# Journal of Experimental Marine Biology and Ecology

Volume 331, Issue 2 , 18 April 2006, Pages 198-207 http://dx.doi.org/10.1016/j.jembe.2005.10.018 © 2005 Elsevier

# Assessment of the exposure pathway in the uptake and distribution of americium and cesium in cuttlefish (Sepia officinalis) at different stages of its life cycle

P. Bustamante<sup>a,</sup> J.-L. Teyssié<sup>b</sup>, S.W. Fowler<sup>b, 1</sup> and M. Warnau<sup>b</sup>

<sup>a</sup>Laboratoire de Biologie et Environnement Marins, FRE 2727 du CNRS, Université de La Rochelle, 22, Avenue Michel Crépeau, F-17042 La Rochelle, France

<sup>b</sup>Marine Environment Laboratory, International Atomic Energy Agency, 4 Quai Antoine Ier, MC-98000 Monaco

Corresponding author : pbustama@univ-lr.fr

#### Abstract:

Laboratory radiotracer experiments were performed to study the uptake, assimilation and retention of americium (<sup>241</sup>Am) and cesium (<sup>134</sup>Cs) by the common cuttlefish *Sepia officinalis*. Uptake and loss kinetics of the radionuclides were measured following exposure through sediments, seawater and food at different stages of the animal's life cycle. Sediment was found to be a minor uptake pathway for both radionuclides in juveniles. Following a short seawater exposure, cuttlefish accumulated <sup>241</sup>Am and <sup>134</sup>Cs, but only to a limited extent (whole-body CF < 2). Among the cuttlefish organs, branchial hearts and their appendages displayed the highest degree of uptake for <sup>241</sup>Am (CF = 42 and 16, respectively), but these tissues contained low percentage of total <sup>241</sup>Am due to their relatively small contribution to whole organism weight. The major fraction of incorporated radionuclides was associated with muscular tissues (viz. 65% and 82% of total <sup>241</sup>Am and <sup>134</sup>Cs, respectively). Wholebody loss of <sup>241</sup>Am and <sup>134</sup>Cs was relatively rapid ( $T_{b\%}$  = 14 and 6 days, respectively). After dietary exposure, around 60% and 30% of ingested <sup>241</sup>Am was more strongly retained in adults than in juveniles ( $T_{b\%}$  = 28 vs. 5 days, respectively), suggesting that different mechanisms govern <sup>241</sup>Am elimination at both ages. Ingested <sup>134</sup>Cs was assimilated to a similar extent in juveniles (29%) and adults (23%), but the depuration rate was four times faster in adults. Our results strongly suggest that these two radionuclides follow different excretion pathways and that the mechanisms can vary with age for a given radionuclide.

Keywords: Accumulation; Biokinetics; Cephalopods; Radionuclides; Retention

| 1  | Assessment of exposure pathway to americium and cesium uptake and                                                 |
|----|-------------------------------------------------------------------------------------------------------------------|
| 2  | distribution in the tissues of the cuttlefish Sepia officinalis at different                                      |
| 3  | stages of its life cycle                                                                                          |
| 4  |                                                                                                                   |
| 5  | P. Bustamante <sup>1*</sup> , J-L. Teyssié <sup>2</sup> , S.W. Fowler <sup>2</sup> , & M. Warnau <sup>2</sup>     |
| 6  |                                                                                                                   |
| 7  | <sup>1</sup> Laboratoire de Biologie et Environnement Marins, FRE 2727 du CNRS, Université de La                  |
| 8  | Rochelle, 22, Avenue Michel Crépeau, F-17042 La Rochelle, France                                                  |
| 9  |                                                                                                                   |
| 10 | <sup>2</sup> Marine Environment Laboratory - International Atomic Energy Agency, 4 Quai Antoine I <sup>er</sup> , |
| 11 | MC-98000 Monaco                                                                                                   |
| 12 |                                                                                                                   |
| 13 | *Corresponding author. Tel.:+33 546 500 294; e-mail: pbustama@univ-lr.fr                                          |

14

**ABSTRACT:** Laboratory radiotracer experiments were performed to study the uptake, 15 assimilation and retention of americium  $(^{241}Am)$  and cesium  $(^{134}Cs)$  by the common cuttlefish 16 Sepia officinalis. Uptake and loss kinetics of the radio nuclides were measured following 17 exposure through sediments, seawater and food at different stages of the animal's life cycle. 18 Sediment was found to be a minor uptake pathway for both radionuclides in juveniles. 19 Following a short seawater exposure, cuttlefish accumulated <sup>241</sup>Am and <sup>134</sup>Cs, but only to 20 limited extent (whole-body CF < 2). Among the cuttlefish organs, branchial hearts and their 21 appendages displayed the highest degree of uptake for  $^{241}$ Am (CF = 42 and 16, respectively), 22 but these tissues contained low percentage of total <sup>241</sup>Am due to their relatively small 23 24 contribution to whole organism weight. The major fraction of incorporated radionuclides was associated with muscular tissues (viz. 65 and 82% of total <sup>241</sup>Am and <sup>134</sup>Cs, respectively). 25 Whole-body loss of <sup>241</sup>Am and <sup>134</sup>Cs was relatively rapid (Tb<sub>1/2</sub> = 14 and 6 d, respectively). 26 After dietary exposure, around 60% and 30 % of ingested <sup>241</sup>Am was assimilated into the 27 tissues of juvenile and adult cuttlefish, respectively. However, assimilated <sup>241</sup>Am was more 28 strongly retained in adults than in juveniles (Tb<sub>1/2</sub> = 28 vs 5 d, respectively), suggesting that 29 different metabolic processes govern <sup>241</sup>Am elimination at both ages. Ingested <sup>134</sup>Cs was 30 assimilated to a similar extent in juveniles (29%) and adults (23%), but the depuration rate 31 32 was 4 times slower in adults. Our results strongly suggest that these two radionuclides 33 followed different excretion pathways, and that the mechanisms can vary with age for a given 34 radionuclide.

35

36 Key words: Accumulation; Biokinetics; Cephalopods; Radionuclides; Retention

#### **INTRODUCTION**

37

38

39 Contamination of marine waters by radionuclides is a major concern in coastal areas, which 40 receive radioactive inputs from industries, accidents, and fallout from nuclear weapon testing. 41 Surveys estimating concentrations of chemicals in water or sediments are generally 42 complemented by biomonitoring programs and marine mussels are often used as biological 43 monitors for radionuclides and heavy metals (Goldberg 1975, Goldberg et al 1978, Goldberg 44 et al 1983, Goldberg & Bertine 2000). However, previous studies on the trophic transfer of 45 trace elements and radionuclides have shown that herbivores (such as mussels) do not to any extent assimilate transuranic elements ingested with their food (e.g., Fowler 1982, Fisher et al. 46 47 1983, Warnau et al. 1996). Nevertheless this aspect has been little studied in higher trophic 48 levels which are also used in many contaminant surveys. Therefore, there is a need to 49 determine the bioaccumulation potential of marine carnivorous species for such elements.

