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Abstract

In this paper, an original Markov-switching autoregressive model is proposed

to describe the space-time evolution of wind fields. At first, a non-observable

process is introduced in order to model the motion of the meteorological struc-

tures. Then, conditionally to this process, the evolution of the wind fields is

described by using autoregressive models whith time varying coefficients. The

proposed model is calibrated and validated on data in North Atlantic.

Keywords: Space-time model, Wind fields, Markov-switching autoregressive model.

1 Introduction

Wind conditions have a determining influence on many human activities and physical phenomena.

For instance, wind time series permit to evaluate the power values produced by wind turbines

(Brown, 1984; Castino 1998), to predict the propagation of an oil-spill, to assess the profitability

of a maritime line (Ailliot, 2003) or to study coastal erosion. In order to understand and predict

the evolution of these phenomena, it is useful to develop stochastic models for wind time series.

Such models can be used to make short-term forecasts, to perform Monte-Carlo studies (Ailliot,

2003) or to assimilate in-situ measurements in numerical forecasts (Malmberg, 2005).

For some applications, it is sufficient to have a model which describes the evolution of the wind

in a fixed location, and different models have been proposed (see Brown et al. (1984), Toll et al.

(1997), Ailliot et al. (2004), Monbet et al. (2005)). For other applications, it is necessary to know
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the wind conditions in several points simultaneously a space-time model is usefull. The few models

which have been proposed in the literature are based on Lagrangian or Eulerian methods. In the

first approach, one will follow the space-time evolution of some entities, like the storms for example.

It has been used for example by Cason (1998) to predict extreme wind speeds in hurricanes or

by Boukhanovsky (2003b) for storms in the Barents sea. In the second approach, one will model

directly the evolution of the process at a fixed set of locations. For most of the applications, it is

necessary to know the wind conditions on a fixed spatial grid and the eulerian approach is then

more appropriate. We will focus on this approach in this paper.

Boukhanovsky (2003a) and Malmberg (2004) proposed linear autoregressive models to describe

time series of wind-fields. In this two articles, a principal component analysis is first used in order

to reduce number dimension of the observations. However, this type of model can not reproduce

some features of the wind fields, and in particular the motions of the meteorological structures.

In this paper, we propose an original model, in which these motions are introduced as a hidden

Markov chain. Conditionally to this hidden process, the evolution of the wind fields is modeled

using autoregressive models with time-varying coefficients.

In the first part, we present the data and the model. Then, in the second part, we briefly discuss

the problem of parameter estimation, and finally, the last part is devoted to model validation.

2 Model description

2.1 The data

In this study, we have used hindcast data produced by ECMWF (European Center for Medium

range Weather Forecast). This data set describes the wind conditions at 10m above the sea-level

for the period 1992-2003, on a regular grid with a resolution of 1.125 degree both in latitude and

longitude and a time-step of 6 hours. This dataset is available everywhere on the earth and we

have extracted an area which is located between latitude 45N and 50N and longitude 23W and

31W (see Figure 1). Its dimension is about 600km per 600km, and it contains N = 35 points of

the grid of the hindcast model. These points will be denoted by R0 = (r1, ..., rN ). They have been

ordered in the following way ri = (xi, yi) < rj = (xj , yj) if xi < xj or xi = xj and yi < yj . With

this convention, the point r1 is located at the South-West of the area R0, r5 at the North-West,

r31 at the South-East and r35 at the North-East.

We will denote Zt(R0) = (ut(r1), ut(r2), ..., ut(rN ), vt(r1), vt(r2), ..., vt(rN )) the wind field on

the area R0 at time t, with ut(ri) (resp. vt(ri)) the zonal (resp. meridional) component at point

ri and time t. More generally, if R represents an arbitrary set of points, Zt(R) will denote the
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Figure 1: Wind fields on the 4th of January 1997: 12.00 on the left and 18:00 on the right.

wind field on this area. In the subsection 2.2 we propose a model for the multivariate time series

{Zt(R0)}t∈N with values in R70.

