(Xt|Y1:t) then provides an estimate of the hidden state X. In the following part, 

we give a short presentation of two implementations of the Bayes filter in the linear and 

general case, as well as their applicability to the geolocation problem in archival tagging. 

 

1.2 The Standard Kalman Filter 

The Kalman Filter (or KF, Kalman 1960) provides an analytical solution to the state-

estimation  of order-1 autoregressive processes, i.e. p(Xt|Y1 :t-1) of Eq. 3 is estimated 

sequentially and replaced by p(Xt|Yt-1). This filter is the best linear unbiased estimator, and is 

optimal if the dynamics and the observation process are strictly linear, with normally 

distributed errors (the formulation of the KF is detailed in Appendix 1). Developed in the 

signal processing community, the KF has been used recently in fish stock models (Schnute 

1994), catch-at-length data analysis (Sullivan 1992) or movement modelling in salmon and 

bigeye tuna (Newman 1993, Sibert, et al. 2003). This approach has lead to valuable results for 

the objective analysis of archival tags data, and its main advantage are its ease of 

implementation in the linear case, and its ability to yield macro-statistics (e.g. the diffusion 

coefficient in the normal diffusion case).  

However, the underlying model of the random walk is based on the diffusion equation 

which, although flexible and tractable, is difficult to interpret and relies on some unlikely 

assumptions with little ecological meaning (Turchin 1998). Moreover, as noted by Sibert et al. 

(2003), the KF suffers from drawbacks in the non-linear and non-stationary case, a common 

situation in animal ecology when time-varying behaviours are considered (e.g. foraging 

versus migration). Alternative models are also needed to describe super- or sub-diffusion 

patterns, as seen around aggregating features or during trans-oceanic migration. Data on 

ambient temperature need also to be used as additional sources of information (Sibert et al. 
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2003), thus inducing strong non-gaussianity in the observation densities. Non-gaussianity may 

also occur in the vicinity of shorelines, since probability distributions must be truncated to 

exclude position estimates on land. Closed-form analysis of such dynamical systems cannot 

be achieved using a standard KF. Still, sub-optimal analysis may be performed using the 

Extended Kalman Filter (EKF) or its recent alternatives, the Ensemble Kalman Filter (EnKF) 

and the Particle Filter (PF). 

 

1.3 The Monte Carlo Particle Filter 

Recently, a more general class of Bayesian filters has been proposed and used 

successfully to sequentially update the posterior distribution using Monte Carlo methods 

(Doucet and Godsill 1998). These methods (collectively called Particle Filters or PF) 

approximate the predicted distribution by a set of Dirac delta functions δ(.), referred to as an 

ensemble of particles Xt
(i) with corresponding importance weights  wt

(i) (Eq. 5).   

∑ −≈
N

i
tt

i
t XXwN

1

)()(
tt )(/1 )Y|p(X δ , i={1,…,N}       (12) 

No explicit assumption about the form of p(Xt|Yt) is made: the PF can be applied to general 

nonlinear, non-gaussian systems. These non-parametric techniques can be highly efficient in 

that they allow to focus computing power in regions of high likelihood in the state space. 

Non-stationary models can also be studied in a straightforward way by extending X with a 

slowly (compared to the dynamics) time-varying parameter vector. For example, geolocation 

or temperature measurement bias can be modelled as a weak random walk with fixed or 1/t 

decaying noise. While the PF is relatively easy to implement, some improvements must be 

considered, such as prior boosting and resampling strategies to avoid filter degeneracy 

(Andrieu, et al. 2002).  

We provide here an algorithm of the generic Particle Filter which can be applied to 

any estimation problem (see Doucet and de Freitas, 2001, for more details). For illustration 

purposes, an iteration of the PF is presented in Fig. 1. 

• Givens: the initial requirements are a dynamical model (Eqs. 1 and 2) with known 

state dynamics and observation functions f(xt,θt) and g(xt,θt), initial prior densities for 

the state vector p(X0) and parameter vector p(θ0), and noise densities pv,t and pr,t. The 

filter parameters are the number N of simulated particles and the roughening noise 
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density functions pr,t,x and pr,t,θ (these are time dependent instrumental noises for 

smoothing and identification purposes).  

