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Abstract-Two approaches of ocean color data merging were 
tested and compared in the North and Equatorial Atlantic Basin: 
the weighted averaging and the objective analysis. The datasets 
used were the daily level-3 binned data of chlorophylJ-a from the 
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate 
ReSOlution Imaging Spectroradiometer on the Aqua satellite over 
the year 2003, which is the liI'st common full year of opera­
tion. Since they represent input for both approaches, matchups 
between the satellite and the in situ data from the SeaWiFS 
Bio-optical Archive and Storage System and the Atlantic Merid­
ional Transect were first studied to compute a spatial map of 
the root mean-square error and of the bias. Because of the log 
distribution of the chlorophyll fields, each approach was applied 
to untransformed and log-transformed values. The application 
of the weighted averaging to log-transformed values does not 
show significant differences in comparison to its application to 
untransformed values. This is not the case, however, for the 
objective analysis that gives better results when applied to log­
transformed values. Both approaches give combined chlorophyll 
data of equivalent (luality, although the objective analysis could 
be improved with a better statistical characterization of noise and 
signal covariance. The main advantage of the objective analysis is 
its ability to interpolate in space (and time) by taking into account 
the characteristic scales of chlorophyll-a. As a result, the spatial 
coverage of the combined data is at least twice as large in the case 
of objective analysis than weighted averaging. 

Index Terms-Biology, marine vegetation, sea surface, signal 
analysis. 

1. INTRODUCTION 

T HE USE of satellite image data to investigate oceanic 
processes has become essential for oceanographic re­

search and monitoring. The synoptic and global data playa fun­
damental role, since conventional platforms cannot adequately 
cover the vast and rapidly varying ocean at proper time and 
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space scales. Since the first ocean color mission, which is the 
Coastal Zone Color Scanner (CZCS), demonstrated the ability 
to observe globally the abundance and distribution of oceanic 
phytoplankton from space, the data have been used in many 
studies to better understand the role of the ocean in biogeo­
chemical cycles, particularly as the biological carbon pump. 

Chlorophyll-a. (the main pigment in phytoplankton) distri­
bution and variability can be determined from ocean color 
remote sensing. First, the normalized water-leaving radiance 
spectrum is derived from the calibrated top-of-atmosphere ra­
diance measured by the satellite sensor at visible and near­
infrared wavelengths by removing the contribution from the 
atmosphere through a process known as atmospheric correction 
[1]. Normalization refers to the correction for bidirectional 
effects (viewing angle dependence and effects of seawater 
anisotropy [2]). The spectrum of the normalized water-leaving 
radiance can subsequently be converted to chlorophyll-a. con­
centration with biooptical algorithms, such as empirical band 
ratio formulations used for operational products [3], 

Ten satellites having an ocean color sensor on board are 
now on orbit for regional or global scale applications. The 
main characteristics of the two studied here, which are the Sea­
viewing Wide Field-of-view Sensor (SeaWiFS) on OrbView-2 
(NASA, USA) since August 01, 1997 and the Moderate Reso­
lution Imaging Spectroradiometer (MODIS) on Aqua (NASA, 
USA) since May 04, 2002, are presented in Table 1. Any 
individual ocean color mission is limited in ocean coverage 
by its swath width and gaps caused by clouds or sun glint, 
which disable the extraction of ocean color [4]. As an example, 
SeaWiFS can provide about 15% coverage of the global ocean 
at 0.5 0 resolution in one day under climatological cloudiness 
and sun glint [4]. This daily coverage would increase to 25% by 
merging SeaWiFS, MODIS/Aqua, and MODIS/Terra (MODIS 
sensor on the Terra satellite, since December 18, 1999) datasets. 
In this way, besides the increase of the statistical confidence in 
the data, the identification and sludy of biological and physical 
phenomena (such as primary production and algae blooms for 
instance) and their variability are made easier by filled maps. 

There are many difficulties with ocean color data merging 
because the sensors have varying designs and characteristics. 
Let us have a look at those from SeaWiFS and MODIS/Aqua. 
SeaWiFS is in descending sun-synchronous near-polar circular 
orbit with a 12:20-noon local equator crossing time, whereas 
MODIS/Aqua is in ascending orbit with a 1:30 PM equator 
crossing time (Table I). The MODIS scan-mirror assembly 
uses a continuously rotating double-sided scan mirror to scan 
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TABLE I 
CHARACTERISTICS OF SEAWIFS AND MODISIAQUA SENSORS 

Sensor SeaWiFS MODISIAqua 

Satellite Orbview-2 Aqua 
Launch date 08/0l!l997 05/04/2002 
Equator crossing time 12:20 noon 1:30pm 
Spectral bands center (nm) 8 bands: 36 bands, with 

413 412 
443 443 
490 488 
510 531 
555 551 
670 667 & 678 
765 748 
865 869 

Data available since .. 09/04/1997 1112912002 
Swath width 2,806 km 2,330km 
Spatial resolution 1100 m (LAC) JOOOm 

4500 m (GAC) 
Tilt -20°,0°, +200 No 
Orbit Descending Ascending 

LAC stands for Local-Area Coverage. GAC stands for Global-Area 
Coverage. 

