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Abstract: The Pacific oyster, Crassostrea gigas, is extensively cultivated and represents an important 
economic activity. Oysters are reared in estuarine areas, subjected to various biotic and abiotic 
factors. One of the limiting factors in aquaculture is mortality outbreaks, which may limit oyster 
production, and the causes of these outbreaks are not completely understood. In this context, the 
effects of temperature and salinity on Pacific oyster, C. gigas, haemocytes, were studied. Haemocytes 
are the invertebrate blood cells and thus have been shown to be involved in defence mechanisms. 
Flow cytometry was used for monitoring several haemocyte parameters. An increase of temperature 
induced an increase of haemocyte mortality, in both in vitro and in vivo experiments. Temperature 
modulated aminopeptidase activity. An in vitro decrease of salinity was associated with cell mortality. 
During the course of in vivo experiments, an increase of phagocytic activity was reported at 15‰ and 
50‰. Environmental physical parameters may modulate haemocyte activities.   
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Introduction 

Shellfish farming represents an important economic activity around the world. Among 

shellfish, the Pacific oyster, Crassostrea gigas, is the most cultivated species. In France, C. 

gigas was introduced in the 1970s to replace the Portuguese oyster, C. angulata (1). France 

ranks fourth worldwide in the production of C. gigas with 150 000 tons produced annually. 

However, oyster production may be subjected to various limiting factors including mortality 

outbreaks. For several decades now, French Pacific oyster livestocks have presented abnormal 

mortality outbreaks during the summer period. This phenomenon called summer mortality has 

also been reported in North America and in Japan since the 1940s (2-4). Authors hypothesised 

that summer mortality outbreaks are the result of multiple factors, including elevated 

temperatures, physiological stress associated with sexual maturation, aquaculture practices, 

pathogens or pollutants (5). The Pacific oyster, C. gigas, is mostly reared in estuaries which 

are continually contaminated by pollutants (6). Estuaries are also subjected to important 

variations of abiotic environmental factors, including temperature and salinity. C. gigas is an 

osmo- and thermo-conformer species (7). In oysters natural habitat, salinity fluctuates with 

tidal cycles, rainfall and with drainage from adjacent terrestrial sites (8). In summer period, 

temperature can reach high values. Oysters are sessile benthic animals and as such are 

continually exposed to physico-chemical modifications of the environment. Physical stress 

such as tidal exposure, which modify temperature and salinity, can affect marine invertebrate 

defence mechanisms (9).  

Bivalve defence mechanisms involve circulating blood cells, the so-called haemocytes (10). 

In C. gigas, two types of haemocytes can be differentiated on the basis of morphological 

features: hyalinocytes and granulocytes (10). Haemocytes constitute one of the main line of 

defence against non-self particles. They are involved in phagocytosis and encapsulation of 

foreign material (10-12). They also contain hydrolytic enzymes and produce reactive oxygen 
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species (ROS), which play a key role in pathogen degradation (13-15). They have been used 

as immune capacity indicators in many bivalve species (16-19).  

Studies have previously been conducted on the effects of temperature and salinity on bivalve 

haemocytes (20-23). Since bivalves are both osmo- and thermo-conformers, haemolymph 

readily acquires salinity and temperature of the external environment (7). In fact, haemocytes 

found in haemolymph and in tissue sinuses are exposed to temperature and salinity variations 

that occur in the environment. High water temperatures inhibit haemocyte spreading and 

locomotion in the eastern oyster, C. virginica (Gemlin) (24) while variations of temperature 

can also affect haemocyte counts and phagocytic activity  in Ostrea edulis and Ruditapes 

philippinarum (25, 26). On the other hand, elevated salinity increased the time for spreading 

and reduced haemocytes locomotion towards target particles and may therefore pose an 

additional stress (27) and may also reduce oyster defence capacities and leave them more 

susceptible to parasites (27). Moreover, the susceptibility of C. virginica to the protozoan 

parasites Perkinsus marinus and Haplosporidium nelsoni is influenced by temperature and 

salinity (24, 28, 29). 