• Initialisation step: Generate N samples, or particles, from the initial state density 

X0
(i) ~ p(X0), with i={1,…,N}. Each particle is given a weight w0

(i):=1/N.  

• Density propagation: for each particle i={1,…,N}, we sample the state evolution 

noise vt
X,(i) ~ pv,X, the parameter evolution noise vt

θ,(i) ~ pv,θ, and the associated 

instrumental noise rt
X,(i) ~ pr,X, rt

θ,(i) ~ pr,θ. The new state and parameter vector are 

simulated for each particle using Eqs. (13) and (14): 

Xt+1|t
(i) = f(Xt

(i),θ(i)) + vt
X,(i) + rt

X,(i)       (13) 

θt+1|t
(i) = θt

(i) + vt
θ,(i) + rt

θ,(i)        (14) 

• Assimilation step: the measurement update is achieved by first updating the 

weights with a likelihood function for each particle i={1,…,N} : 

wt
(i) =  wt-1

(i) p(Yt|Xt
(i))        (15) 

wt
(i) =  wt-1

(i) pe,t(Yt – g(xt
(i),θt

(i)))       (16) 

wt
(i) =  wt

(i)/Σi wt
(i)         (17) 

where Eq. (17) corresponds to weight normalization. The posterior distribution is then 

obtained by applying Sampling Importance Re-sampling to the weighted particles 

(Rubin 1987). This is achieved by sampling with replacement N particles from 

{Xt
(i)(θt

(i),wt
(i))} with probability wt

(i). All samples are then given uniform weights 

wt
(i)=1/N. The distribution of particles at time t now provides an approximation of 

p(Xt|Yt) as in Eq. (12). The whole process is then reiterated for time step t + 1. The 

PF thus constructs a sequential estimate of X1:t, as in the KF. 

 

2. Application to fish tracking: a simulated case study 

2.1 Introduction 
 
 In contrast, Morales, et al. (2004) used a recursive Monte-Carlo technique to fit 

multiple random walks on Elk movement data, using the WinBUGS package (Spiegelhalter, 

et al. 1996). The purpose of this software is to ease the use of Markov Chain Monte-Carlo 

methods in statistical analysis. We chose not to use it here since it is mostly designed to 
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handle parametric density functions which are not available in our case (e.g. ambient 

temperature), while convergence may become an issue for very large or poorly observed data 

sets. We therefore implemented a sequential PF using the MATLAB 6.5 software. In our 

PSAT estimation problem, the state vector is X
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t = {longitudet, latitudet, deptht, temperaturet} 

for which observations are available directly (from on-board depth and thermal sensors) or 

indirectly (through light-base geolocation). Now that the state and observation spaces are 

specified, a model of the fish dynamics in its environment is needed. We restricted this 

analysis to a two-dimensional space (the third dimension could be included in another model, 

as the vertical behaviour of pelagic fishes relies on highly different mechanisms). 

 

2.2 Definition of the process of fish movement 

Quantifying the dispersal of organisms is a key step in analysing the distribution and 

fluctuations of animal populations (Turchin 1991). Thus, a wealth of models has been 

developed for simulating randomly moving particles on a plane. Purely statistical models such 

as the classical Random Walk, Fractional Brownian Motion or the Levy Flight (Viswanathan, 

et al. 2001) can be distinguished from purely mechanistic models. Among them, the 

speed/angle based model (Bovet and Benhamou 1988, Wu, et al. 2000) is getting increasingly 

popular, and has found applications in terrestrial ecology (Morales, et al. 2004), avian studies 

(Thorup, et al. 2000) and marine ecology (Hubbard, et al. 2004). While not fundamentally 

different from a diffusion process at large time scales, this framework becomes more relevant 

at local scales, yielding easier to interpret statistics. Speed and turning angle are also 

differentiable state variables, whereas the drift and diffusion in the classical Random Walk 

can not be separated locally. By allowing speed/angle correlations to vary between successive 

time steps, one can generate variable movement patterns according to the migration/foraging 

paradigm ( Ramos-Fernandez, et al. 2003, Atkinson, et al. 2002, Bartumeus, et al. 2002, 