50 Previous investigations with cephalopods have shown that these carnivorous species do 51 bioaccumulate radionuclides in their tissues that can at times reach high levels (Suzuki et al. 1978, Guary et al. 1981, Yamada et al. 1999); however, little information is available on the 52 53 routes and rates of accumulation and retention of these radionuclides (Suzuki et al. 1978, Guary & Fowler 1982). Two long-lived radionuclides, the particle-reactive <sup>241</sup>Am and the 54 soluble <sup>134</sup>Cs, are present in fallout and also commonly found in nuclear wastes. The objective 55 of our study was to examine the biokinetics of uptake and loss of these two contrasting 56 57 radionuclides in cephalopods in order to establish their bioaccumulation rates, tissue 58 distribution and retention times depending on (1) the uptake pathway, and (2) the life stage of 59 the organism. The common cuttlefish Sepia officinalis was selected as an experimental model, and exposures to these two radionuclides via seawater, food and sediment were studied in 60 61 juvenile and adult individuals.

### MATERIAL AND METHODS

63

64

## 65 **Experimental organisms**

Eggs of the common cuttlefish (*Sepia officinalis* L.) were obtained from cultured adults and were maintained in an aquarium with flowing seawater until hatching; the newly hatched juveniles (n = 25;  $0.387 \pm 0.071$  g wet wt) were then used in the experiments. Adult cuttlefish (n = 18;  $138 \pm 40$  g wet wt) were reared in the Monaco Oceanographic Museum from hatching to one year old organisms, or collected by net fishing off Monaco (n = 5;  $253 \pm 97$  g wet wt). All organisms were maintained in filtered seawater in constantly aerated open circuit aquaria (salinity: 36 p.s.u.; temperature:  $16.5 \pm 0.5^{\circ}$ C; 12/12 h dark/light cycle).

Prior to experimentation, adults were anaesthetised in 2% ethanol in seawater for making
biometric measurements, sex determination and for the insertion of a numbered plastic tag
into the mantle fin to identify each animal during the experiments.

76

### 77 Radionuclides

<sup>241</sup>Am  $[t_{1/2} = 433 \text{ yr}]$  and <sup>134</sup>Cs  $[t_{1/2} = 2 \text{ yr}]$  purchased from Amersham, UK, as nitrate and chloride salts, respectively, were used to trace americium ad cesium biokinetics. Stock solutions were prepared in their respective solutions (0.1 N) to obtain radioactivities which would allow using spikes of only a few microliters (typically 10 to 20 µL).

82

# 83 <sup>241</sup>Am and <sup>134</sup>Cs uptake via sediments

Sediments (2.5 kg dry wt) from the North Sea (Audresselles, Pas-de-Calais, France) were spiked for 4 d with <sup>241</sup>Am and <sup>134</sup>Cs using the rolling jar method (Murdoch et al. 1997). Before initiating the experiment, radiolabelled sediments were held in flowing seawater overnight in order to leach weakly bound radio tracer. Sediments (50 g wet wt) were sampled at fixed intervals during the experiment to check for possible variations in radionuclide

concentration. Juvenile cuttlefish (n = 9) were exposed for 29 d in a 20-L plastic aquarium 89 90 containing ca. 3 L of natural seawater running over a 4 cm layer of spiked sediment. The level 91 of sea water was maintained low in order to minimise the movements required for feeding and to maximise the contact time with sediments. During the experiment, all juvenile cuttlefish 92 93 were fed twice daily with brine shrimp Artemia salina and were periodically  $\gamma$ -counted to 94 follow the radionuclide uptake kinetics over the 29 d. At the end of the uptake experiment, 3 95 individuals were dissected to determine the distribution of the radionuclides among digestive gland, cuttlebone and remaining tissues (including other organs). 96

97

# 98 <sup>241</sup>Am and <sup>134</sup>Cs uptake via seawater and subsequent loss

Newborn (n = 8) and adult (n = 5) cuttlefish were placed for 36 h and 8 h, respectively, in 70-L glass aquaria containing seawater spiked with <sup>241</sup>Am and <sup>134</sup>Cs (nominal activity: 6 kBq L<sup>-1</sup> each). Cuttlefish were then radioanalyzed and transferred to another 70-L aquarium supplied with natural flowing seawater. Juvenile cuttlefish were fed *A. salina* twice daily and were periodically γ-counted to follow radionuclide loss kinetics over 29 d. At the end of the loss period, 4 juveniles were dissected to determine the radionuclide distribution among digestive gland, cuttlebone and remaining tissues.

During the loss phase, adults were fed daily with soft parts of the mussel *Mytilus galloprovincialis*. Three adults were dissected after 8 h and the remaining two were dissected after 6 d of depuration. For each individual, the branchial heart appendages, branchial hearts, gills, digestive tract (after removal of the gut contents), genital tract, ovary or testes, ink sack, digestive gland, kidneys, mantle skin, mantle muscle, head and cuttlebone were separated, weighed, and their radionuclide content measured.

112

# 113 <sup>241</sup>Am and <sup>134</sup>Cs accumulation from food

To prepare radiolabelled food, mussels (*M. galloprovincialis*) and brine shrimp (*A. salina*) were exposed for 7 d in plastic aquaria containing 4 L of natural seawater spiked with  $^{241}$ Am and  $^{134}$ Cs (nominal activity: 6 kBq L<sup>1</sup> each). Radiolabelled seawater was renewed daily and the organisms were subsequently used as food for newborn (brine shrimp) and adult (mussels) cuttlefish.

119 For identification purposes, each individual juvenile cuttlefish (n = 8) was enclosed in a 120 separate compartment allowing free circulation of seawater in a 70-L aquarium. After 1 h of 121 ingesting radiolabelled brine shrimp, each individual was immediately  $\gamma$ -counted. From that 122 time on cuttlefish were fed twice daily with non-contaminated A. salina, and regularly  $\gamma$ -123 counted to determine radiotracer loss kinetics and assimilation efficiency. Throughout the depuration period (29 d), feces were removed 3 times per day to reduce possible indirect 124 125 contamination by radiotracer recycling through leaching from the fces. At the end of the 126 depuration period, 5 juveniles were dissected to determine the radiotracer distribution in their 127 tissues.

Adult cuttlefish (n = 18) were held in a 3000 L aquarium and fed soft parts of the previously labelled mussels for 2 h. Immediately after ingestion, each individual was  $\gamma$ -counted and the same procedure was followed as for the juveniles. In addition, 3 adult cuttlefish were dissected at each counting time to determine the radiotracer distribution among their organs and tissues.

133

### 134 Radioanalyses.

Radioactivity was measured using a high-resolution  $\gamma$ -spectrometry system consisting of three coaxial Ge (N- or P-type) detectors (EGNC 33-195-R, Intertechnique) connected to a multichannel analyser and a computer with spectra analysis software (Interwinner, Intertechnique). The detectors were calibrated with appropriate standards for each of the counting geometries used, and measurements were corrected for background and physical

140 decay of the radionuclides. Counting times were adapted to obtain relative propagated errors 141 less than 5%. However, in a few cases, this counting precision could not be obtained even 142 after 48 h of counting due to the very low activity in extremely small organs. Counting times 143 ranged from 10 min to 1 h for whole cuttlefish, mussels and brine shrimp, and from 10 min to 144 48 h for the dissected organs and tissues.