±55° [5]; its viewing swath is 10 km along track at nadir 
and 2330 km cross track at ±55°. SeaWiFS is equipped with 
an off-axis folded telescope coupled with a rotating half-angle 
mirror (which rotates at half speed of the folded telescope), and 
that is phase-synchronized (http://oceancolor.gsfc.nasa.gov/ 
SeaWiFS/SEASTARISPACECRAFT.html). In addition to the 
polarization scrambler, this arrangement permits a minimum 
level of polarization to be achieved: SeaWiFS nominal polar­
jzation sensitivity is therefore 20 times less than the maximum 
polarization sensitivity of MODIS/Aqua, and a polarization cor­
rection is thus needed for MODIS/Aqua to improve the agree­
ment between both sensors' water-leaving radiances [6]. 
Although the maximum scan angle of SeaWiFS is ±58.3° at 
MODIS-like altitude, the SeaWiFS global-area coverage 
(GAC) swath is limited to 1502 km. Contrary to MODIS/Aqua, 
SeaWiFS tilts during each orbit in order to reduce the effects of 
sun glint from the sea (Table I; http://oceancolor.gsfc.nasa.gov/ 
SeaWiFS/SEASTAR/SPACECRAFT.html). As a result, Sea­
WiFS' products show a zonal band without any data. Both 
sensors provide a global coverage of the earth in two days. 
MODIS has 36 spectral bands from which nine are used for 
ocean color (bands #8 to #16, the others are used for mea­
suring land/cloud/aerosols properties, atmospheric, and cirrus­
cloud water vapor, surface/cloud/atmospheric temperature, 
cloud top altitude, and ozone; http://modis.gsfc.nasa.gov/about/ 
specifications.php). SeaWiFS has eight spectral bands: all are 
used for ocean color measurement. MODIS bands 1-2 have 
a nominal nadir resolution of 250 m; bands 3-7 have a nadir 
resolution of 500 m; and bands 8-36 have a nadir resolution of 
1 km [5]. SeaWiFS resolution for all eight bands is 1.1 km at 
nadir (Table I). Since GAC data are subsampled every fourth 
pixel and every fourth line, SeaWiFS' resolution is 4.5 km. 
MODIS spectral-band centers dedicated to ocean color are not 
exactly the same as SeaWiFS' (Table I). Therefore, the empi­
rical algorithm to compute chlorophyll-a concentration from 
the normalized water-leaving radiances is not exactly the same 
for both sensors. However, the MODIS OC3M algorithm is 
similar to the SeaWiFS OC4v4 algorithm (http://seabass.gsfc. 

nasa.gov/evalloc.cgi). Since merger activities depend on the 
calibration and validation quality of data products, differences 
in standard products among missions need to be evaluated: It is 
not the object of this study, but the interested reader can refer to 
[7H9]. 

Data-merging methods can start at the level of the water­
leaving radiance or at the level of the derived products such as 
chlorophyll. Maritorena and Siegel [10] used normalized water­
leaving radiances from SeaWiFS and MODIS/Aqua together 
in a semianalytical biooptical model (GSMOl) to produce 
global retrievals of three biogeochemically relevant variables 
(chlorophyll, combined dissolved and detrital absorption coef­
ficient, and particulate backscattering coefficient). Gregg and 
Conkright [1 I] used a blended analysis to combine in situ data 
and satellite CZCS (NASA) chlorophyll in order to construct a 
climatological seasonal representation of the global chlorophyll 
distribution. Within the NASA SIMBIOS program, several 
methods were tested from the simple binning of the daily 
chlorophyll from different sources mapped to a common grid 
to more sophisticated methods [12]-[14]. 

Our objective here within the Global Monitoring for En­
vironment and Security (GMES) integrated project Marine 
Environment and Security for the European Area (MERSEA) 
is to provide an accurate and consistent stream of ocean color 
data at a resolution and extent of coverage compatible with 
operational forecasting of the marine environment. Because 
we want to obtain daily maps of chlorophyll, we chose here 
to directly combine the chlorophyll-concentration products of 
both SeaWiFS and MODIS/Aqua. In the next section, we will 
present the datasets used and the results of the comparison to 
the comprehensive archives of in situ chlorophyll data. We then 
present and compare two approaches over the North and Equa­
torial Atlantic region for the year 2003: the weighted averaging 
and the objective analysis first introduced in oceanography by 
Bretherton et al. [15] and frequently used in altimetry [16]. 
A performance assessment of each approach will finally be 
provided at the North Atlantic basin scale as well as at the 
biogeochemical-province scale. 

II. DATA 

We used SeaWiFS and MODIS/Aqua daily level-3 binned 
data of chlorophyll concentration obtained from the NASAl 
Goddard Earth Science (GES)lDistributed Active Archive 
Center (DAAC). The datasets are issued from the 
reprocessing version 4 (July 2002, http://oceancolor.gsfc.nasa. 
govIREPROCESSING/SeaWiFSIR4/) for SeaWiFS and 
version 1 (February 2005, http://oceancolor.gsfc.nasa.gov/ 
REPROCESSING/AquaIR11) for MODIS/Aqua. The data 
were all considered whatever their flags are. These data 
are both on an equal area grid, in which the resolution is 
1/120 and 1/24° at the Equator, respectively. For practical 
considerations, we resampled them, for this paper, on a regular 
grid of 0.1° x 0.1° (i.e., 11.1 x 11.1 km at the Equator) for 
SeaWiFS and 0.05° x 0.05° (i.e., 5.6 x 5.6 km at the Equator) 
for MODIS/Aqua. Fig. I shows an example of the location of 
a SeaWiFS and a MODIS/Aqua chlorophyll pixel at longitude 
i and latitude j). These resolutions were selected because they 
stand as a compromise between not being far from the original 
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Fig.!. Example of the location of SeaWiFS' and MODIS/Aqua's chlorophyll 
pixel at longitude i and latitude j. 

level-3 resolutions and saving disk space. In addition, they 
conserve the ratio between the resolutions of level-3 binned 
data of both sensors. We will focus our study on the year 2003, 
which is the first common full year of operation of both 
SeaWiFS and MODIS/Aqua sensors. Our area of interest is 
the North and Equatorial Atlantic region, comprised between 
98.5° W-20° E and 20° S-70° N. The distribution of 
untransformed and log-transformed SeaWiFS chlorophyll daily 
data (example shown: August 13, 2003) in the global ocean 
and in the North Atlantic hasin(Fig. 2) confinns the lognormal 
distribution of ocean chlorophyll found by Campbell [17]: 
the logarithm of chlorophyll concentrations has a normal 
distribution. We will thus apply the merging algorithms on 
untransformed and log-transformed values. 