Mårell, et al. 2002, Viswanathan, et al. 1999, Krakauer and Rodriguez-Girones 1995). Such 

dual motion model has recently been documented for pelagic fishes, who move in a relatively 

featureless environment with no long-range visibility (Newlands, et al. 2004). Switching 

between a "foraging" behaviour and a "migration" behaviour may then be driven by a 

combination of external variables (e.g. light, prey density) and internal state (e.g. reproduction 

period). We generated the trajectory of a randomly moving bluefin tuna using the following 

hierarchical statistical process: 
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• Movement mode: the nature (i.e. forage or migrate) of the movement regime at 

time t is modelled as an arbitrary binomial process with probability α
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t: 

Modet ~ B(αt,1-αt)         (11) 

• Speed and azimuth: for each step t, the individual’s speed is sampled from a 

Weibull density of mean λmode in (λforage, λmigrate) and scale hmode in (hforage, hmigrate), 

following the observations of  Lutcavage, et al. (2000) on bluefin tuna using ultrasonic 

telemetry: 

Speedt ~ Weibull(λmode,hmode)        (12) 

Azimuth deviation between two consecutive steps is sampled from a wrapped Von 

Mises density with mean 0 and concentration parameter κmode ∈ [κforage, κmigrate], 

(Thorup, et al. 2000).   

Anglet ~ VonMises(0, κmode)        (13) 

Intuitively, one can expect migration movements to be more directed and thus, display 

stronger time correlation, while foraging movements may be more scattered yielding higher 

residency times. In the stationary case (i.e. constant speed distribution), it is possible to relate 

such a model to the standard diffusion by computing the expected square displacement using 

the formulae proposed by Wu, et al. (2000).  

 

2.3 Synthetic data generation and scenarios testing 

To illustrate the proposed data assimilation method for analysing archival tags, we 

assimilated ambient temperature in a two-dimensional case study. 

• Simulated track : Movement was generated over 240 days between the Gibraltar 

strait and the mid-Atlantic, with a random alternation of directional and adirectional 

motion regimes (Fig. 2). Time step duration was set to one hour, consistently with the 

recording resolution in pop-up archival tagging. A geolocation process was then 

simulated by subsampling the trajectory at a 24-hour period and adding gaussian noise 

(error sources relate to the time resolution of the recordings, the vertical behaviour of 

the fish, cloudiness, the proximity of equinoxes, and the optical characteristics of the 

upper layers (Musyl, et al. 2001 and Welch and Eveson 1999)). Biases were also 

added to account for possible biofouling or alteration of the light sensors thus inducing 
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drifts in the geolocation process. Finally, records of ambient temperature were 

generated using the sea surface temperature of a weekly output of Mercator PSY-2, an 

eddy-resolving resolution Ocean General Circulation Model (Bahurel, et al. 2002). 

The temperature fields were smoothed with low-pass filters of various bandwidths, to 

simulate typical uncertainties and coarse resolution in oceanographic data.  

• Scenarios : The outputs of the Particle Filter assimilating SST were compared to 

the standard Kalman filter (Sibert and Nielsen 2004) under different noise and bias 

cases. Issues in latitude estimation were especially investigated by adding gaussian 

errors ranging from 1 to 3 degrees, while error in estimated longitude were kept low 

(from 0.5 to 1 degree), a common feature observed in PSATs. Biases in light level 

sensing/latitude geolocation were simulated as linear drifts (e.g. to account for sensor 

biofouling) or abrupt shifts (e.g. to account for deterioration) from 1 to 5 degrees in 

latitude. The SST fields used for temperature assimilation were smoothed to obtain 

Root-Mean Square Errors (RMSEs) ranging from 0 to 0.5 Celsius degrees, which is 

the magnitude of the average error in most AVHRR-derived SST products. As the true 

state of the system was always known, the performance of each method was assessed 

by computing the RMSE between the estimated state (i.e. the average of the estimated 

density) and the true (hidden) state time-series. 

 

RESULTS 

1. Comparison of the KF and the PF 

As a verification, we first applied the KF and the PF to state vectors of comparable 

dimension, i.e. without SST assimilation. Similar random walk models were used for the 

propagation dynamics, i.e. an advection-diffusion scheme for the KF and its discrete 

ensemble counterpart for the PF, while all observation errors were held gaussian. Both filters 

yielded similar results in terms of hidden track estimate and RMSE reduction (results not 

shown).  