145

### 146 **Data and statistical analyses.**

147 Uptake of <sup>241</sup>Am and <sup>134</sup>Cs from sediments and seawater was expressed, respectively, as 148 whole-body transfer factors (TF) and concentration factors (CF) over time (Bq g<sup>-1</sup> wet wt 149 organism divided by the time-integrated Bq g<sup>-1</sup> in sediments -TF- or seawater -CF-). 150 Radionuclide loss was expressed in terms of percentage of remaining radioactivity over time, 151 i.e. radioactivity at time *t* divided by initial radioactivity measured in the organisms at the 152 beginning of the depuration period. Loss kinetics were described either by a single-component 153 exponential model:

$$A_t = A_0 e^{-kt}$$

where  $A_t$  and  $A_0$  are remaining activities (%) at time *t* (d) and 0, respectively, or by a 2component exponential model:

157  $A_t = A_{0s} e^{-k_s t} + A_{0l} e^{-k_l t},$ 

where the 's' subscript refers to a short-lived component (s component) and the 'l' subscript refers to a long-lived component (l component) (Whicker & Schultz 1982, Warnau et al. 160 1996). The exponential model showing the best fit (based on calculation of the determination coefficients, R<sup>2</sup>, and examination of the residuals) was selected.

Parameter k allows the calculation of the radionuclide biological half-life (d) using thefollowing equation:

164 
$$T_{bt/2} = \ln 2/k$$

165 Constants of the models and their statistics were estimated by iterative adjustment of the 166 model and Hessian matrix computation, respectively, using the non-linear curve-fitting routines in the Systat 5.2.1 Software (Wilkinson 1988). Changes in radionuclide distribution 167 among cuttlefish tissues and organs were tested for significance by the G procedure (adapted 168 169 from the log-likelihood ratio test) for 2xk contingency tables (Zar 1996). Changes in % of 170 radioactivity in a single tissue during the depuration period were tested by one-way ANOVA (after arcsin transformation of data) followed by the HSD Tukey's multiple comparison test. 171 172 The significance level for statistical analyses was always set at  $\alpha = 0.05$ .

- 173
- 174

#### RESULTS

175

### 176 Sediment exposure

177 Regular measurements of <sup>241</sup>Am concentration in sediment did not show any significant 178 variation during the experimental time course (14.5  $\pm$  1.8 Bq g<sup>-1</sup> wet wt) while <sup>134</sup>Cs activities 179 decreased from 12.4  $\pm$  0.1 to 7.0  $\pm$  0.4 Bq g<sup>-1</sup> wet wt.

180 Very low <sup>241</sup>Am and <sup>134</sup>Cs activities were recorded in juveniles cuttlefish even after 29 d of 181 exposure, and transfer factors (TF) were lower than 0.5 for both elements. Dissection of 3 182 individuals after 29 d of exposure showed that, for both nuclides, the digestive gland 183 contained the highest proportion of the whole-body burden, i.e.  $47 \pm 28$  % of <sup>241</sup>Am and  $49 \pm$ 184 12 % of <sup>134</sup>Cs (Table 1).

185

### 186 Seawater exposure

187 Regular monitoring of the radionuclide concentrations in seawater allowed calculation of 188 time-integrated radioactivities, viz.  $6.4 \pm 0.3$  and  $8.6 \pm 0.7$  kBq L<sup>1</sup> for <sup>241m</sup>Am and <sup>134</sup>Cs, 189 respectively. **Juveniles.** The whole-body activities measured after 36 h of exposure in spiked seawater were  $38 \pm 10$  and  $37 \pm 1$  Bq g<sup>-1</sup> wet wt for <sup>241</sup>Am and <sup>134</sup>Cs, respectively, giving relatively low mean calculated whole-body CFs of  $6 \pm 2$  and  $4 \pm 1$  for these radionuclides.

Following transfer to non-contaminated seawater, loss kinetics of  $^{241}$ Am in juvenile cuttlefish were best fitted by a single-component exponential model whereas loss of  $^{134}$ Cs was best described by a two-component model (Figs 1A and 1B; Table 2). Loss kinetics were characterised by a biological half-life (T<sub>b1/2</sub>) of 2 wk for  $^{241}$ Am and 1 wk for  $^{134}$ Cs.

At the end of the depuration period,  $^{134}$ Cs was mainly associated with the digestive gland of the young cuttlefish (61 ± 4% of whole-body activity) whereas  $^{241}$ Am was mainly retained in the remaining tissues (61 ± 13%) (Table 1). The lowest fraction of both radiotracers was found in the cuttlebone (< 15% of the total activity).

- Adults. <sup>241</sup>Am and <sup>134</sup>Cs activities recorded in whole-body as well as in the different organs and tissues of adult cuttlefish after 8 h of exposure and corresponding CFs are presented in Table 3. The highest activities of <sup>241</sup>Am were found in the branchial hearts and their appendages ( $264 \pm 85$  and  $103 \pm 66$  Bq g<sup>1</sup> wet wt, respectively). In the case of <sup>134</sup>Cs, the branchial hearts, their appendages, the gills and the digestive tract displayed the highest activities, ranging from 9 to 13 Bq g<sup>1</sup> wet wt.
- When considering the tissue distribution of the radionuclides, muscle and skin of adults (i.e. the sum of the mantle muscles, skin and head) contained the highest proportion of  $^{241}$ Am and  $^{134}$ Cs, viz. 68 and 85%, respectively (Table 3). A somewhat lesser  $^{241}$ Am fraction was found in the branchial hearts and digestive gland (10 ± 2% for both tissues). The radionuclide distribution among the tissues did not vary significantly (G test, p > 0.05) between the beginning and the end of the depuration period (Table 3).

### 214 **Food exposure**

In these experiments, juveniles (n = 8) were fed radiolabelled adult brine shrimp *ad libitum* for 1 h and adult cuttlefish (n = 18) ingested a total of 123 radiolabelled mussels during a 2-h feeding. Immediately after feeding, all cuttlefish were  $\gamma$ -counted for determination of their radionuclide content.

**Juveniles**. The loss kinetics of ingested <sup>241</sup>Am and <sup>134</sup>Cs were best fitted by a 2-component 219 220 exponential model composed of one rapid loss component followed by one slow component 221 (Figs 1C and 1D; Table 2). The short-lived component was derived from 40% and 70% of the initially ingested <sup>241</sup>Am and <sup>134</sup>Cs activities, respectively (Table 2) and was characterised by a 222 223  $T_{bl/s} < 1$  d for both radionuclides. The long-lived component, which represents the fraction of the radionuclides actually absorbed by cuttlefish, displayed a  $T_{b'_{2}}$  of 5 d for <sup>241</sup>Am and 66 d 224 for <sup>134</sup>Cs (Table 2). The same long-lived component allowed estimation of the assimilation 225 efficiencies (AE) of the ingested nuclides. Results showed that <sup>241</sup>Am was readily assimilated 226 in juveniles with AE of 60% whereas the AE of <sup>134</sup>Cs was much lower, viz. 29% (Table 2). 227 228 Dissections performed 29 d after feeding indicated that the highest proportion of remaining 229 activity of both nuclides occurred in the digestive gland (ca. 60% of the whole-body activity; 230 Table 1).