It is well known that meteorological time series are generally non-stationary in time, with

seasonal and daily components, and eventually a trend. In this article, we will only consider the

data corresponding to the month of January. We did not find any daily components nor trend

in this time series, and we will assume that the 11 months of January, which are available in our

dataset are independent realizations of a stationary and ergodic process.

2.2 Model description

Wind conditions in the studied area are closely linked to the position and to the movement of the

principal air masses which govern the climatology of the region (vast low-pressure or high-pressure

systems). Depending on these positions, there may be systems of smaller amplitude (fronts or

cyclones for example) that go through the considered area. An example, which corresponds to the

4th of January 1997, is given on Figure 1. At this date low crossed the area R0 between 12:00 and

18:00.

In Boukhanovsky (2003a) and Malmberg (2004), classical AR models are used in order to

describe the space-time evolution of the wind fields. These models can successfully describe the

motions of objects that translate at a constant speed. However, the motions of the meteorological

structures depend on the position of the principal air masses. As a consequence, these motions

evolve in time and AR models are not adapted. In this paper, we propose a more elaborate model,

in which the motions are introduced explicitly. For this, let us denote St the translation of the

wind field Zt−1(R0) between the dates t− 1 and t and S ⊂ R2 the state-space of this process. In

order this translation to be well defined, it is necessary to assume that all the points of the area

R0 move with the same speed, and in particular that the meteorological structures do not rotate

3



Figure 2: a) Wind fields on the 4th of January 1997, 12.00. b)Translated field (dashed box) and
initial area R0 (solid box). c)Translated field (dashed box) and predicted field A(St)Zt−1(R0) +
B(St) on R0 (solid box) d)Wind fields on the 4th of January 1997, 18.00.

and do not change their sizes. This assumption seems realistic according to the size of R0 and the

model proposed in this paper could be adapted in order to describe more complex motions than

pure translations. In Aberg et al. (2004), the evolution of the wind fields are modeled using image

warping and a detailed discussion on the motions of wind fields can be found in this paper.

The translations {St} can not be observed directly, and thus are introduced as a hidden process.

Then, in order to describe the evolution of the wind fields {Zt(R0)} conditionally to this hidden

process, we use linear autoregressive models whith time-varying coefficients. More precisely, it is

assumed that

Zt(R0) = A(St)Zt−1(R0) +B(St) +H(St)Et (1)

where {Et} represents a standard Gaussian noise with 0 mean and identity covariance matrix,

and A(s) ∈ R2N×2N , B(s) ∈ R2N×1 and H(s) ∈ R2N×2N are matrices that depend on a reduced

number of parameters θ ∈ Θ. In equation (1), A(St)Zt−1(R0) + B(St) represents a forecast of

the wind field on the area R0 at time t conditionally to the field on R0 at time t − 1 and to the

translation St and H(St)Et represents the conditional error. This is illustrated on the figure 2.

Let us now give more details on the modeling of the evolution of the hidden process {St} and
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on the parametrization of the matrices As, Bs and Hs. In subsection 3.1, we briefly explain how

we can check the realism of the different assumptions made hereafter .

Parametrization of the evolution of {St}

First, for the sake of simplicity, we assume that the state space S of the hidden process {St} is

a finite subset {s1, ..., sM} of R2 which corresponds to displacements on the grid of the hindcast

model at a speed lower than 40ms−1. With this choice, the cardinal M of S is about 300. This

assumption makes it possible to compute the maximum likelihood estimates using standard op-

timization algorithms (see subsection 3.2), and does not seem too much restrictive in practice.

Indeed, the motions are large compared to the distance between two grid points of the numerical

model, so that the error induced by the discretization of the state-space is low.