We then applied the PF and the KF to unbiased series of observations with different 

errors in the longitude and latitude components, and given SST statistics for the PF. Two 

examples with low and high geolocation errors are provided as an illustration in Fig. 3. The 

observation error was set to 0.5 and 1 degree in longitude and latitude for the low deviation 

scheme, and 1 and 3 for the large deviation scheme. SST error was set to a very low value 
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(0.01°C), which stands for almost perfect a posteriori knowledge of the SST field (errors in 

the forcing SST field are investigated further). Both the KF and PF solutions allowed for a 

significant decrease in the RMSE of the estimated trajectory compared to observed positions. 

For weak observation errors, the decrease in the estimate RMSE reached 38% and 50% for 

the KF and PF, respectively. While the PF yielded a better solution, there were little 

differences between the KF and the PF estimated tracks (Fig. 3a). The standard Kalman Filter 

was also outperformed by the Particle Filter for greater observation errors: the observation 

RMSE was decreased by 42% and 58%, respectively. On average, both filters performed well 

in this case but qualitatively, the PF estimate still followed accurately the true track, while the 

KF yielded a smoother estimate (i.e. the KF solution missed a number of local features in the 

original track –see Fig. 3b). For both cases, the PF solution for the temperature remained 

almost identical to the true record, as shown in the inserts of Fig. 3. Such result is logical, 

since a very high confidence was given to temperature data at the assimilation step. Generally, 

the PF was applied here to a three-dimensional system, thus benefiting from a greater amount 

of data for its task.  
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2. Assimilating SST 

We then investigated to which extent the observation errors were reduced when 

assimilating SST of varying accuracy. The performance of the PF was expressed as a function 

of the RMSE of the observed positions as well as the RMSE of the smoothed SST input. 

About 1000 trials were run with observation errors ranging from 0.5 to 3 degrees and SST 

error from 0 to 0.5 °C. The propagation of input uncertainty was represented as a response 

surface (Fig. 4). The observed positions RMSE ranged from 0.8 to 3 degrees, while the PF 

solution (i.e. estimated track) displayed errors ranging from 0.6 to 0.95 degrees, so that 

reduction in RMSE attained 25% to 68%. Error on the SST field (in the range studied) had 

globally little effect on the RMSE of the PF solution: for a given geolocation RMSE, an SST 

error ranging from 0 to 0.5°C yielded a variation of about 0.1 degree in the final geolocation 

error. For low geolocation errors (i.e. less than 2 degrees), an increasing SST error increased 

only slightly the RMSE of the PF solution. For geolocation errors greater than 2 degrees, the 

opposite situation occurred: low SST RMSE (i.e. less than 0.3 °C) lead to higher error in the 

PF solution than for high SST RMSE (i.e. more than 0.3 °C). In other words, high confidence 

in the knowledge of the temperature field degraded the performance of the filter when 

combined with noisy geolocations, while less accurate (i.e. smoother) fields lead to better 
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results in this case. As a conclusion, SST error had relatively little effect on the PF estimated 

track, whereas geolocation error (in longitude, latitude) had the greatest influence. This 

response surface was obtained with informative prior distributions on both geolocation error 

and individual motion: misleading priors naturally decreased the performance of the PF. 

 

3. Estimating geolocation biases 

 The PF clearly outperformed the KF when supplied with biased geolocations: three 

examples are given assuming a fixed latitude bias of 2 degrees (Fig 5a), a linear increase from 

0 to 5 degrees (Fig 5b), and an abrupt shift at mid-track from 0 to 5 degrees (Fig 5c). These 

bias schemes were supposed to be unpredictable, i.e. relying on unknown causes such as 

biofouling or sensor alteration. The KF performed well for a fixed bias, since the tagging 

location and jettison point provide useful information for its correction (Fig. 5a). However 

this information was not well propagated in time for a linear drift or an abrupt shift (Fig. 5b, 

4c), yielding to globally poor estimates of the true tracks. When supplied with unbiased 

temperature data, the PF provided satisfying solutions for biases in observed latitude. For 

example, a constant bias was identified with 1/t time decaying noise, providing a converging 

solution (Fig 5a). Time-varying biases were identified with a constant noise, yielding rougher 

solutions (Figs 5b and 5c), to allow for drift identification and shifts detection. Assimilating 

external temperature apparently gave a decisive advantage over the standard KF for bias 

estimation, especially at mid-track when tagging location or jettison point were distant in 

time. 