In situ chlorophyll measurements collected from ships 
or oceanic platforms are usually used to validate original 
SeaWiFS, MODIS/Aqua, or even the combined chlorophyll 
datasets: These coincident in time and coverage observations 
between in situ and satellite measurements are called matchups. 
This allows computing errors and bias between each dataset. 
Two in situ datasets are used here. The tirst one was obtained 
from the NASA SeaWiFS Bio-optical Archive and Storage Sys­
tem (SeaBASS) [18] (Gregg, personal communication). Data 
are collected using a number of instrument packages (such as 
profilers and handheld instruments) on a variety of platforms 
(including ships and moorings). In the studied region, it 
includes 704 fluorometrically/spectrophotomettically delived 
chlorophyll-concentration values (milligrams per cubic meter) 
at depths of 0-5 m for the selected 2003-year period. The sec­
ond set contains the Atlantic Meridional Transect (AMT) [19] 
underway data, which are obtained through the British Oceano­
graphic Data Centre (BODC). The AMT Program undertakes 
biological, chemical, and physical oceanographic research dur­
ing both annual passages of the RN James Clark Ross between 
Plymouth (U.K.) and the Falkland Islands. Underway instru­
ments continuously take measurements of the sea surface data 
(e.g., salinity, temperature, attenuance, chlorophyll, and nutri­
ents) by measuring continuously pumped surface seawater. The 
database includes 62613 fluorometrically derived chlorophyll­
concentration values (milligrams per cubic meter) from through 
flow over two one-month petiods: from May 12, 2003 to June 
17, 2003 (AMTl2 cruise) and from September 11, 2003 to 
October 13, 2003 (AMT13 cruise). This led to 63317 in situ 
measurements. In ,~itu data that were coincident (occurring 

within the same day) and collocated (occurring within a sin­
gle SeaWiFS or MODIS/Aqua level-3 pixel of chlorophyll) 
were averaged, following [20]. This led to 2754 in situ values 
on a 0.1° grid and 5144 on a 0.05° grid. After consider­
ing coincident, collocated averages, and cloud-free SeaWiFS 
and MODIS/Aqua data, the final result was 893 comparison 
matchup points for SeaWiFS and 1476 for MODIS/Aqua over 
2003 in the North Atlantic basin. The locations of the matchups 
for both sensors are shown in Fig. 3. To perform a regional 
analysis, we subdivided the basin into 19 ocean domains, which 
are the biogeochemical provinces defined in [21] (Fig. 3). 
Statistical analyses were performed both globally and within 
these provinces. 

The coefficient of determination 1'2 from the correlation 
analysis indicates the covariance between the satellite dataset 
and the in situ observations. For both sensors, the open ocean 
has higher 1'2 than the coastal provinces, as shown in Fig. 4. Ac­
tually, satellite chlorophyll concentrations less than I mg/m3 , 

which are generally found in the open ocean, have a better 
agreement with in situ data than chlorophyll concentrations 
higher than I mg/m3 (generally found in the coastal provinces). 

For untransformed values, the error measurement is esti­
mated by the root-mean-square (rms) error, which is defined as 

( I) 

and the bias is estimated by the averaged difference (AD) 
defined as 

(2) 

where S indicates satellite (SeaWiFS or MODIS/Aqua) 
chlorophyll concentration, I indicates in situ chlorophyll 
concentration, and N is the number of samples, 

For log-transformed values, rmsl and ADI are computed by 
replacing S and I by log(S) andlog(I), respectively ("log" is 
the logarithm to base ]0). Fig. 5 shows the values found per 
biogeochemical province and for the Atlantic basin. The rms 
error and the bias computed on chlorophyll arc relatively weak 
in the open ocean (the rms error is less than 0.09 mg/m3 in 
the subtropical gyres and less than 0.7 mg/m3 everywhere else; 
the bias is less than 0.04 mg/m3 in the subtropical gyres and 
less than 0.4 mg/m3 everywhere else) and higher in the coastal 
provinces (the rms error and the bias arc greater than 1 mg/m3). 

SeaWiFS is performing slightly better than MODIS/Aqua at 
the Atlantic basin scale. There are differences between the 
atmospheric correction schemes and biooptical algorithms ap­
plied to MODIS and SeaWiFS data. The much higher uncer­
tainties affecting MODIS/Aqua's chlorophyll-a with respect 
to SeaWiFS' in eastern U.S. coastal waters suggest that these 
differences might be highlighted in the presence of some opti­
cally complex waters and/or continental aerosols. In general, 
MODIS/Aqua's water-leaving radiances in the blue channels 
are lower tha.n SeaWiFS' eqUivalents and field measuremcnts 
[22]. This has been confirmed in coastal waters [23]. Even­
tually, it is likely that the determination of chlorophyll-a. is 
affected in different ways by the uncertainties associated with 
the respective radiometric products. 
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Fig. 2. Distribulion of (left) untransformed and (right) log-transformed SeaWiFS chlorophyll daily data for August 13, 2003 in (top) the global ocean and 
(bollom) in the North and Equatorial Atlantic. 

For our merging methods, a map of the measurement error 
and/or a map of the bias between in situ and satellite data 
are needed. We thus used the values given in Fig. 5. For the 
biogeochemical provinces for which there was no matchup, 
the nns error and the bias given were those from the nearest 
province. Nearest province means the closest geographically 
and the closest biogeochemically. These provinces associations 
are thus made following the biome (polar, westerlies, trade 
winds, and coastal; [21]) to which they belong (cf. Table Il). 
In order to avoid sharp gradients on flns error and bias at 
boundaries between the biogeochemical provinces, the rms 
error and bias fields were smoothed at 100 km. 