Then, we assume that the hidden process is a first order Markov chain and Q will denote its

transition matrix. It is assumed to be a discretized Gaussian kernel: for all i, j ∈ {1...,M},

Q(i, j) = P (St = sj|St−1 = si) ∼ exp(−‖si − sj‖2/σ2)exp((sj − s0)′Γ(sj − s0)) (2)

with unknown parameters σ > 0, s0 ∈ R2 and Γ ∈ R2×2 a positive definite symmetric matrix, and

‖.‖ the Euclidean distance on R2.

Parametrization of A(s)

The matrices A(s) are chosen such that they perform linear extrapolation of the field on the area

R0 from the field on R0 + s. This choice seems natural since, by definition of St, we know that if

St = s then

Zt−1(R0) = Zt(R0 + s) + δt

with δt the deformation of the wind field Zt−1(R0) between the dates t− 1 and t.

More precisely, if X and Y are two random vectors, let us denote by cov(X,Y ) = E[XY ′] −
E[X ]E[Y ′] the covariance matrix of X and Y . The matrices A(s) are then defined as:

A(s) = cov(Zt(R0), Zt(R0 + s))(cov(Zt(R0), Zt(R0)) +D)−1 (3)

where D = cov(δt, δt) represents the covariance matrix of the deformation, which is assumed

to be independent of {St}. Equation (3) is inspired by classical least-square estimates in lin-

ear regression models. In practice, the spatial covariance matrices cov(Zt(R0), Zt(R0 + s)) and

cov(Zt(R0), Zt(R0)) are estimated directly from the data, thanks to our assumption of temporal
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ergodicity. For example, the estimate of cov(Zt(R0), Zt(R0 + s)) we have used is:

ˆcov(Zt(R0), Zt(R0 + s)) =
1
T

T∑
t=1

zt(R0)zt(R0 + s)′ − 1
T

T∑
t=1

zt(R0)
1
T

T∑
t=1

zt(R0 + s)′

where {zt}t∈{1...T} denotes the time series of observed wind fields. The estimation of the matrix

D is discussed in section 3.1.

Parametrization of B(s)

We can check that the spectral radius of the matrices A(s) defined above are lower than 1. It

implies that the AR(1) model defined as

Yt = A(s)Yt−1 +B(s) +H(s)Et

and which corresponds to the regime s ∈ S, admits a unique stationary distribution. Let us

denote M (s) = (I − A(s))−1B(s) the mean of this stationary distribution. It strongly depends

on s since the mean wind in a meteorological structure is related to its speed and direction of

displacement. To model this relation, we use the linear model described hereafter. Let us denote

M (s) = (m(s)
u (1), ...,m(s)

u (N),m(s)
v (1), ...,m(s)

v (N))′ with m(s)
u (i) (resp. m(s)

v (i)) the mean of the

zonal (resp. meridional) component at point ri. We assume that

1. m(s)
u (i) = m(s)

u and m(s)
v (i) = m(s)

v for all s ∈ S and i ∈ {1...N}. In other terms, it is assumed

that the mean of the stationary distribution is the same at the different locations in R0.

2. m(s) = Fs + G for all s ∈ S with m(s) = (m(s)
u ,m

(s)
v )′, F ∈ R2×2 and G ∈ R2×1. Here, F

and G denote matrices of unknown parameters.

Parametrization of Σ(s) = H(s) × (H(s))′

The forecast error Zt(R0) −A(St)Zt−1(R0) − B(St) is mainly due to two terms:

• the deformation of the wind field Zt−1(R0) between dates t− 1 and t

• the extrapolation error. This error is linked to the existence of new meteorological structures

coming in the area R0.

In order to model these two terms, we make the assumptions listed below on the covariance

matrices of the error Σ(s).
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1. Diagonal of the matrix. To model the diagonal of Σ(s), we suppose that

Σ(s)(i, i) = fu(dist(ri, R0 + s))

Σ(s)(i+N, i+N) = fv(dist(ri, R0 + s)) (4)

for all s ∈ S and i ∈ {1...N}. In other terms, it is assumed that the variance of the error on the

zonal (resp. meridional) component at a point ri, namely Σ(s)(i, i) (resp. Σ(s)(i+N, i+N)),

only depends on the Euclidean distance dist(ri, R0 +s) between this point and the translated

area R0 + s. When this distance is null, the error is only due to the deformation of the

wind fields, and then the error increases with the distance and the extrapolation error.