 

4. Inferring movement patterns 

Using three observable components of the system (i.e. longitude, latitude and ambient 

temperature), the PF performed well in correcting the observation process, by 1) increasing 

the signal-to-noise ratio, and 2) estimating a non-observed variable such as the latitude bias. 

We then assessed its performance in retrieving hidden variables of the dynamical model itself: 

Fig. 6 displays a typical PF solution for a true track observed with large latitude errors (> 2 

degrees), with the estimated and true movement regime time series (insert in Fig. 6). The 

alternation of directional and adirectional movement was globally not well retrieved (the 

second part of the true track being totally directional). Still, this output illustrates a number of 

false detections, e.g. segments of the fitted trajectory are identified as originating from 
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directional motion whereas the corresponding true segment was adirectional. Such result can 

be observed in segments of high sinuosity, where a large number of adirectional detections 

occurred. The identification of such hidden variable was highly sensitive to initial priors and 

ensemble size. Percentages of good identifications reached 70% for small geolocation errors, 

while it was not significantly different from 50% for higher geolocation errors (e.g. more than 

2 degrees). Thus, for high observation errors, the PF did not yield better results than a blind 

guess in the retrieving the hidden variables of the dynamical system.   

 

DISCUSSION 

The proposed Monte Carlo filter performed well in filtering the track of an individual 

in a 2-D geographical space (i.e. longitude and latitude). When applied to a linear random 

walk and gaussian errors, the Particle Filter with Sampling-Importance-Resampling step was 

comparable to the Kalman Filter. This validated the approximation scheme and the 

representation of probability distributions by an ensemble of particles. The PF was then 

extended to a higher observation space (i.e. longitude, latitude and temperature), and a more 

complex random walk model with regime shifts. This induced strong non-gaussianity in the 

state distributions, particularly in the latitudinal dimension (see examples in Fig. 7). 

Multimodal and highly skewed distributions were generated by sea surface temperature, a 

feature that could be handled by the non-parametric nature of the PF.  

Including SST as a supplementary variable in the space-time analysis allowed a higher 

RMSE reduction than in the standard Kalman filter. For high observation errors, the KF 

behaved like a smoother since geolocation data contributes less to the variability of the final 

solution. Temperature assimilation prevented excessive relaxing in the PF estimate, thus 

giving insight in the true variability of the track. Obviously, the PF handled a greater amount 

of information, since it was applied to a space of higher dimension (i.e. longitude, latitude and 

temperature). The PF’s ability to handle a variety of parametric/non-parametric state and 

parameters distributions is one of its key features. However, its performance is conditioned by 

two major issues. First, external forcing variables such as the temperature field need to be 

spatially informative, and second, the statistics of the observation errors need to be well 

known for the PF to perform correctly. We illustrated this by using SST fields smoothed with 

gaussian filters of varying bandwidths. This allowed to preserve their spatial pattern: thus, the 

temperature RMSE had little effect on average on the RMSE of the PF solution. The 
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Pathfinder AVHRR-derived SST, at its current status, presents a bias/error scheme of 

0.00±0.24°C, which is more than adequate for such analysis (Keogh, et al. 1999). 

Interestingly, the combination of high observation error and high precision in temperature 

generates a high error in the PF estimate. This is interpreted as a greater spatial 

indetermination of the system since sea surface temperature may display pseudo-periodic 

properties, thus generating multiple choices. As a general result, geolocation uncertainty may 

cover areas where several water masses display a suitable temperature distribution, thus 

generating multimodal densities (see Fig. 7). The probability density functions of these state 

estimates were retrieved by applying gaussian kernels to the updated ensembles, thus 

allowing non-parametric representations of the probable dispersion in latitude. Issues about 

the SST spatial structure could be explored a priori by comparing geolocation errors (in both 

latitude and longitude) with empirical variograms or spatial autocorrelation of the SST field.  