In this study, the effects of temperature and salinity on Pacific oyster, C. gigas, haemocyte 

parameters were investigated. Haemocytes were subjected in vitro to a range of temperatures 

and salinity. In vivo experiments were also carried out by placing oysters in waters at defined 

salinities or in incubators at controlled temperatures. Haemocyte parameters were monitored 

using flow cytometry. This emerging tool has often been used in marine bivalve research to 

describe haemocyte population characteristics (30, 31) or changes associated with pathology 

or environmental stress (32, 33). Cell mortality, esterase, aminopeptidase activities and 

phagocytic activity were monitored.  
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 Material and Methods 

Oysters 

Eighteen month-old Pacific oysters, C. gigas, 7-10 cm in shell length, were produced in the 

IFREMER hatchery in La Tremblade (Charente-Maritime, France). Temperature experiments 

were conducted in April and May 2002 and salinity experiments were undertaken in July 

2004. For both experiments, oysters were held in tanks receiving a constant flow of external 

seawater.  

 

Haemocyte collection 

For temperature experiments, haemolymph was withdrawn from the pericardial cavity while 

for salinity experiments, haemolymph was collected from the posterior adductor muscle sinus. 

In both cases, a 1-mL syringe equipped with a needle (0.9x25 mm) was used. Haemolymph 

samples were filtered on a 60 µm mesh to eliminate debris and were maintained on ice to 

prevent aggregation. In order to reduce interindividual variation and to provide enough 

haemocytes for experiments, haemolymph samples were pooled.. Haemocytes counts were 

performed using a Malassez cell and the cell concentration was adjusted to 106 cells per mL 

with artificial seawater (ASW: 23.4 g NaCl, 1.5 g KCl, 1.2 g MgSO4 4 H2O, 0.15 g CaCl2 2 

H2O, 0.1.5 g CaCl2 anhydrous; H2O qsp 1L).  

 

Effect of temperature on haemocyte parameters 

Before each experiments, the oysters were acclimated in tanks receiving external seawater 

(temperature and salinity were 11.6°C-17.7°C and 31.5 ‰-32.3 ‰).  

In vitro experiments 

After collection of haemocytes and resuspension in ASW, antibiotics (kanamycin, 

erythromycin, oxolinic acid, 0.1 mg.mL-1) were added. Haemocytes were incubated for 2 h 
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and 4 h at varying temperatures (4°C, 11°C, 20°C, 25°C, 35°C, 40°C, 50°C and 60°C). Cell 

mortality, phagocytic activity , esterase and aminopeptidase activities were monitored by flow 

cytometry as described below. Experiments were carried out in triplicates. 

 

In vivo experiments 

Five oysters were emersed during 4 hours in incubators at different temperatures (4°C, 11°C, 

20°C, 25°C, 35°C, 40°C, 50°C and 60°C). Haemolymphs were then withdrawn and pooled 

from five oysters without any treatment. Cell mortality, phagocytosis, esterase and 

aminopeptidase activities were analysed by flow cytometry as described below. Experiments 

were carried out in triplicates. 

 

Effect of salinity on haemocyte parameters 

Before each experiments, the oysters were acclimated in tanks receiving external seawater 

(temperature and salinity of external seawater were 18.7°C-19°C and 33.9 ‰-34.5 ‰).  

In vitro experiments 

After collection, haemocytes were divided into eight tubes, and centrifuged (10 min, 100 g, 

4°C; Microfuge Beckman). The cells were resuspended in haemolymph only in tube 1. The 

cells from tubes 2 to 7, were resuspended in a haemolymph-distilled water mixture in order to 

obtain a range of decreasing salinity (tube 2: 29 ‰, tube 3: 25.5 ‰, tube 4: 22.5 ‰, tube 5: 

16 ‰, tube 6: 6.5 ‰, tube 7: 3 ‰). The cells from tube 8 were resuspended in distilled water 

(0 ‰). 

Cell mortality was monitored using flow cytometry after 2 h and 18 h at 15°C. Experiments 

were carried out four separate times. 
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In vivo experiments 

In the first experiment, 40 oysters were placed in three tanks at 15 ‰ (hyposalinity), 35 ‰ 

(control) and 45 ‰ (hypersalinity), respectively. Hyposalinity was obtained by mixing 25 L 

of seawater and 15 L of freshwater. Hypersalinity was obtained by the addition of 516 g of 

aquarium sea salts (Instant Ocean Aquarium Systems, synthetic sea salts without nitrate and 

phosphate, Haurit, Saintes, France) in 40 L of seawater. Oysters were fed with Chaetoceros 

gracialis (3.109 cells per tank). Water and food were provided every day. Temperature of 

external seawater was maintained between 18.7°C-19°C during the experiments which lasted 

7 days. Sampling of ten oysters per tank were then performed at day 1, 3 and 7. Ten oysters 

were also analysed at the beginning of the experiment. At each time, the oysters were divided 

in three pools. Cell mortality and phagocytosis were analysed by flow cytometry as described 

below.  