Several parametric forms can be chosen for fu and fv. In this article, we use fu(d) =

βu + αuexp(−d/du) and fv(d) = βv + αvexp(−d/dv) where βu, αu, du, βv, αv and dv are

unknown positive parameters.

2. Correlation matrix. Then, it remains to model the correlation matrix of the error, defined

as

R(s)(i, j) = Σ(s)(i, j)/
√

Σ(s)(i, i) × Σ(s)(j, j)

For this, we assume that, for all s ∈ S,

R(s)(i, j) = gu(‖ri − rj‖) ∀(i, j) ∈ {1, ..., N}2

R(s)(i+N, j +N) = gv(‖ri − rj‖) ∀(i, j) ∈ {1, ..., N}2 (5)

R(s)(i, j) = 0 ∀(i, j) ∈ {1, ..., N} × {N + 1, ..., 2N}

It means that the correlation between the errors on the zonal (resp. meridional) components

at two points ri and rj only depends on the Euclidean distance ‖ri−rj‖ between these points,

and that there is no correlation between the error on the zonal and meridional components.

The functions gu and gv must satisfy gu(0) = 1 and gv(0) = 1 and be decreasing. In practice,

we assume that gu(d) = exp(−d/lu) and gv(d) = exp(−d/lv) where lu and lv are unknown

positive parameters. With this parametrization, the matrices R(s) and thus Σ(s) are positive

definite symmetric (see Cressie (1993) pp 85).

The proposed model belongs to the class of the Markov Switching AutoRegressive models

(denoted MS-AR hereafter). This kind of model has first been introduced by Hamilton in 1989

(see Hamilton (1989)) to analyse the rate of growth of USA GNP and then used in different fields

of applications to model time series subject to regime shifts. The proposed MS-AR model has 20

parameters: 6 for the matrices B(s), 8 for the matrices Σ(s) and 6 for the matrix Q. We will denote

7



by θ ∈ Θ ⊂ R20 the set of unknown parameters. The estimation of these parameters is described

in next section.

3 Estimation

The most usual approach to estimate the parameters of a MS-AR model is to compute the Maxi-

mum Likelihood Estimates (MLE). The numerical computation of the MLE in models with hidden

variables has been addressed by many authors. The most popular method is probably the EM

algorithm which has first been introduced by Baum et al. (1970) for Hidden Makov Models (HMM)

and then generalized to other models with missing variables by Dempster et al. (1977). However,

this algorithm has several well-known limitations, one of them being the possible convergence to

local maxima of the likelihood function. It is then important to use a good guess of the MLE as

starting point of the algorithm.

In order to get a first estimate of the unknown parameters, a natural method consists in

estimating the values taken by the hidden process {St} and then use this estimated sequence in

order to compute empirical estimates of the quantities of interest. We have used such an approach

for the wind fields and the proposed method is described in subsection 3.1. Then, in subsection

3.2, we briefly describe the Generalized EM algorithm which has been used to compute the MLE

and we discuss some statistical properties of these estimates.

3.1 Preliminary estimation

Let us first describe how we have computed estimates of the hidden translations {St}. For this,

we have used an extra-information which is available in the dataset. Indeed, this dataset describes

the wind conditions not only on R0, but everywhere on the earth, so that it is possible to compute

(ŝ2, ..., ŝT ) = argmax{f(s2, ..., sT )|(s2, ..., sT ) ∈ ST−1}

with

f(s2, ..., sT ) =
T∏

t=2

exp(−‖zt−1(R0) − zt(R0 + st)‖2

d0
2 ) ×Q(st−1, st) (6)

In equation 6, Q denotes the transition matrix defined in equation (2) and d0 a fixed real number.