Results will be presented here for two particular days. First, 
August 13, 2003, for which the spatial coverage is remarkably 
good for both sensors (Fig. 6, right panel). Indeed, it is 23% 
for SeaWiFS and 20% for MODIS/Aqua. The second day 
chosen, which is April 1, 2003, is quite particular: In addition 
to the sparse spatial coverage of SeaWiFS (12%), MODIS/Aqua 
presents only one track (4%; Fig. 6, left panel). 

III. WEIGHTED AVERAGING 

A.	 Description 

The first approach used is the weighted averaging. From 
the map of chlorophyll concentrations for a given day and the 
map of the measurement errors for each sensor [i.e., the rms 
error computed between in situ measurements and each sensor 
data (see Section II)], we obtain the map of the combined 
chlorophyll for this day and the map of the associated errors. 

The value of a combined chlorophyll pixel equals the weighted 
averaging of the chlorophyll pixels of each sensor and at the 
same location. The weights are the confidence we have in 
each sensor in comparison to the other, which are computed 
from the rms errors. Since SeaWiFS and MODIS/Aqua have 
not the same spatial resolution, two choices are available: The 
resolution of the combined data is either the lowest one (0.]°: 
Algorithm WAl) or the highest one (0.05°: Algorithm WA2). 

1) Algorithm WA J: Let us begin with the untransfonned 
values. The first step of Algorithm WAI [see Fig. 7(a)] consists 
of oversampling MODIS/Aqua's chlorophyll pixels to bring 
them to SeaWiFS' resolution. Considering the location of the 
chlorophyll pixels of each sensor (Fig. 1), MODIS/Aqua's 
candidate M is obtained from nine original chlorophyll pixels 
with the following fonnula: 

1 1 
M = 4Jvh + S(M2 + M 4 + Jvh + Ms) 

1 
+ 16 (M1 + M 3 + M7 + Mg) 

9 

= LAiM,	 (3)
;=1 

with I:;=1 A., = 1. 
The Ai coefficients represent the fraction area of each 

MODIS/Aqua's original chlorophyll pixel covered by the 
MODIS/Aqua's candidate. Of course, only the existing data 
points are considered. 
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Fio.3. Location of the matchups for (a) SeaWiFS and (b) MODIS/Aqua with 
Se'illASS's (in midgray), AMTI2 cruise's (in black), and AMTI3 cruise's (in 
pale gray) data. The biogeochemical provinces defined and numbered following 
[2l] are delimited by gray lines (cf. Table II). 

To compute the associated error EM, we can consider the 
distribution with an M mean and an EM standard deviation as 
a linear combination of the nine distributions of an M; mean 
and an EMi standard deviation (i.e., the error associated with 
the M; chlorophyll pixel, which is the rms error associated with 
the point and is computed using matchups with in situ data in 
Section TT). Since no specific rule exists to compute the standard 
deviation of a linear combination of lognormally distributed 
variables, the error (i.e., standard deviation) EM of M must be 
computed in a basic way as follows: 

9 

with X n = L ·\;Y;,n. 
i=l 

First, we build nine lognormal distributions Y; (i = {I, ... , 9}) 
of N points (after several tests, we chose N = 1000), with an 
M i mean and an EM; standard deviation; then, we compute 
their linear combination X n (the weights are the .A.J; the 
error EM of M is the standard deviation of X n . The lack of 
several values out of the nine brings so little difference that we 
considered it had no real impact on the EM value. 

The second and last step of Algorithm WAI is the combi­
nation of SeaWiFS and MODIS/Aqua's candidates. The com­

bined chlorophyll pixel C is computed using the foHowing: 

C= (1- %ES ) 8+ (1- %EM ) M (4)
%EM + %ES %EM + %ES 

where %EX = EX/X. Actually, the weights of 8 and M repre­
sent the percentage of confidence we have in the corresponding 
chlorophyll pixel in comparison to the other. The associated 
error EC is computed in the same way as in step I, i.e., it is 
considered as the standard deviation of a linear combination of 
two lognormal distributions of means 8 and M and standard 
deviations ES and EM. 

To obtain MODIS/Aqua's candidate for log-transformed va]­
ues, the "X" values are replaced by the "log X" values. The 
geometric mean is used. Therefore, (3) is replaced by 

9 

with m = L.Ai log Mi. (5) 
i=l 

This time, let EMi be the error associated with 10g(M;). Since 
log(A1;) has a normal distribution, we have 

9 

EM = L(.AiEM;)2 (6) 
',=1 

To compute the combined chlorophyll pixel, (4) is replaced by 
the following: 

(7) 

with 

'( %ES). ( %EM)m = l~%EM+%ES log8+ l-%EM+%ES 10gM. 

As in the first step, the associated error EC is the linear 
combination of the errors ofJog(8) and 10g(M). 

2) Algorithm WA2: Let us begin with the untransformed 
values. The first step of Algorithm WA2 [see Fig. 7(b)] consists 
of bringing down SeaWiFS' chlorophyll pixels to the resolution 
of MODIS/Aqua's. Considering the location of the chlorophyll 
pixels of each sensor (Fig. I), SeaWiFS' candidates are ob­
tained as the following: 

81' = ~(81 + 82 + 84 + 85)
4 

82' = ~(82 + S5)
2 
1 

S3' = -(82 + 83 + 85 + 86)
4 

84' = ~(S4 + 85) 

85' = S5 

86' = ~(85 + 86) 

87' = ~(S4 + 85 + 87 + 88)
4 

88' = ~(85 + S8) 

89' = ~(S5 + 86 + 88 + S9). (8)
4 
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Fig. 4. Scatterplots of (top) ill situlSeaWiFS and (bottom) in situlMODIS/Aqua chlorophyll data into (left) global ocean, (middle) open ocean (provinces 
No.4, 5, 6, 7, 8, 10, and 18), and (right) coastal area (provinces No. II, 12, 14, and 15). N is the number of points used for the computation; 
r 2 is the coefficient of determination. The dark line is the ideal regression line; the dotted one is the real regression line. 