231 Adults. The loss kinetics of both radionuclides ingested with food by adult cuttlefish were 232 best described by a 2-component exponential model. As shown Figs 1E and 1F and in Table 2, 69 and 78% of the ingested activity of <sup>241</sup>Am and <sup>134</sup>Cs, respectively, were rapidly lost with 233 a  $T_{h\frac{1}{5}s}$  of 4 and 13 h, respectively. The assimilated fraction of ingested <sup>241</sup>Am was much lower 234 in adults than in juveniles (AE = 31 vs 60%) but was lost at a slower rate with a  $T_{b/2}$  of 28 d 235 compared to 5 d in juveniles. For  $^{134}$ Cs, AEs were nearly similar at both ages (AE = 23 vs 236 237 29% in adults and juveniles, respectively) but the radionuclide was lost much faster in adults  $(T_{b^{1/2}l} = 16 \text{ d})$  than in juveniles  $(T_{b^{1/2}l} = 66 \text{ d})$ . 238

The tissue distribution of ingested radionuclides was determined on several occasions after feeding (Table 4). At the end of the depuration period, both <sup>241</sup>Am and <sup>134</sup>Cs were predominantly distributed in the digestive gland (viz. 98 and 54%, respectively). The distribution of <sup>241</sup>Am among tissues remained unchanged for 29 d of observation; in contrast, some significant changes were observed for <sup>134</sup>Cs (G-test, p = 0.01). For example, the proportion of <sup>134</sup>Cs activity decreased in the muscular tissues (mantle muscles and head) whereas between 1 and 18 days of excretion it increased in the digestive gland (Table 4).

- 246
- 247

#### DISCUSSION

248

249 Cephalopods are an important resource of marine food and are fished and consumed in large 250 quantities all around the world (Amaratunga 1983). The intake of contaminants such as radionuclides by humans through cephalopod consumption is therefore a matter of potential 251 252 concern. Cephalopods have been reported to concentrate natural and anthropogenic radionuclides such as <sup>210</sup>Po, <sup>210</sup>Pb, <sup>137</sup>Cs, and <sup>239+240</sup>Pu in their tissues (e.g. Smith et al. 1984, 253 Finger & Smith 1987, Yamada et al. 1999); however, little is known about the metabolism of 254 radionuclides in these higher trophic level molluscs. To the best of our knowledge, only two 255 256 species of cephalopods, viz. the octopus *Octopus vulgaris* and the squid *Doryteuthis bleerkeri* 257 have been investigated experimentally for Am, Cs, and Pu (Suzuki et al. 1978, Guary & 258 Fowler 1982). These works were limited to seawater uptake (i.e. Suzuki et al. 1978) or used a 259 less than optimal experimental approach such as injecting the prey with radionuclides for the 260 feeding experiments (Guary & Fowler 1982).

Overall, cephalopods are found in a great variety of habitats from coastal waters to very deep ocean environments, some live in direct contact with bottom sediments, and others experience different environments during their life cycle (e.g. demersal species becoming temporarily pelagic during migration). Therefore, there is a further need to determine 1) the uptake and retention of radionuclides at different stages of the life cycle of cephalopods, and 2) to assess the relative importance of the different pathways of exposure to radionuclides (sediments, seawater and food). In this context, the common cuttlefish *Sepia officinalis* appeared to be a good model for such experiments as it spends part of its time buried in the sediment and is easy to rear under laboratory conditions.

270

After 1 month of exposure to <sup>241</sup>Am and <sup>134</sup>Cs through sediments, juvenile cuttlefish still 271 exhibited very low transfer factors (TF < 0.5), indicating that direct contamination due to 272 burying into sediments is a minor uptake pathway for these radionuclides in cephalopods. The 273 274 occurrence of a substantial fraction of both nuclides in internal tissues (viz. digestive gland 275 and cuttlebone), which have no direct contact with the sediment suggests that both 276 radionuclides were progressively translocated from the tissues in direct contact with sediment 277 to the digestive gland and, to a lesser extent, to the cuttlebone (see Table 1). Such a 278 translocation to the cuttlebone was observed in a previous study on bioaccumulation of Cd in 279 S. officinalis (Bustamante et al. 2002).

280 Following a short contamination of adults via seawater, activities recorded in the whole cuttlefish suggest that they do not efficiently accumulate <sup>241</sup>Am and <sup>134</sup>Cs directly from the 281 dissolved phase. Indeed, both elements displayed low whok-body CFs (CF = 2 for  $^{241}$ Am and 282 CF = 1 for <sup>134</sup>Cs). Activities of <sup>134</sup>Cs measured in the different organs and tissues were all of 283 the same order of magnitude. In contrast, for <sup>241</sup>Am the organs involved in respiration (the 284 285 branchial hearts, their appendages and the gills) and digestion (digestive gland) displayed 286 higher activities compared to others body compartments (see Table 3). However, in terms of 287 their relative distribution in the whole body, both radionuclides were mainly found in 288 muscular tissues which represent the main fraction (viz. 75%) of the total body weight: muscles and head contained 65% and 82% of the total <sup>241</sup>Am and <sup>134</sup>Cs, respectively. A longer 289 exposure (14 d) of octopus *Octopus vulgaris* to <sup>137</sup>Cs in water gave a similar distribution (i.e. 290

291 88%) of the radioisotope in the edible parts (Suzuki et al. 1978). In contrast, a 15-d exposure 292 of the same species in seawater spiked with <sup>241</sup>Am resulted in only ca. 20% of the retained 293 radioactivity being found into the muscular parts with <sup>241</sup>Am mainly being concentrated in the 294 branchial hearts and their appendages (Guary & Fowler 1982). In our experiments with *S*. 295 *officinalis*, these tissues contained low percentages of the total <sup>241</sup>Am, most probably because 296 of the short duration of the experiment. Nevertheless, they significantly concentrated the 297 radionuclide with CF reaching 42 in the branchial hearts and 16 in the appendages.