The first term in equation (6) constrains the estimated sequence of displacements {ŝt} to be such

that zt−1(R0) ≈ zt(R0 + ŝt), and the second term will penalize sequences which evolve too quickly

in time and thus act as a smoothing term. The function f can be interpreted as the likelihood

function of a HMM, and thus the sequence (ŝ2, ..., ŝT ) can be computed quickly using the Viterbi

8



Figure 3: Situation on the 4th of January 1997 at 18:00. Solid box: R0, dashed box: R0 + s, thin
arrows: wind field at 18:00, thick arrows: wind field observed at 12:00 on R0.

algorithm (a recent review on HMM can be found in Ephraim et al. (2002)).

Off course, the choice of the function f is arbitrary, and there exists no objective criterion to

validate this choice. In order to verify the meteorological realism of the estimated sequences, we

performed visual verification. An example is given on Figure 3. It shows that the method succeeds

to estimate the movement of the low pressure which go through the studied area on the 4th of

January 1997. In particular, the two fields represented in the dashed box, and which represent

respectively zt−1(R0) (thick arrows) and zt(R0 + ŝt) (thin arrows) are close to each other. In

practice, we have used the numerical values d0 = 3ms−1 and Γ = 0.

Once these displacements have been estimated, we can compute empirical estimates of the

covariance matrix D of the deformation which is used to define the matrices A(s) (see equation

(3)). For this, we have computed

D̂ =
1

T − 1

T∑
t=2

[zt−1(R0) − zt(R0 + ŝt)][zt−1(R0) − zt(R0 + ŝt)]′

In the same way, we can use the sequence {ŝt} in order to estimate the conditional meansM (s),

the covariance matrices of the error Σ(s), and the transitions matrix Q. These empirical estimates

can first be used in the analysis part, in order to guess parsimonious and realistic parametric form

for these matrices and make it possible to check the realism of the different assumptions which are

9
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Figure 4: Empirical covariance matrix of the error (displacement of 3 grid steps through the east).
Empirical version estimated from the sequence {ŝt} on the left and parametric version on the right.

made in section 2.2. They can also be used to fit the chosen parametric models using, for example,

least square estimates.

As an example, we have plotted on Figure 4 the empirical covariance matrix of the error

corresponding to a displacement s of 3 grid steps to the east and its parametric version. The

shapes of these two matrices are in a good agreement, and thus the chosen parametrization seems

to be adapted to our data.

3.2 Maximum likelihood estimates

The estimates obtained in the previous subsection have then been used as a starting point to an

optimization algorithm. Let us briefly describe this algorithm which belongs to the family of the

Generalized EM algorithms. If θn−1 denotes the value of the parameters after n− 1 iterations, the

nth iteration consists in two main steps:

• E-step. It consists in calculating the same auxiliary function as in the classical EM algorithm

(see Demspter et al, 1977). This function is denoted by R(θ, θn−1). When the hidden stat-

space S is finite, it can be computed quickly thanks to the Forward-Backward algorithm

which has been first proposed by Chang et al. (1966). Otherwise, one can use Monte-Carlo

approximations of this function (see Douc et al. (2004)) and references therein).

• M-step. In the usual EM algorithm, this step consists in maximizing the function R(θ, θn−1),

and update the current value of the parameters as θn = argmaxθ∈ΘR(θ, θn−1). For the model

proposed in section 2, we did not find any analytical solution to this optimization problem,

so that we had to use a numerical optimization algorithm. When the iterations stop with

a non optimal value θn, which is such that R(θn, θn−1) > R(θn−1, θn−1), the algorithm is

called Generalized EM algorithm. This algorithm has first been proposed by Demspter et

10



al. (1977) and general conditions which imply the convergence of this algorithm to a local

maximum of the likelihood function can be found in Wu (1982). In practice, we have used

some iterations of a quasi-Newton algorithm to compute θn. Each iteration of this algorithm

is time consuming because of the complexity of the objective function and the number of

parameters. Thus, a careful choice of this number of iterations, denoted by kn, has to be

done. According to the numerical tests that we have done, the best strategy seems to chose

a small number of iterations for small values of n and then to increase progressively this

number of iterations when the current values of the parameters get closer to a maximum of

the likelihood function. In practice, we have used kn = n.