The associated etTors are obtained by the same way (just The application on untransformed values comprises com­
replace "s" by "ES"). The combination of SeaWiFS' and putations of many lognormal distributions, therefore needing 
MODIS/Aqua's candidates is the same as for Algorithm WA 1. a large amount of CPU time. Therefore, the application on 

As far as log-transfonned values are concerned, (8) are log-transformed values is the fastest one, with duration up to 
derived using the same techniques as those used in Algorithm 10 min with a 700-MHz processor for both algorithms for 
WAl; the combinalion is then similar. one daily map on Ihe North Atlantic basin. The application on 

untransformed values is quite slower: 10 to 20 min (Algorithm 
WAl) and 20 to 30 min (Algorithm WA2).

B. Results 
As an example, Fig. 8 shows the result of the application of 

Algorithms WAI and WA2 were applied on the North At­ Algorithm WA2 on the untransfonned values for April 1,2003 
lantic basin for the whole year 2003. Both algorithms were (day for which the spatial coverage is the worst, left pane]) 
used on untransfonned and log-transformed values. For each and August 13, 2003 (day for which the spatial coverage is the 
of Ihe four cases, matchups between the combined and in situ best, right panel). The spatial coverage of the combined data 
data were examined, and rms errors and biases were computed is 15% and 34%, which is an improvement of 3% and 11%, 
on untransformed and log-transfonned values. In each case, the respectively, compared to the initial SeaWiFS coverage. 
values of the rms error and of the bias range between those of 
SeaWiFS and MODIS/Aqua used alone. RMS errors and biases 

IV. OBJECTIVE ANALYSIS
computed on chlorophyll and on log chlorophyll show that 
for Algorithm WA I (combined data at SeaWiFS' resolution) The second approach studied is based on optimal interpo­
and log-transformed chlorophyll, the results are better than lation used in oceanography by Bretherton et al. [15]. This 
when using untransformed data. The results are opposite for methodology has been already successfully applied to satellite 
Algorithm WA2 (combined data at MODIS/Aqua's resolution) allimetric data in various applications [16]. 
(Table III). They also indicate that Algorithm WA2 gives better TiS aim is to determine the value of a field e at a point 

results than Algorithm WAl. Therefore, the application of in space and time given various measuremenls of the field 
Algorithm WA2 on untransformed values gives Ihe lowest rms unevenly spread over space and time <Pobs' (with i E [1, Nj). It 
errors and biases, computes an interpolated grid-poinl value as a weighted-linear 
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Fig. 5. (Top) RMS error computed on (left) chlorophyll and (right) log chlorophyll between in situ data and SeaWiFS (black) and MODIS/Aqua (dotted) 
chlorophyll datasets for the II provinces and the whole basin. (Bottom) Biases computed on (left) chlorophyll and (right) log chlorophyll. 

TABLE 11
 

BIOGEOCHEMICAL PROVINCES IN THE NORTH AND EQUATORIAL ATLANTIC BASIN [21]. IN THE CLASSIFICATION OF THE ECOLOGICAL
 

GEOGRAPHY OF THE SEA SUGGESTED BY LONGHURST [21], FOUR BIOMES ApPEAR: THE COASTAL BlOME,
 

THE POLAR BlOME, THE WESTERLIES BlOME, AND THE TRADE-WIND BlOME
 

Province # Biome Province Association with province # 
Polar Boreal Polar Province 15 

2 Polar Atlantic Arctic Province 4 
3 Polar Atlantie Subarctic Province 4 
4 Wcslerl.ies North Atlantic Drift Province x 
5 Westerlies Gul f Stream Province x 
6 Westerlies North Atlantic Subtropical Gyral Province (West) x 
7 Trades North Atlantic Tropical Gyral Province x 
8 Trades Western Tropical Atlantic Province x 
9 Trades Eastern Tropical Atlantic Province 8 
10 Trades South Atlantic Gyml Province x 

II Coastal NE Atlantic Shel\'es Province x 
12 Coastal Canary Coastal Province II (MODIS/Aqua) - oX (SeaWiFS) 
IJ Coa,laJ Guinea Current Coastal Province II (MODIS/Aqua) - 12 (SeaWiFS) 
14 Coastal Guianas Coastal Province x 
15 Coastal NW Atlantic Shelves Province oX 

17 Trades Caribbean Province 14 

18 Westerlies North Atlantic Subtropical Gyml Province (East) x 

20 Coa<;tal Brazil Current Coastal Province 14 
22 Coastal Benguela Current Coastal Province 11 (MODIS/Aqua) - 12 (ScaWiFS) 

The last column shows the association chosen between biogeochemical provinces where there are matchups (indicated by 
"x") and where there is none. 
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Fig. 6. (Top) SeaWiFS. (middle) MODIS/A~ua< and (bottom) a map of the data coverage oflhe two senSOrs for (left) April 1. 2003 and (right) August 13, 2003. 
Clear gray is for values lower than 0.0 I mglm • and dark gray is for values greater than LO mg/m3. On the maps of the data coverage. white is for no sensor, blue 
is for MODIS/Aqua only. green is for SeaWiFS only. and red is for both sensors. 

combination of observations. The weights are optimal and 
take into account the spatial distribution of observations 
relative to one another (spatial correlation), the instrument 
errors and biases (that we have computed from the matchups 
in Section IT), the variance of the field, etc, Two observed 
values at corresponding space/time coordinates do not 
have to be idenLical, and an interpolated variable of a field 
does not have to be identical with an observed value at 
corresponding space/time coordinates, Therefore, this method 
compensates for sensor-to-sensor differences in instrument 
design and characteristics, calibration peculiarities, and c1ata 
processing. 