298 Both field and laboratory investigations on cephalopods have demonstrated the ability of 299 branchial hearts to concentrate transuranic elements to fairly high levels (Guary et al. 1981, 300 Guary & Fowler 1982). This ability could be related to the presence of polyhedral cells 301 containing granular, Fe-rich, pigment concretions (adenochromes) (e.g., Fox & Updegraff 1943, Nardi & Steinberg 1974). The affinity of <sup>241</sup>Am for adenochromes in the branchial 302 hearts has been demonstrated using autoradioradiographic techniques Miramand & Guary 303 304 1981); however, adenochromes have not been found in the appendages of the branchial hearts 305 (Nardi & Steinberg 1974), an observation which suggests that they serve as an excretion pathway for <sup>241</sup>Am rather than as storage sites. 306

Following exposure of juveniles in contaminated seawater, subsequent <sup>241</sup>Am and <sup>134</sup>Cs elimination over a one month period followed a one- and a two-component exponential loss model, respectively. Whole-body loss was relatively rapid for both nuclides, with mean  $T_{b1/2}$ of 14 and 6 d, respectively. After 29 d of depuration, residual <sup>241</sup>Am was mainly located in the remaining tissues (comprising the branchial hearts) of juveniles. However, as the juvenile branchial hearts were not fully developed, additional work is needed to examine their role as preferential storage organs as occurs in adults.

In the case of dietary exposure,  $31 \pm 3\%$  of the ingested <sup>241</sup>Am was assimilated into the tissues of adult cuttlefish, whereas, in contrast, <sup>241</sup>Am was absorbed to a much greater extent in juveniles (AE = 60 ± 10%). This difference between AEs could be due to difference in 317 efficiency of digestion between juveniles and adults, since digestive metabolism is thought to 318 decrease with age in cephalopods (Mangold 1989). More likely, however, the difference could also be due partly to variations in the bioavailability of <sup>241</sup>Am in the food used for juveniles 319 320 (brine shrimp) compared to that used for adults (mussels). Indeed, different storage 321 mechanisms in prey can determine metal bioavailability to higher trophic levels (Wallace & Lopez 1997), which can lead to different proportions of transferable <sup>241</sup>Am. Overall, such 322 very high AEs for <sup>241</sup>Am in the common cuttlefish are rather unique whereas in herbivorous 323 324 bivalves, many crustaceans, echinoids, and fish assimilation of particle-reactive transuranic 325 elements is typically very low (e.g. Fowler et al., 1976; Penthreat 1977, 1981; Fisher et al., 1983; Carvalho and Fowler, 1985; Warnau et al., 1996). Such a difference could be related to 326 327 the feeding regime as cephalopods are strict carnivores. For instance, unexpected high AEs 328 (up to 60%) of plutonium have also been found in carnivorous crustaceans, viz. the crabs 329 Carcinus maenas and Cancer pagurus (Fowler and Guary, 1977). Hence, the contribution of 330 the trophic pathway is very likely to be strongly enhanced in certain carnivorous 331 invertebrates.

Once assimilated, <sup>241</sup>Am was retained to a much greater degree in adults, with a half-life 6 332 times longer than in juveniles (i.e. 28 d vs 5 d), which suggests that different processes govern 333 <sup>241</sup>Am elimination/retention at the two life stages. In other molluscs such as mussels, <sup>241</sup>Am 334 335 has been reported to be strongly retained in the digestive gland (Bjerregaard et al. 1985, 336 Fisher & Teyssié 1986), a finding which is in agreement with our own observations. Indeed, after 29 d of depuration, the major fraction of residual <sup>241</sup>Am was in the digestive gland, with 337 338 a much higher fraction was in adults than in juvenile cuttlefish (98% vs 59%). In the digestive gland of the octopus *O. vulgaris*, Guary & Fowler (1982) reported that <sup>241</sup>Am is likely 339 associated with the cellular waste products such as brown bodies. Considering this hypothesis 340 together with our experimental observations, the longer retention of <sup>241</sup>Am observed in adult 341

342 *S. officinalis* could be due to a more rapid turnover of digestive cells in juveniles, thus leading
343 to a higher <sup>241</sup>Am excretion rate.

In contrast to <sup>241</sup>Am, ingested <sup>134</sup>Cs was assimilated to a similar extent in juveniles (29%) and 344 345 adults (23%) and depuration rate constant was 4 times higher in adults, resulting in a significantly much shorter <sup>241</sup>Am half-life in adults (16 d) than in juveniles (66 d) (Table 2). 346 The longer retention time of <sup>134</sup>Cs in juveniles is difficult to explain since, for certain 347 348 transition elements (Ag, Cd, Co and Zn) previously investigated in cuttlefish (Bustamante et al. 2002, 2004) as well for <sup>241</sup>Am (our study), early juveniles displayed shorter retention times 349 than adults. The main difference in tissue distribution of <sup>134</sup>Cs between adults and juveniles 350 351 was the higher proportion present in the cuttlebone (22  $\pm$  21% in juveniles vs 2  $\pm$  0% in 352 adults; see Tables 1 and 4). This higher skeleton-associated fraction is most likely tightly 353 bound and hence results in the high retention time observed. Although, our results clearly indicate that <sup>134</sup>Cs would not follow the same excretion pathway as <sup>241</sup>Am, the above 354 355 interpretation should be considered with caution since to the best of our knowledge, 356 calcareous skeletons are not documented to act as a particularly efficient sink for cesium in contrast with other elements such as e.g. <sup>241</sup>Am or Pb (see e.g. Grillo et al. 1981, Warnau et al. 357 1998). Furthermore, in this feeding experiment the very low activities measured in minute 358 359 organs such as juvenile cuttlebone were frequently associated with low counting accuracy, 360 which in turn can lead to a rather poor estimation of radioactivities and hence radionuclide 361 distribution (as indicated by the elevated SD value of the cuttlebone-associated fraction of <sup>134</sup>Cs). Clearly, further study is needed to better understand the differences observed in the 362 fate of <sup>134</sup>Cs and <sup>241</sup>Am once taken up in young and adult cephalopod tissues. 363

364

*Acknowledgements*. We thank N. Tevenin and P. Gilles (Musée Océanographique, Monaco)
for providing us with the organisms. We are also grateful to E. Boucaud-Camou (Université
de Caen, France) for her advice on cuttlefish rearing. MW is an Honorary Research Associate