On-line estimation of hidden variables was also performed, both in the observation 

and state space. Retrieving time-varying bias in latitude, for example, was achieved by 

allowing the model parameters to change with time as a random walk. A fixed bias was well 

identified by using a 1/t time decaying noise, thus providing converging estimates. Shifts in 

the bias were identified using randomly walking parameters (i.e. with noise constant in time): 

this allowed to detect changes in bias, at the cost of a rougher estimate. Regime shifts 

identification therefore relies on the specification of a suitable noise model in hidden 

variables. Such estimation is achieved using information on the tag’s initial and final positions 

and the temperature field (it is therefore critical that prior SST fields are free of strong bias for 

this task). Their accuracy must be assessed as a preliminary work, since it is difficult to 

estimate both geolocation errors and modelled SST bias at the same time in state-space 

models. Regime shifts in the dynamic process itself (i.e., migration vs foraging behaviour) 

were also estimated, yielding less satisfying results: a number of false detections occurred, in 

relation to both model specification (e.g. autocorrelation of regimes in time) and geolocation 

errors. This was related to a greater indetermination of the system, i.e. several combinations 

of parameters have equal probabilities to yield the observed pattern in the data. In this case, 

the PF solution was not significantly better than a blind guess of the movement regime (i.e. 

equal probability of choosing between a “directional” and an “adirectional” step). Moreover, 

the PF appeared to favour the “adirectional” movement, since this least restrictive regime may 

have yielded higher likelihoods.  This feature can be directly related to inverse diffusion, a 

typically ill-defined problem in which a given state/observation can originate from multiple 
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sets of parameters or initial states. Overcoming this problem depends on reducing the degree 

of freedom of the system, i.e. through a better formulation of system noise and hidden 

processes. Supplemental knowledge could be added, as derived from direct observation, such 

as swimming speed distributions in feeding grounds, frontal zones, or during migration 

periods. This would also allow to include testable hypothesis in the analysis of archival tag 

data, by linking the behaviour of the individual to its immediate surroundings. The PF offers a 

flexible tool for estimating the trajectory of individuals with an assimilation of data on their 

physical environment, but it is not without any drawback, since its great flexibility can be a 

handicap for process identification (i.e. the system can quickly become under-determined 

when supplied with insufficient data). Such drawback was illustrated by the poor estimation 

of hidden processes variables (i.e. regime shifts in movement statistics): the combined 

estimation of states and parameters is not easily performed in a single step in a Bayesian 

framework. Statistical analysis of the track may be performed as a subsequent  step, e.g. the 

most probable trajectory can then be summarized through standard lagrangian statistics, or 

used in posterior studies for deriving environmental preferences, or assessing interactions 

with various oceanic features (e.g. fronts and eddies). 

Linking fish behaviour to its habitat relies on some optimal knowledge of 

environmental heterogeneity: we therefore need to describe oceanographic variability over a 

sufficient range of scales. Interfaces between water masses and transition/frontal zones can be 

of particular interest, since ecological processes of great importance occur at these locations 

(Bakun 1996). The proposed lagrangian method would allow to locate a fish in relation to its 

habitat over periods of days to months, thus providing insights on how top predators with high 

metabolism can interact with the high patchiness of their environment. Species such as bluefin 

tuna can be seen both as mobile sampler and integrator of oceanic variability, having 

developed specific strategies to preserve homeostasis. Thermoregulation, fat storage are such 

well-known physiological mechanisms. Specific foraging strategies are also believed to 

maximize expected food intake, through opportunistic feeding or Brownian search. Still, little 

quantitative information is available on how pelagic predators find food in space: integrated 

studies linking behavioural knowledge, archival data and oceanographic variability may 

provide interesting clues about how large fish perceive the ocean landscape. The random walk 

based on speed/angle variations may allow some insight on how pelagic animals orientate in 

the pelagic domain. Accurate models of tuna behaviour are especially needed in such 

analyses: such flexible motion models, although conceptually satisfying and versatile, may 
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not be enough informative, thus forbidding data enrichment and yielding data-driven 

estimates. Data assimilation theory was elaborated in fields such as applied physics, where 

processes are well known and described by dynamical equations. Unfortunately, this is not the 

case in ecology, where the actual dynamics of individuals are most often best described by 

statistical or empirical models. 