A. Description 

The estimated chlorophyll field is computed as follows: 

N N 

(lcst(x) = L L A.i/Cxj<t>obsi (9) 
i=l j=l 

with if> obsi = if>i + C'i, which is the chlorophyll value measllfccI 
by the scnsor, <Pi is the true value of chlorophyll, Ci is the 
measurement error, and A i .i is the covariance matrix between 
the observations: 
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Fig. 7. (a) Dcscriplion of Ihc first algorithm of weighted averaging. X and EX arc the pixel's chlorophyll concentration and the associated error, respectively 
(in milligrams per cubic meter with untransformed values or in no unit with log-transformed values). X is "s" for SeaWiFS, "M" for MODIS/Agua, and "c" for 
the combined data. (b) Description of the second algorithm of weighted averaging: Same notations as for (a). 

TABLE 1Il
 
COEFFICIENTS OF DETERMINATION ,,2, RMS ERRORS, AND BIASES BETWEEN /N SITU AND COMBINED CHLOROPHYLL OBTAINED BY
 

WEIGHTED AVERAGING (WA 1 AND WA2), AND BY OBJECTIVE ANALYSIS IN THE NORTH ATLANTIC BASIN
 

Stat. on chlorophyll Stat. on log chlorophyll 
N (mglm3

) (no unit) 
1'2 RMS Bias 1'-" RtvlS Bias 

SeaWil'S 893 0.53 2.78 038 0.84 033 0.18 
MODIS/Aqua 2249 0.63 5.75 0.c)9 0.88 028 0.15 

Algorithm Chlorophyll 1288 0,47 548 0.83 0.88 029 0.16 
WAI Log chlorophyll 1288 0,47 5.22 0.76 088 0.29 0.16 

Algorithm Chlorophyll 2268 0,47 3.76 0.53 0.86 030 0.18 
WA2 Log chlorophyll 2268 0,47 3.96 0.55 0.86 0.30 0.17 

Objective Chlorophyll 2261 0.58 3.58 060 0.85 034 0.21 
analvsis Log chlorophyll 2283 0.63 3.70 0.57 0.86 0.32 020 

Statistics for SeaWiFS and MODIS/Agua alone are repOited in top two lines. N is the number of 
points used for the computation. 

and Cxj is the covariance vector between the observations and bubble," whose size is defined by the zonal Rx and meridional 
the point to be estimated as follows: R y correlation scales. 

(11) 
B. Pretreatment 

The variance of the error associated with the estimated chloro­
I j Data: The practical requirement for the use of objective

phyll field is given by 
analysis is that a "first guess" field of the signal should exist,
 

N N which the algorithm corrects by interpolating the input signal.
 

e2 = Cxx - LLCxiCxjA;/- (12) The input data of the algorithm lPobSi are chlorophyll anom­

i=1 j=1 alies, i.e., the chlorophyll field minus this "first-guess." Differ­


ent options are possible for this background field: it can be the
 
The objective analysis used in [16] decomposes the errors previous-day chlorophyll map, the mean of the last-week daily 

into white noise and biases by expressing (ci' Cj) in the follow­ chlorophyll maps, or the monthly climatology. Reynolds and 
ing forms: Smith [24] have already addressed this problem of the choice of 

1) (c." cj) = Oij b2 for points (i, j) from different sensors; the background field for the application of objective analysis on 
2) (c:"Cj) = oij b2 + E for points (i,j) from the same sea-surface temperature (SST). A monthly climatology and the 

sensor. previous-day map for SST are both solutions with advantages 
b2 is the variance of the measurement noise (i.e" the square of and drawbacks. The preceding analysis has the advantage to be 
the rms errors computed in Section II), and E is the variance of more accurate than the climatology. However, the climatology 
the bias (i.e., the square of the mean ADs in Section II). is more homogeneous in terms of statistics. This led us to 

Since there are a high number of measurements, the inter­ choose the climatology solution. First, because the procedure 
polation is done with observations included in an "influence to estimate the correlation function is more robust and easier to 
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develop, and second, because it is wiser to use a first guess with 
a coverage as extended as possible. 

This monthly mean field is computed by using a one-year 
Fourier filtering on the 1997-2003 SeaWiFS monthly data. 
Indeed, this method only takes into account the general yearly 
trend of the signal and not the values of outliers that might occur 
once. The climatology for April and August is shown in Fig. 9. 

All the following treatments have been computed on untrans­
formed anomalies (chlorophyll minus monthly climatology) 
and log-transformed anomalies (logarithm to the base 10 of 
the chlorophyll minus logarithm to the base 10 of the monthly 
climatology). 

2) Variance: The temporal variance was computed on un­
transformed and log-transformed chlorophyll values, as shown 
in Fig. 10. To avoid marked differences between neighboring 
points, which are inadequate for the objective analysis, a 50-km 
median filter was applied to both fields. Fig. 10 shows that the 
variance is relatively weak in the low-productivity oligotrophic 
regions such as the subtropical gyres and high everywhere 
else on the continental margins, in the subpolar gyre, near 
the Amazon Plume, near the upwelling of Mauritania, and in 
the equatorial zone. The variance of the untransformed values 
[Fig. 10(a)] exhibits sharper gradients than the variance of the 
log-transformed values [Fig. lOeb)]. 