| 368        | of the National Fund for Scientific Research (NFSR, Belgium). The Marine Environment              |
|------------|---------------------------------------------------------------------------------------------------|
| 369        | Laboratory operates under a bipartite agreement between the International Atomic Energy           |
| 370        | Agency and the Government of the Principality of Monaco.                                          |
| 371        |                                                                                                   |
| 372        |                                                                                                   |
| 373        | LITERATURE CITED                                                                                  |
| 374        |                                                                                                   |
| 375        | Amaratunga, T., 1983. The role of cephalopods in the marine ecosystem. In: IF Caddy (ed.).        |
| 376<br>377 | Advances in assessment of world cephalopod resources. FAO Fish Tech Pap 231:379-415               |
| 378        | Bjerregaard, P., Topçuoglu, S., Fisher, N.S., Fowler, S.W., 1985. Biokinetics of americium        |
| 379        | and plutonium in the mussel Mytilus edulis. Mar Ecol Prog Ser 21:99-111                           |
| 380        |                                                                                                   |
| 381        | Bustamante, P., Teyssié, J-L., Fowler, S.W., Cotret, O., Danis, B., Miramand, P., Warnau,         |
| 382        | M., 2002. Biokinetics of zinc and cadmium accumulation and depuration at different stages         |
| 383        | in the life cycle of the cuttlefish Sepia officinalis. Mar Ecol Prog Ser 231:167-177              |
| 384        |                                                                                                   |
| 385        | Bustamante, P., Teyssié, J-L., Danis, B., Fowler, S.W., Miramand, P., Cotret, O., Warnau,         |
| 386        | M., 2004. Uptake, transfer and distribution of silver and cobalt in tissues of the common         |
| 387        | cuttlefish Sepia officinalis at different stages of its life cycle. Mar Ecol Prog Ser 269:185-195 |
| 388        |                                                                                                   |
| 389        | Carvalho, F.P., Fowler, S.W., 1985. Biokinetics of plutonium, americium and californium in        |
| 390        | the marine isopod Cirolana borealis, with observations on its feeding and molting behavior.       |
| 391        | Mar Biol 89:173-181                                                                               |
| 392        |                                                                                                   |
| 393        | Finger, J.M., Smith, J.D., 1987. Molecular association of Cu, Zn, Cd and <sup>210</sup> Po in the |
| 394        | digestive gland of the squid Nototodarus gouldi. Mar Biol 95:87-91                                |
| 395        |                                                                                                   |
| 396        | Fisher, N.S., Bjerregaard, P., Fowler, S.W., 1983. Interaction of marine plankton with            |
| 397        | transuranic elements. 3. Biokinetics of neptunium, plutonium, americium, and californium in       |
| 398        | phytoplankton. Limnol Oceanogr 28:432-447                                                         |
| 399        |                                                                                                   |

- 400 Fisher, N.S., Teyssié, J-L., 1986. Influence of food composition on the biokinetics and tissue
- 401 distribution of zinc and americium in mussels. Mar Ecol Prog Ser 28:197-207
- 402
- Fowler, S.W., 1982. Biological transfer and transport processes. In: Kullenberg G (ed.)
  Pollutant transfer and transport in the sea, Vol. 2. CRC Press, Boca Raton, Florida
- 405
- Fowler, S.W., Guary, J-C., 1977. High absorption efficiency for ingested plutonium in crabs.
  Nature 266, 827-828
- 408
- 409 Fowler, S.W., Heyraud, M., Cherry, R.D., 1976. Accumulation and retention of plutonium by
- 410 marine zooplankton. In: Activities of the International Laboratory of Marine Radioactivity,
- 411 1976 Report. International Atomic Energy Agency, Vienna, Austria, pp. 42-50
- 412
- Fox, D.L., Updegraff, D.M., 1943. Adenochrome a glandular pigment in the branchial hearts
  of the octopus. Archs Biochem 1:339-356
- 415
- Goldberg, E.D. 1975. The mussel watch A first step in global marine monitoring. MarPollut Bull 6:111
- 418
- Goldberg, E.D., Bowen, V.T., Farrington, J.W., Harvey, G., Martin, J.H., Parker, P.L.,
  Risebrough, R.W., Robertson, W., Schneider, E., Gamble, E., 1978. The Mussel Watch.
  Environ Conserv 5:101-125
- 422
- Goldberg, E.D., Koide, M., Hodge, V., Flegal, A.R., Martin, J.H., 1983. U.S. Mussel
  Watch:1977-1978 results on trace metals and radionuclides. Estuarine Coast Shelf Sci 16:6993
- 426
- 427 Goldberg, E.D., Bertine, K.K., 2000. Beyond the Mussel Watch- New direction for 428 monitoring marine pollution. Sci Total Environ 247:165-174
- 429
- 430 Grillo, M.C., Guary, J-C., Fowler, S.W., 1981. Comparative studies on transuranium nuclide
- 431 biokinetics in sediment-dwelling invertebrates. In: Impacts of Radionuclide Releases into the
- 432 Marine Environment. IAEA Publ., Vienna, pp. 273-291
- 433

- 434 Guary, J-C., Higgo, J.J.W., Cherry, R.D., Heyraud, M., 1981. High concentrations of transuranic and natural radioactive elements in the branchial hearts of the cephalopods 435 436 Octopus vulgaris. Mar Ecol Prog Ser 4:123-126 437 438 Guary, J-C., Fowler, S.W., 1982. Experimental studies on the biokinetics of plutonium and 439 americium in the cephalopod Octopus vulgaris. Mar Ecol Prog Ser 7:327-335 440 441 Mangold, K., 1989. Reproduction, croissance et durée de vie. In: Grassé PP (ed) Traité de 442 zoologie, Tome V. Céphalopodes. Masson, Paris 443 444 Miramand, P., Guary, J-C., 1981. Association of americium-241 with adenochromes in the 445 branchial hearts of the cephalopod Octopus vulgaris. Mar Ecol Prog Ser 4:127-129 446 447 Murdoch, M.H., Chapman, P.M., Norman, D.M., Quintino, V.M., 1997. Spiking sediment
  - with organochlorines for toxicity testing. Environ Toxicol Chem 16(7):1504-1509
  - 450 Nardi, G., Steinberg, H., 1974. Isolation and distribution of adenochrome(s) in *Octopus*451 *vulgaris*. Comp Biochem Physiol 48 B:453-461
  - 452
  - 453 Penthreath, R.J., 1977. Radionuclides in marine fish. Oceanographic Marine Biology Annual454 Reviews 15 : 365-460
  - 455
- 456 Penthreath, R.J., 1977. The biological availability to marine organisms of transuranic and457 other long-lived radionuclides. p241-272
- 458
- 459 Smith, J.D., Plues, L., Heyraud, M., Cherry, R.D., 1984. Concentrations of the elements Ag,
- Al, Ca, Cd, Cu, Fe, Mg, Pb and Zn, and the radionuclides <sup>210</sup>Pb and <sup>210</sup>Po in the digestive
  gland of the squid *Nototodarus gouldi*. Mar Environ Res 13:55-68
- 462
- 463 Suzuki, Y., Nakahara, M., Nakamura, R., 1978. Accumulation of cesium-137 by useful
  464 Mollusca. Bull Jpn Soc scient Fish 44:325-329
- 465
- 466 Wallace, W.G., Lopez, G.R., 1997. Bioavailability of biologically sequestered cadmium and
- the implications of metal detoxification. Mar Ecol Prog Ser 147:149-157
- 468

- Warnau, M., Biondo, R., Temara, A., Bouquegneau, J.M., Jangoux, M., Dubois, P., 1998.
  Distribution of heavy metals in the echinoid *Paracentrotus lividus* (Lmk) from the
  Mediterranean *Posidonia oceanica* ecosystem: seasonal and geographical variations. J Sea
  Res 39:267-280
- 473
- Warnau, M., Teyssié, J-L., Fowler, S.W., 1996. Biokinetics of selected heavy metals and
  radionuclides in the common Mediterranean echinoid *Paracentrotus lividus*: sea water and
  food exposures. Mar Ecol Prog Ser 141:83-94
- 477
- Whicker, F.W., Schultz, V., 1982. Radioecology: nuclear energy and the environment, Vol 2.
  CRC Press, Boca Raton, FL
- 480
- 481 Wilkinson, L., 1988. Systat: the system for statistics. Systat Inc, Evanston, IL
- 482