A second experiment was conducted using the same protocol as previously described with the 

following differences: :oysters were maintained at 5 ‰ (hyposalinity), 35 ‰ (control) and 60 

‰ (hypersalinity). Hyposalinity was obtained by mixing 35 L of freshwater and 5 L of 

seawater. Hypersalinity was obtained by adding 1219 g of aquarium sea salts (Instant Ocean 

Aquarium Systems, synthetic sea salts without nitrate and phosphate, Haurit, Saintes, France) 

in 40 L of seawater.  

 

Flow cytometry analysis 

The protocols used in the present study were previously described (34). For each sample, 3 

000 events were counted using an EPICS XL 4 (Beckman Coulter). Results were depicted as 

cell cytograms indicating cell size (FSC value) and cell complexity (SSC value) and the 

fluorescence channel(s) corresponding to the marker used. Recorded fluorescence depended 

on the monitored parameters: enzymatic activities and phagocytosis were measured using 
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green fluorescence while cell mortality was measured using red fluorescence. Mortality was 

quantified using 200 µL of haemocyte suspension. Haemocytes were incubated in the dark for 

30 min at 4°C with 10 µL of propidium iodide (PI, 1.0 mg.L-1, Interchim). Esterase and 

aminopeptidase activities were evaluated with commercial kits (Cell Probe TM Reagents, 

Beckman Coulter). Each analysis required 200 µL of haemolymph and 20 µL of the 

corresponding kit (FDA•Esterase and A•Aminopeptidase M). Haemocytes were incubated in 

the dark at ambient temperature 15 min for esterases and 30 min for aminopeptidases. 

Phagocytosis was measured by ingestion of fluorescent beads. Two hundred µL of haemocyte 

suspension were incubated 1 h in the dark at ambient temperature with 10 µL of a 1/10 

dilution of Fluorospheres ® carboxylate-modified microspheres (diameter 1 µm, Interchim).  

 

Statistical analysis 

Results were expressed as percentage of positive cells. In order to detected an effect of tested 

conditions, an ANOVA was performed using Statgraphics ® Plus version 5.1 software.  To 

ensure respect of a priori assumptions for normality and homogeneity, values were converted 

into r angular arcsinus √ (% of positive cells) before analysis and .in the case of rejection of 

H0, an a posteriori test was used. Significance was concluded at p ≤ 0.05. 
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Results 

Temperature effects 

In vitro experiments 

After a 2 h incubation period, cell mortality significantly increased at 40°C (Figure 1, 

p<0.001),while after a 4 h incubation period, mortality was significantly higher at 50°C and 

60°C (Figure 1, p<0.001). Percentages of aminopeptidase positive cells were significantly 

lower for both incubation periods at 50°C and 60°C (Figure 2). Percentages of esterase 

positive cells were significantly lower after a 2h incubation period at 50°C and after a 4h 

incubation period at 50°C and 60°C (Figure 3).  

 
Figure 1: Haemocyte mortality percentage of oysters evaluated by flow cytometry after an in vitro 2 h or 4 h 
incubation period at several temperatures (4°C, 11°C, 20°C, 25°C, 35°C, 40°C, 50°C and 60°C). Values are 
mean of three replicates. Bars represent standard deviation. ***: p<0.001. 
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Figure 2: Percentage of positive cells for aminopeptidases of oysters evaluated by flow cytometry after an in 
vitro 2 h or 4 h incubation period at several temperatures (4°C, 11°C, 20°C, 25°C, 35°C, 40°C, 50°C and 60°C). 
Values are mean of three replicates. Bars represent standard deviation. *: p<0.05, ***: p<0.001. 
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Figure 3: Percentage of positive cells for esterases of oysters evaluated by flow cytometry after an in vitro 2 h or 
4 h incubation period at several temperatures (4°C, 11°C, 20°C, 25°C, 35°C, 40°C, 50°C and 60°C). Values are 
mean of three replicates. Bars represent standard deviation. *: p<0.05, ***: p<0.001. 
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In vivo experiments 

Cell mortality significantly increased at 40°C, 50°C and 60°C (Figure 4, p<0.001). The 

percentage of esterase positive cells was significantly lower at 4°C and 60°C compared to 

other temperatures (Figure 4, p<0.001) and phagocytosis activity decreased at 60°C (Figure 4, 

p<0.001).  