3) Correlation Function: The empirical space-time correla­
tion function has been first computed on untransformed anom­
alies in each point of a 20 x 20 grid in the North Atlantic basin 
using (13). Only the values included in a subdomain centered 
around each location studied are considered. The computation 
is done only if at least 50% of the subdomain is filled. 

CORRemp(~long, ~lat, ~t) 
NUlflhcl'OfPlIir:;

L: PROD(map.pair,ll!ong,lllat,lli)NumberOfMaps 
pair=l

L: VAR(subdomam)xNumberOfPalrsmap=l
 

NumberOfMaps
 
(13) 

where ~Iong = long2 - long 1, ~lat = lat2 - latl, pair = 
(longl, latl, 0) +-> (long2, lat2, ~t); NumberOfPairs is the 
number of pairs of values included in the subdomain; and 
NumberOfMaps is the number of maps of chlorophyll in the 
time series used. The PROD product is given by 

PROD(map, pair, ~Iong, ~Iat, ~/,) 

= [chI (map, longl, latl, 0) - mean(subdomain)] 

x [chl(map, long2, lat2, ~t) - mean(subdomain)] 

where chI stands for chlorophyll concentration and the variance 
of the subdomain, shown at the bottom of the page, where 
Nlong, NLat, and NTps are the numbers of points in longi­

tude, latitude, and time of the subdomain, respectively, and 
NumberOfPoints is the number of the points included in the 
subdomain. 

The choice of the size of the subdomain for such computation 
is important. A small subdomain gives a very local information. 
A larger area gives a smoother information but a more accurate 
one because the computation is performed with more pairs. 
To have a first idea of the subdomain size, we use space-time 
correlation scales found in previous studies. Using the semivar­
iogram approach from geostatistics on Level 3 daily standard 
mapped images (reprocessing 2) for the year 1998, Doney et at. 
[25] found for the global ocean a maximum zonal correlation 
scale of 250 km and a maximum meridional correlation scale 
of 200 km. The dimensions 250 x 200 km of this subdomain 
are kept constant all over the North Atlantic, and we com­
pute our empirical correlation scales over this subdomain size. 
Uz and Yoder [26] found low correlation between pairs of 
images as short as one-day apart. This allows us to work 
only in two dimensions (longitude, latitude) and then obtain a 
space correlation function. We also computed the correlation 
function with a time scale of five days but the results were not 
convincing. The correlation coefficients have been computed 
per month and for the whole year to examine a possible seasonal 
variation of the correlation function. 

To model the empirical correlation function, two functions 
were studied. 

First, let us examine the exponential model used by 
Kwiatkowska and Fargion [12]. The basis function is the 
following: 

CORRexp(r) = Ai exp(Azr) + A3 (14) 

where r = J(:x:jRx)Z + (y/Ry )2; R x and R y are the zonal 
and meridional correlation radii (first zero crossing of 
CORRexp with the zonal and meridional axes, respectively), 
and Ai, Az, and A 3 are the coefficients to determine. The 
function must complete the following conditions: strictly de­
creasing, CORRexp(O) = 1, and CORRexp (l) = 0 (i.e., null 
correlation at the first zero crossing). Therefore, we obtain 

CORRexp(r) = (1 - a) C' ~ Jr + a (15) 

with a < O. The smaller is the a, the more sharp pointed is the 
function. 

The second model is based on an inverse function (Al> A z, 
A 3 , and A4 are coefficients to determine) 

(16) 

NLong NLat NTps Z
L: L: L: [chl(map, long, lat, tps) - mean(subdomain)] 

VAR (subdomain) = _lo_l"I",-g=_l_Ia_t=_l_t--'P_S=_l__----:--:-----:-_:::-=::-- _ 
NumberOfPts 
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Fig. 12. Spatial correlation coefficients of SeaWiFS anomalies for the year 2003 at the grid point 52 0 W-200 N (Province 6). (Top) Value of the correlation 
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Color scale: Red is for the value 1.0; dark blue is the zero field. (Bottom) Section for (left) a null meridional distance and (right) a null zonal distance; the empirical 
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which gives the following, considering the above constraints: 

, fJ(l - fJ)
CORRexp~r) = fJ + fJ _ r . (17) 

Here, again, the smaller is the fJ, the more sharp pointed is the 
function. 

The associated spectrum of both correlation models is a 
positive number for each wavenumber. Therefore, they are both 
nonnegative definite forms, which are a requisite [15]. 

At each point of the 2° x 2° grid, a and fJ were computed 
so that the model correlation function gives the best fit to the 
empirical one. Fig. II shows the spatial repartition of these 
coefficients in the North Atlantic basin. For both models, they 
depend obviously on the biogeochemical provinces: In the sub­
tropical gyres, they are close to zero, and the correlation model 
is very sharp pointed (i.e., the points are not well correlated 
between each other). 

Tn the equatorial zone, the coefficients are higher in absolute 
value, and the correlation model is wider (i.e., the points are 
better correlated with each other). A monthly analysis reveals 
an interesting seasonal variation: The correlation scale is larger 
in summer (i.e., wide correlation model) than in winter (i.e., 
sharp-pointed correlation model). 

Fig. 12 shows sections of the two-dimensional (2-D) cor­
relation function at the grid point 52° W - 20° N. Obviously, 
the inverse model fits better the empirical function than the 
exponential one. This is confirmed by the maps of the absolute 
error between the models and the empirical function in Fig. 11. 

The same computation has been carried out on log­
transformed anomalies, giving the same results. 

4) Correlation Scales: Zonal (respectively meridional) cor­
relation scales are given by the first zero crossing of the cor­
relation function computed above with the zonal (respectively 
meridional) axis. They define the size of the influence bubble. 