Whereas there exists a considerable amount of literature about the numerical computation of

MLE, the statistical issues concerning the asymptotic properties of these estimators have been

addressed only recently. Explicit conditions which warrant the consistency of the MLE in MS-AR

models have first been established simultaneously in 1998 by Krishnamurthy et al. and Francq

et al. and assumptions which warrant consistency and asymptotic normality of MLE in MS-AR

models with compact, not necessary finite, hidden state space S can be found in Douc et al. (2004).

It would be beyond the scope of this paper to show that the MS-AR model proposed in section 2

verifies these assumptions.

4 Model validation

In order to validate the MS-AR model, we have checked its capacity to perform short-term forecasts,

and the obtained results have been compared to those of an AR(1) model.

Let us briefly explain how we have computed the best one-step ahead predictor for the MS-AR

model. It is given by:

E[Zt(R0)|Z1(R0), ..., Zt−1(R0)]

=
∑
s∈S

P [St = s|Z1(R0), ..., Zt−1(R0)]E[Zt(R0)|Zt−1(R0), St = s] (7)

=
∑
s∈S

P [St = s|Z1(R0), ..., Zt−1(R0)](A(s)Zt−1(R0) +B(s))

The forecast probabilities P [St = s|Z1(R0), ..., Zt−1(R0)] which appears in equation (7) can be com-

puted recursively (Forward algorithm). The generalization to other forecast horizons is straight-

forward. More details can be found in Krolzig (1997).

On Figure 5, we have plotted the variance of the one-step ahead forecast error on the zonal and

meridional component at the different points of R0, for the MS-AR model and AR(1) model. The

11



Figure 5: Variance of the one-step ahead forecast error on the zonal (a)) and meridional (b))
components at the different points of R0 (thick line: MS-AR model, thin line: AR(1) model)

h 1 2 3 4 5
MS −AR 151 538 952 1263 1498
AR 300 981 1719 2257 2560

Table 1: Evolution of the Perron-Frobenius norms with the forecast horizon h

MS-AR model gives significantly better forecasts in all points of the domain R0, the improvement

being more important at the points located at the east of the domain. It is due to the fact that in

the considered area the air-masses generally moves toward the east, and these points are generally

closer to the translated area R0 + St. Thus, in these points, the extrapolation error is low and the

error is mainly due to the deformation of the wind fields. On the opposite, the errors at the points

located at the west are more important because the ”new” meteorological structures come in the

area R0 from the west.

We have also computed the variance of the error corresponding to other time-step prediction. In

order to compare the variance-covariance matrices of the forecast error corresponding to the AR(1)

model and the MS-AR model, we have calculated their Perron-Frobenius norms. It is defined for

any matrix Σ as ‖Σ‖PF =
√
tr(Σ′Σ). The results are given in Table 1. The MS-AR model clearly

improves the results obtained with the AR(1) model.
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5 Conclusion

In the present paper, an original Markov Switching Autoregressive models is proposed for modeling

the space-time evolution of the wind. The main originality of this model consists in introducing

the movement of the air masses as a hidden variable. The hidden process governs the evolution of

the short-term evolution of the wind fields. The model is fitted on hindcast data in North Atlantic

and it is shown that it provides better short-term forecasts than AR(1) model.

This model has been developped specifically for wind fields, but similar methodology could be

used to describe other space time processes in which motions are present. In the proposed model,

the state space of the hidden process is assumed to be finite. This asumption seems realistic for

wind fields, but restrictive for other space-time processes. The model could be refined by allowing

continuous translations or more complex motions, such as rotations for instance.
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