Figure 4: Haemocyte mortality percentage, phagocytosis percentage and percentage of positive cells for 
esterases of oysters evaluated by flow cytometry after an in vivo 4 h incubation period at several temperatures 
(4°C, 11°C, 20°C, 25°C, 35°C, 40°C, 50°C and 60°C). Values are mean of three replicates. Bars represent 
standard deviation. **: p<0.01,  ***: p<0.001. 
 

 

 

 

0
10
20
30
40
50

60
70
80
90

100

 4°C 11°C 20°C 25°C 35°C 40°C 50°C 60°C

Temperature

Pe
rc

en
ta

ge Mortality
Phagocytosis
Esterases

*** 

*** *** 

*** 

*** 

*** 

 

 

 

 

 

 

 

 

 

Salinity 

In vitro experiments 

After a 2 h incubation period, cell mortality was significantly higher for lower salinities (6.5 

‰, 3 ‰ and 0 ‰) (Figure 5, p<0.001) in contrast with the percentage of esterase positive 

cells which was significantly lower (Figure 6, p<0.001). After a 18 h incubation period, 

mortality was significantly higher for 3 ‰ and 0 ‰ (Figure 5, p<0.001) and esterase 
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percentage of positive cells was significantly lower for the same salinities (Figure 6, 

p<0.001). 

 
Figure 5: Haemocyte mortality percentage of oysters evaluated by flow cytometry after an in 
vitro 2 h or 18 h incubation period at different salinities (32 ‰, 29 ‰, 25.5 ‰, 22.5 ‰, 16 
‰, 6.5 ‰, 3 ‰ and 0 ‰). Values are mean of four replicates. Bars represent standard 
deviation. ***: p<0.001. 
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Figure 6: Percentage of positive cells for esterases of oysters evaluated by flow cytometry after an in vitro 2 h or 
18 h incubation period at different salinities (32 ‰, 29 ‰, 25.5 ‰, 22.5 ‰, 16 ‰, 6.5 ‰, 3 ‰ and 0 ‰). 
Values are mean of four replicates. Bars represent standard deviation. ***: p<0.001. 
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In vivo experiments 

No mortality was noted during the first experiment. After one day, phagocytosis activity was 

significantly lower in oysters placed in hyposalinity compared to the two other conditions 

(Figure 7, p<0.05). After three and seven days, phagocytosis activity was significantly lower 

in control oysters than in the two other conditions (Figure 7, p<0.01). Two-way analysis of 

variance showed that phagocytosis activity was significantly lower in control oysters than in 

oysters placed in hypersalinity (p<0.05). Cell mortality showed no variation in relation with 

salinity condition (data not showed). 

In the second experiment, a high daily mortality was reported in hypo- and hypersalinity 

conditions (Figure 8). Oyster mortality appeared on day 3 for both conditions (15 % of 

mortality in hyposalinity, 25.9 % of mortality in hypersalinity, Figure 8). Highest mortality 

levels were observed on day 6 (55.5 % of mortality in hyposalinity, 66.6 % of mortality in 

hypersalinity, 0 % of mortality in the control, Figure 8). Cell mortality and phagocytosis 

activity showed no effect related to salinity conditions during the first three days of 

experiment (data not shown). 

 
Figure 7: Phagocytic activity of oysters evaluated by flow cytometry after an in vivo exposure to 15 ‰ 
(hyposalinity), 35 ‰ or 45 ‰ (hypersalinity) during seven days. Values are mean of three pools. Bars represent 
standard deviation. *: p<0.05; **: p<0.01. 
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Figure 8: Daily mortality of oysters after an in vivo exposure to 5 ‰ (hyposalinity), 35 ‰ or 60 ‰ 
(hypersalinity) during seven days. 
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Discussion 

In the present study, flow cytometry was used to demonstrate effects of two abiotic factors 

(temperature and salinity) on haemocyte parameters of the Pacific oyster, C. gigas. Flow 

cytometry has been shown to be an efficient tool for analysis of haemocytes in various 

mollusc species (31, 33-35). However, relatively few studies have used this tool for 

monitoring effect of temperature and salinity on haemocyte parameters (22, 36).  

Pacific oysters were exposed to varying regimes of temperature and salinities in order to 

assess their sensitivity to abiotic factors including temperature and salinity. In in vitro 

experiments, we have demonstrated that while high temperatures induced hemocyte mortality, 

hemocytes can tolerate a temperature of 35°C without presenting any mortality. In contrast, a 

4 h in vivo incubation period at 40°C, 50°C and 60°C increased cell mortality of oysters. 