  

CONCLUSION 

We presented in this paper a general PF algorithm that can be applied to parameter-state 

estimation in animal behaviour studies. Using an ensemble representation of state 

distributions and sampling-importance-resampling for prior update, we were able to filter the 

observed trajectory of an instrumented fish. The flexible, non-parametric nature of the PF also 

permitted the assimilation of external data of general type (here sea surface temperature), thus 

allowing integrated bio-physical oceanographic studies. We derived a range of observation 

scenarios from various sets of simulated errors: this pointed out the need for accurate 

knowledge of the underlying processes and their variability. Gathering data and formalizing 

hidden processes is an important preliminary step in Bayesian analysis. Only then may the 

output of such inverse modelling studies be maximized: it was shown in particular that 

process identification is conditioned by the reduction of observation errors and a clear 

formulation of the modelled dynamics. This approach opens the gate to a variety of integrated 

studies at the crossroads of marine behavioural ecology and physical oceanography.  
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Figure 1. Iteration of a Particle Filter between t-1 and t for N=10 particles. 

Figure 2. Synthetic trajectory of a freely-swimming bluefin tuna. The shift between motion 

regimes (i.e. directional/adirectional) is governed by an arbitrary binomial process. 

This random walk has been simulated over 240 days with a 1-hour time step. Insert 

shows the corresponding along-track temperature sampled from a weekly output of the 

MERCATOR circulation model. 

Figure 3. Comparison of the standard Kalman Filter estimate (blue line) and the Particle Filter 

estimate (dark line) for two unbiased observation processes with error of: a) 0.5 degree 

in longitude and 1 degree in latitude, b) 1 degree in longitude and 3 degrees in latitude. 

Actual (hidden) track is in red; observations are materialized by grey crosses. 

Figure 4. Response surface of the Root Mean Square Error (RMSE) of the Particle Filter 

output, as a function of the initial geolocations RMSE and the temperature field 

RMSE. 

Figure 5. Three scenarios of bias estimation in observed latitude using the Particle Filter: a) 

with a constant bias of 2 degrees, b) with a linearly increasing bias from 0 to 5 

degrees, and c) with an abrupt change from 0 to 5 degrees at mid-track. The ensemble 

estimate of the bias (black thick line) is given along with ensemble 95% confidence 

intervals (grey lines). The dashed line stands for the true (hidden) bias. The maps on 

the right show the corresponding biased observations (+), with the KF most probable 

track (grey line) and the PF estimated track (dark line). 

Figure 6. Regime shift detection along the simulated track, observed with errors of 0.5 degree 

in longitude and 1 degree in latitude. Black line is the PF estimated track, dashed line 

is the true (hidden) track. Observed geolocations are symbolized by crosses. Black 

dots point out segments estimated as “adirectional” by the PF. Insert shows the time 

series of the true (hidden) sequence of regimes and the PF estimated sequence, with 

black lines representing adirectional movement. 

Figure 7. Latitudinal distribution of the PF-estimated daily geolocations (grey curves). Black 

dots symbolize the daily ensemble means. 
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Appendix 1. Formulation of the Standard Kalman Filter 
 
Given a linear system yielding observations Y of a dynamical state X: 

Xt = AXt-1 + BUt-1 + vt-1         (5) 

Yt = HXt + et           (6) 

Where Ut-1 is the drift, v~N(0,Q) is a process noise of variance Q, and e~N(0,R) is an 

observation noise of variance R. As the errors are assumed gaussian, the density of the state 

vector is fully described by its two first moments, i.e. its mean state X and covariance matrix 

P. The filter itself consists first of a time update of both X and P (prediction step): 

Xt|t-1 = AXt-1 + BUt-1          (7) 

Pt|t-1 = APt-1AT + Q          (8) 

The measurement update (or assimilation step) is then performed by computing the Kalman 

gain Kt and updating both X and P, using the equations derived by (Kalman 1960): 

Kt = PtHT(HPtHT + R)-1         (9) 

Xt = Xt|t-1 + K(Yt-HXt|t-1)         (10) 

Pt = (I-KtH)Pt|t-1          (11) 
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