Yamada, M., Aono, T., Hirano, S., 1999. <sup>239+240</sup>Pu and <sup>137</sup>Cs concentrations in fish,
cephalopods, crustaceans, shellfish, and algae collected around the Japanese coast in the early
1990s. Sci Tot Environ 239:131-142

- 486
- 487 Zar, J.H., 1996. Biostatistical analysis, 3<sup>rd</sup> edn. Prentice-Hall, Upper Saddle River, NJ

| 488 | Captions to Figure                                                                                             |
|-----|----------------------------------------------------------------------------------------------------------------|
| 489 |                                                                                                                |
| 490 |                                                                                                                |
| 491 | Fig. 1. Sepia officinalis. Whole-body loss kinetics of <sup>241</sup> Am and <sup>134</sup> Cs (% of remaining |
| 492 | activity; mean ± SD):                                                                                          |
| 493 | (A, B) juvenile cuttlefish previously exposed to spiked seawater for 36 h ( $n = 8$ from day 0 to              |
| 494 | 20 and $n = 4$ on day 29);                                                                                     |
| 495 | (C, D) juvenile cuttlefish previously fed radiolabelled brine shrimp ( $n = 8$ from day 0 to 22                |
| 496 | and $n = 5$ on day 29);                                                                                        |
| 497 | (E, F) adult cuttlefish previously fed radiolabelled mussels ( $n = 18$ on day 0, $n = 15$ from day            |
| 498 | 1 to 18, $n = 12$ from day 19 to 29).                                                                          |
| 499 | Parameters of the best fitting equations are given in Table 3.                                                 |
|     |                                                                                                                |

- **Table 1.** Sepia officinalis. Distribution (%; mean  $\pm$  SD) of <sup>241</sup>Am and <sup>134</sup>Cs among three body
- 501 compartments of juvenile cuttlefish (1) after a 29-d exposure to spiked sediments, (2) after a
- 502 29-d depuration following a 36-h exposure to spiked seawater, and (3) after a 29-d depuration
- 503 following ingestion of spiked food (brine shrimp).

| Ν | Body compartment |                                                                                                          |                                                       |  |  |  |
|---|------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
|   | Digestive gland  | Cuttlebone                                                                                               | Remaining tissues                                     |  |  |  |
| 3 |                  |                                                                                                          |                                                       |  |  |  |
|   | $49 \pm 12$      | $12 \pm 3$                                                                                               | $39 \pm 15$                                           |  |  |  |
|   | $47 \pm 28$      | $17 \pm 4$                                                                                               | $36 \pm 24$                                           |  |  |  |
| 4 |                  |                                                                                                          |                                                       |  |  |  |
|   | $27 \pm 13$      | $13 \pm 0$                                                                                               | $61 \pm 13$                                           |  |  |  |
|   | $61 \pm 4$       | $5\pm0$                                                                                                  | $34 \pm 4$                                            |  |  |  |
| 5 |                  |                                                                                                          |                                                       |  |  |  |
|   | $59 \pm 23$      | $12 \pm 10$                                                                                              | $29 \pm 16$                                           |  |  |  |
|   | $60 \pm 27$      | $22 \pm 21$                                                                                              | $18\pm14$                                             |  |  |  |
|   | 3                | Digestive gland<br>3<br>$49 \pm 12$<br>$47 \pm 28$<br>4<br>$27 \pm 13$<br>$61 \pm 4$<br>5<br>$59 \pm 23$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |

**Table 2.** Sepia officinalis. Parameters of the equations best fitting the whole-body loss kinetics of  $^{241}$ Am and  $^{134}$ Cs in cuttlefish previously exposed to the radionuclides via different pathways: (1) juveniles previously exposed for 36 h via seawater; (2) juveniles previously fed radiolabelled brine shrimp; (3) adults previously fed radiolabelled mussels.

O and T: one- and two-exponential loss equations, respectively; ASE: asymptotic standard error; R<sup>2</sup>: determination coefficient; p: probability of the model adjustment.

| Pathway            | Model            | $A_{0s}$ (ASE)  | ls (ASE)      | $T_{b1/2s}\left( days\right)$ | $A_{0l}$ (ASE) | ll (ASE)      | $T_{b1/2l}\left( days\right)$ | R <sup>2</sup> | р       |
|--------------------|------------------|-----------------|---------------|-------------------------------|----------------|---------------|-------------------------------|----------------|---------|
| 1. Loss in juvenil | es after seawa   | ter exposure    |               |                               |                |               |                               |                |         |
| <sup>241</sup> Am  | О                | 87.7 (2.8)      | 0.048 (0.005) | 14                            | -              | -             | -                             | 0.96           | < 0.001 |
| <sup>134</sup> Cs  | Т                | 74.6 (7.1)      | 1.015 (0.163) | 0.7                           | 25.6 (6.8)     | 0.114 (0.036) | 6.1                           | 0.97           | < 0.001 |
| 2. Loss in juvenil | es after a sing  | le feeding on l | brine shrimp  |                               |                |               |                               |                |         |
| <sup>241</sup> Am  | Т                | 39.6 (10.5)     | 1.282 (0.654) | 0.5                           | 60.3 (10.1)    | 0.137 (0.029) | 5.1                           | 0.95           | < 0.001 |
| <sup>134</sup> Cs  | Т                | 70.3 (4.4)      | 0.972 (0.153) | 0.7                           | 29.2 (3.6)     | 0.011 (0.008) | 66                            | 0.98           | < 0.001 |
| 3. Loss in adults  | after a single f | feeding on mu   | ssels         |                               |                |               |                               |                |         |
| <sup>241</sup> Am  | Т                | 68.6 (3.8)      | 4.125 (3.683) | 0.17                          | 31.4 (2.5)     | 0.025 (0.009) | 28                            | 0.95           | < 0.001 |
| $^{134}$ Cs        | Т                | 77.6 (4.4)      | 1.310 (0.197) | 0.53                          | 22.5 (3.7)     | 0.045 (0.019) | 16                            | 0.95           | < 0.001 |

**Table 3.** *Sepia officinalis.* Concentration factors (CFs, mean), radionuclide activities (Bq  $g^{-1}$  wet wt; mean  $\pm$  SD) and tissue distribution of radioactivity (%; mean  $\pm$  SD) in adult cuttlefish after 8 h of exposure via seawater (n = 3) and after 6 d of depuration (n = 2).