Esterase activity was decreased at 4°C and 60°C and phagocytosis was decreased only at 

60°C. This was consistant with the decreased phagocytosis activity of Ostrea edulis 

haemocytes (25) and of C. virginica haemocytes (22, 36) as well as with the increased cell 

mortality of C. virginica haemocytes (22, 36) following temperature elevation. However, the 
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decrease of enzymatic activities was predictable, as hemocytes presented mortality which is a 

consequence of morbidity. In Marennes-Oleron Bay (Charente-Maritime, France), 4 hours 

correspond to the time of exondation between low tide and high tide. The temperature in the 

field may often reach 40°C during summer period (37). Since oysters often encountered these 

extreme conditions, they may have become tolerant and thus the effect of high temperature 

may have been masked. In addition, oysters are thermo-conformers and our results confirm 

that oyster hemocytes can adapt to elevated temperatures.  

In vitro decrease of salinity also induced an increase of cell mortality. However, as mentioned 

before, the decrease of enzymatic activities was predictable, as hemocytes presented 

mortality. Salinity variations also reduced haemocyte activities of C. virginica haemocytes in 

other studies (24, 27). However, oyster haemocytes are able to synthesize osmotic shock 

protein therefore protecting themselves from acute salinity variations (8). The relationships 

between in vitro measurements of haemocyte activities and the ability of marine bivalves to 

develop accurate defence in the field have not been established. In vitro measurements do not 

represent in vivo or in situ conditions (25).  

In vivo experiments involving salinity were also conducted. In the first experiment, 

phagocytosis activity was enhanced at high both salinity (45 ‰) and low salinity (15 ‰). 

Another study reported a decrease of phagocytosis in Ruditapes philippinarum associated 

with an increase of salinity (38). These results indicate that salinity may modulate phagocytic 

activity. In the second experiment, oysters were reared at 5 ‰ and 60 ‰, and both conditions 

induced high mortality. However, those values are distant from the range of salinity reported 

in Marennes-Oleron Bay (21-34 ‰), where C. gigas are reared (37). Oysters may not be able 

to acclimate to high salinities. However, a part of oysters are reared in “claires” (oyster 

pounds), a confined zone, where salinity may decrease to 15 ‰ after rainfalls (Soletchnik, 

personal communication).  

 15



C. gigas have been successfully introduced in many countries over the world since the 1950s 

(1, 39). We can therefore conclude that this species is naturally subjected to important 

variations of environmental conditions and can acclimate to them. Moreover, our results 

clearly demonstrated that only extreme values of temperature and salinity can modify 

haemocyte activites of C. gigas. Haemocytes are apparently resistant cells because only high 

values of temperature and salinity kill them. This phenomenon has already been observed 

with pollutant exposure: only high concentrations of mercury chloride were able to kill 

haemocytes after 4 h of in vitro contact (40). 

 

These results could lead us to study possible interactions between the effects of abiotic factors 

and pollutants or susceptibility to infections. Most of the studies conducted on abiotic factors 

including temperature and salinity on bivalve defence functions pointed on to the 

relationships between abiotic factors and diseases. The virulence of infectious agents in the 

field has been correlated with high salinities and temperatures (41). Prevalence and intensity 

of Perkinsus marinus in C. virginica is positively correlated to salinity (29) and to 

temperature (42), suggesting that parasite virulence may be increased or oyster resistance may 

be decreased at high salinities (43) and high temperatures.  

Viral infection may also be influenced by temperature and salinity. In the hard clam, Meretrix 

lusoria, birnavirus has proved to be more pathogen to young stages when a rapid increase of 

water temperature occurs (44). Moreover, herpes virus affecting the Pacific oyster, C. gigas, 

may exist as a latent form or low productive infection and temperature elevation can declare 

the disease into the whole organism for larvae and spat (45, 46). 

In vivo acute variations of temperature and salinity increase could temporarily affect the 

ability of shellfish haemocytes to resist foreign invasion (25). Temperature and salinity appear 

to be key factors modulating the host immune defence in invertebrates and influences the 
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severity of disease in several bivalve species, particularly during young stages (47). Their role 

in massive mortalities affecting different invertebrate species of economic interest must be 

taken into account. The interactions between temperature, salinity, pollutants and pathogens, 

added with all other environmental factors (pH, dissolved oxygen) could represent scraps of 

explanation of summer mortality phenomenon in C. gigas. In this context, experiments 

studying relationships between modulation of abiotic factors and infectious agents (including 

bacteria or OsHV-1) could be conducted in the future. 
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