Fig. 13(a) displays the zonal correlation scales for the 
whole year 2003. They clearly depend on latitude and not on 
the biogeochemical-province partitioning. A study per month 
points out that they do not show any seasonal variation. Zonal 
correlation scales R x were thus modeled with the following 
function: Rx = -0.03 lat2 + 220 km. Thus, the coefficient of' 
determination '(2 is 0.914, showing the excellent fit of the 
modeled function. 

Fig. l3(b) shows the meridional correlation scales for the 
year 2003. They depend neither on the latitude nor on the 
biogeochemical-province repartition. No seasonal variation 
emerges. The scales are close to 150 km all over the basin, and 
a constant value (150 km) has been used. 

The time correlation scale computed (not shown) is about 
one day everywhere and until five days at few locations in the 
subtropical gyres, confirming the results in [26]. Therefore, the 
value of the time correlation scale has been set here to one day. 

C. Results 

The objective analysis was applied on the North Atlantic 
basin for the whole year 2003. It was used on untransformed 
and log-transformed anomalies. The computation was made in 
order to have a combined data with a resolution of 0.1° x 0.1". 

Combined data obtained by the application of the objective 
analysis to untransformed anomalies (not shown here) are 
worse than those obtained by the application to log-transformed 
anomalies. Indeed, unrealistic values can be obtained at loca­
tions where the variance between points within the influence 
bubble is highly different. By this way, the covariance ma­
trix is numerically ill conditioned, and its inversion gives a 
wrong result. This does not occur with lognormal anomalies 
because such differences do not exist in this case. More­
over, this method is based on the Gauss-Markov theorem, 
which is optimal only if applied to Gaussian variables. There­
fore, objective analysis must be applied to log-transformed 
anomalies. 

As for the weighted averaging, matchups between the com­
bined and in situ data were examined for both cases, and 
rms error and bias were computed on untransformed and log­
transformed chlorophyll. Coefficients of determination, rms 
errors, and biases computed on anomalies and log anomalies 
(Table III) confirm that better results are obtained by applying 
the objective analysis to log-transformed than to untransformed 
anomalies. 

Naturally, for operational purposes, it is impossible to use all 
the valid points (up to 2000) in the influence bubble. Therefore, 
to decrease the CPU time, another parameter was added: the 
number of observations in the influence bubble considered for 
the computation at one given location. The CPU time increases 
of about 30 min with a 50-point increment. Different values 
were tested, and a value of 150 points was chosen. Indeed, 
selecting more points in the influence bubble does not change 
any more the chlorophyll value. The CPU time is about 1 hand 
30 min for a daily map on a 700-MHz processor, depending 
clearly on the season (because of the number of points on the 
original grids). 

As an example, Fig. 14 shows the result of the application of 
the objective analysis on log-transformed anomalies for April 
I, 2003 (day for which the spatial coverage is the worst, left 
panel) and August 13,2003 (day for which the spatial coverage 
is the best, right panel). The spatial coverage of the combined 
data is 50% and 71 %, which is an improvement of 38% and 
48%, respectively, compared to the initial SeaWiFS coverage. 

V. DISCUSSION AND CONCLUSION 

The objective here was to present and test two approaches 
of ocean color data merging for operational purposes. Both 
were applied on the North and Equatorial Atlantic basins for 
the combination of SeaWiFS and MODIS/Aqua for the year 
2003. Input values were untransformed and log-transformed 
chlorophyll-concentration values. 

The first approach is an error-weighted averaging. Even 
considered as basic, it improves the spatial coverage by taking 
into account only the existing satellite values. It consumes 
low CPU time. Its main limitation is the discontinuity in the 
accuracy of the combined data, as shown in Fig. 8. If there 
is only one observed value, the accuracy of the combined 
value is the accuracy of this sensor's value. If there are two 
estimates (i.e., an observed value for both sensors), the accuracy 
of the combined data is improved. Its application on the North 
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Atlantic basin shows that the quality of the combined data does 
not differ much between the applications on untransformed and 
log-transformed values. 

The second approach is an objective analysis, Given a first 
guess and statistical parameters computed directly on satellite 
data, this approach interpolates values where there is none. As 
a result, the spatial coverage of the combined data is improved 
compared to the error-weighted averaging. Its application on 
untransformed anomalies sometimes gives poor results, es­
pecially because of the lognormal distribution and the time 
dynamics of the chlorophyll. Therefore, the objective analysis 
must be applied to log-transformed data. The results shown 

here constitute a preliminary application of this method on 
chlorophyll-a data, It thus needs to be improved: tuning, better 
characterization of signal and noise, correlation function, selec­
tion of the observations considered for the computation, etc. 

Assessing the quality of the combined data is quite difficult. 
The best way to do it is to compare the combined data to in situ 
measurements, as we made here. Table III shows that the rms 
errors and biases of the error-weighted averaging are slightly 
smaller than for the objective analysis. But, since the matchups 
are very sparse and rare in space and time, an estimation of the 
global quality (extreme values, mean, and standard deviation) 
of the combined data can also be computed. 
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The CPU time is much quicker for the weighted averaging 
than for the objective analysis because of the difference of 
the space coverage between both approaches. Nevertheless, the 
CPU time is quite low, and both techniques can be applied for 
operational purposes. 

In conclusion, we have tested and compared two approaches 
for ocean color data merging of SeaWiFS and MODIS/Aqua in 
the North Atlantic basin for the year 2003: weighted averaging 
and objective analysis. The main advantage of the objective 
analysis is its ability to interpolate in space (and time) by 
taking into account the statistical properties of chlorophyll-a. 
Moreover, matchups between ill situ and combined data show 
that both approaches yield about the same rms errors and biases, 
although the spatial coverage is at least twice as large in the 
case of the objective analysis as the weighted averaging. It also 
seems that, due to the nature of the chlorophyll distribution, it 
is better to use mergers on log-transformed values. 
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