| Tissue                        | % wet wt         | <sup>241</sup> Am  |             |            |                  |     | <sup>134</sup> Cs  |            |            |                  |     |  |
|-------------------------------|------------------|--------------------|-------------|------------|------------------|-----|--------------------|------------|------------|------------------|-----|--|
|                               |                  | Accumulation (8 h) |             |            | Depuration (6 d) |     | Accumulation (8 h) |            |            | Depuration (6 d) |     |  |
|                               |                  | CF                 | Activity    | %          | Activity         | %   | CF                 | Activity   | %          | Activity         | %   |  |
| Branchial heart<br>appendages | $0.03 \pm 0.004$ | 16                 | 103 ± 66    | < 1        | 56               | < 1 | 1                  | $9\pm 2$   | < 1        | 1                | < 1 |  |
| Branchial hearts              | $0.10\pm0.02$    | 42                 | $264\pm85$  | $3\pm0$    | 203              | 3   | 2                  | $13 \pm 1$ | < 1        | 2                | < 1 |  |
| Gills                         | $2.3 \pm 0.3$    | 7                  | $42 \pm 14$ | $10 \pm 2$ | 11               | 4   | 1                  | $10 \pm 2$ | $4\pm0$    | 2                | 2   |  |
| Digestive tract               | $2.6\pm0.6$      | 2                  | $15\pm5$    | $4\pm 2$   | 4                | 2   | 1                  | $10 \pm 1$ | $4 \pm 1$  | 1                | 1   |  |
| Genital tract                 | $3.6 \pm 1.0$    | 1                  | $9\pm5$     | $3\pm1$    | 2                | 1   | < 1                | $4\pm1$    | $2\pm 0$   | < 1              | 4   |  |
| Ink sack                      | $0.6 \pm 0.2$    | 2                  | $12 \pm 1$  | $1\pm 0$   | 7                | 1   | 1                  | $7\pm3$    | $1\pm 0$   | 2                | < 1 |  |
| Skin                          | $6.4 \pm 2.1$    | 1                  | $6 \pm 4$   | $3 \pm 1$  | 3                | 2   | < 1                | $4\pm 2$   | $3\pm0$    | < 1              | 4   |  |
| Digestive gland               | $4.3 \pm 1.2$    | 3                  | $22\pm16$   | $10 \pm 2$ | 28               | 11  | < 1                | $3\pm 2$   | $2 \pm 1$  | 1                | 1   |  |
| Kidney                        | $0.07\pm0.07$    | 2                  | $13 \pm 5$  | < 1        | 4                | < 1 | 1                  | $8\pm5$    | < 1        | 1                | < 1 |  |
| Muscle                        | $35 \pm 2$       | 1                  | $7\pm2$     | $26 \pm 4$ | 10               | 52  | 1                  | $6 \pm 1$  | $36\pm3$   | 2                | 55  |  |
| Head                          | $40 \pm 1$       | 1                  | $9\pm3$     | $39 \pm 1$ | 4                | 23  | 1                  | $7\pm2$    | $46 \pm 3$ | 1                | 32  |  |
| Cuttlebone                    | $5.1\pm0.6$      | < 1                | $2\pm 1$    | $1 \pm 1$  | 2                | 1   | < 1                | $1 \pm 1$  | $1 \pm 1$  | < 1              | < 1 |  |
| Whole cephalopod              | 100              | 2                  | $10 \pm 3$  | 100        | 11               | 100 | 1                  | $6\pm 2$   | 100        | 3                | 100 |  |

| Body compartments          | 1                 | d                 | 18                | d                 | 29 d              |                   |  |
|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                            | <sup>241</sup> Am | <sup>134</sup> Cs | <sup>241</sup> Am | <sup>134</sup> Cs | <sup>241</sup> Am | <sup>134</sup> Cs |  |
| Branchial heart appendages | < 1               | $6\pm9$           | < 1               | $1 \pm 0$         | < 1               | $2\pm0$           |  |
| Branchial hearts           | $3\pm0$           | $1\pm 0$          | < 1               | $2 \pm 1$         | < 1               | $1 \pm 1$         |  |
| Gills                      | $1 \pm 1$         | $3\pm 2$          | < 1               | $2\pm1$           | < 1               | $2\pm1$           |  |
| Digestive tract            | $1 \pm 1$         | $3 \pm 1$         | < 1               | $6\pm0$           | < 1               | $9 \pm 1$         |  |
| Genital tract              | < 1               | $2 \pm 1$         | < 1               | $9\pm1$           | < 1               | $10\pm 6$         |  |
| Ovary                      | < 1               | $1 \pm 1$         | < 1               | $3 \pm 1$         | < 1               | $5\pm 2$          |  |
| Ink sack                   | < 1               | $1\pm 0$          | < 1               | $1\pm 0$          | < 1               | $2\pm1$           |  |
| Skin                       | < 1               | $1\pm 0$          | < 1               | $2 \pm 1$         | < 1               | $2\pm 0$          |  |
| Digestive gland            | $89\pm7$          | $31 \pm 6$        | $97 \pm 1$        | $57\pm8$          | $98 \pm 0$        | $54\pm12$         |  |
| Kidney                     | < 1               | $1 \pm 0$         | < 1               | $4 \pm 1$         | < 1               | $2\pm 0$          |  |
| Muscle                     | $6\pm 8$          | $22 \pm 3$        | $1\pm 0$          | $6\pm5$           | < 1               | $5\pm 2$          |  |
| Head                       | $2 \pm 1$         | $28\pm 6$         | $1\pm 0$          | $6\pm5$           | $1\pm 0$          | $6\pm 2$          |  |
| Cuttlebone                 | < 1               | $1 \pm 0$         | < 1               | $2 \pm 1$         | < 1               | $2\pm 0$          |  |

**Table 4.** Sepia officinalis. Radionuclide distribution among tissues (%; mean  $\pm$  SD, n = 3) of adult cuttlefish 1, 18, and 29 d after a single feeding on radiolabelled mussels.

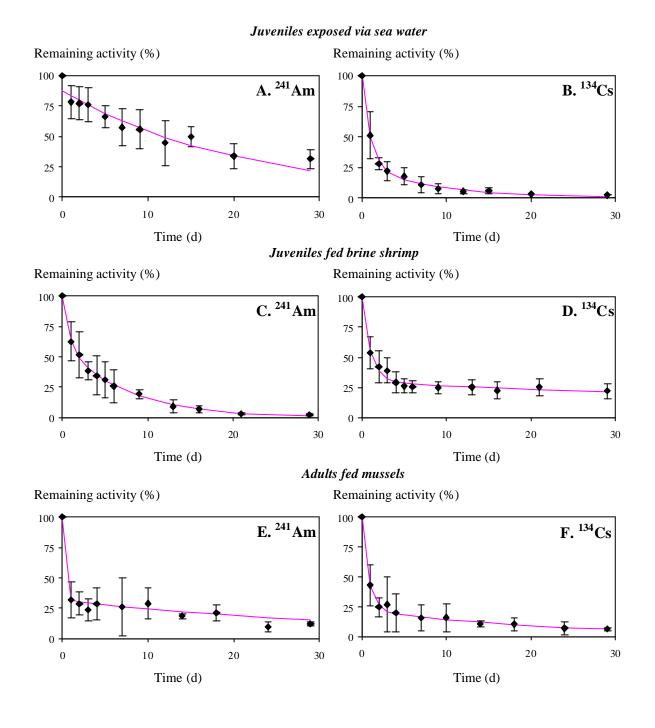



Fig. 1