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Abstract:  
 
The reconstruction of individual life histories from chemical otolith measures is stated as an 
unsupervised signal-processing issue embedded in a Bayesian framework. This computational 
methodology was applied to a set of 192 European eel (Anguilla anguilla) otoliths. It provided a robust 
and unsupervised analysis of the individual chronologies of habitat use (either river, estuary, or 
coastal) from Sr:Ca measures acquired along an otolith growth axis. Links between Sr:Ca values and 
habitat, age, and season and the likelihood of the transitions from one habitat type to another were 
modelled. Major movement characteristics such as age at transition between habitats and time spent 
in each habitat were estimated. As a straightforward output, an unsupervised classification of habitat 
use patterns showed great variability. Using a hidden Markov model, 37 patterns of habitat use were 
found, with 20 different patterns accounting for 90% of the sample. In accordance with literature, 
residence behaviour was observed (28% of the eels). However, about 72% changed habitat once or 
several times, mainly before age 4. The potential application of this method to any other measures 
taken along an otolith growth axis to reconstruct individual chronologies gives a new insight in life 
history tactics analysis. 
  
 
Keywords: individual life histories, fish otoliths, Bayesian labeling, Gaussian mixture models, hidden 
Markov models, otolith microchemistry. 
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Introduction 

The recent bloom of ecology studies using otolith microchemistry emphasises the remarkable 

use of otolith 

 between the 

 environment 5 

e, sequential 

elemental measures acquired along an otolith growth axis are thought to record environmental 

information along the fish lifespan. River basin origin have been inferred from strontium 

hile salinity 

). With more 10 

most popular 

 water masses 

of different salinity for at least 20 fish species. To date, more than 28 published studies have 

exploited strontium calcium ratios for the analysis of life histories of eels species (Anguilla 

 and costly 15 

rather than a 

easures were 

rmalised, the 

treatment of sequential Sr:Ca measures of eel otoliths data consisted in calculation of the 

mean values of each individual eel (Tsukamoto and Arai 2001, Tzeng et al. 2002). For 20 

 assigned to a 

specific water mass according to the mean value of Sr:Ca measures. This is questionable as 

each Sr:Ca otolith measure is a specific indicator of a water mass so that the mean of two 

different water masses has no ecological meaning. Besides, the temporal dimension of the 

data was lost. Other studies interpreted directly individual Sr:Ca transects values plotted 25 

potential of the otolith accuracy for investigating fish life history traits. The 

chemistry to trace migration pathways is premised on a significant correlation

elemental composition of otoliths and physicochemical properties of the ambient

(Campana 1999; Martin and Thorrold 2005; Thorrold et al. 1997). Henc

isotopes ratios (Milton and Chenery 2003; Thorrold and Shuttleworth 2000), w

level has been inferred from ratios of strontium on calcium (Tzeng et al. 1994

than 200 research articles published, strontium calcium ratios became the 

microchemistry application to fish ecology, as a tool to track movements across

spp). Data acquisition of otolith microchemistry remains technically, timely

demanding. Hence, the challenge has first been a matter of data acquisition 

matter of data interpretation. So far, most otolith microchemistry transects of m

interpreted by a visual evaluation of each individual signal. Whenever fo

instance, Tzeng et al. 2002 classified eel life histories from the number of years



against age class graphs, with Sr:Ca values assigned to a water mass according to their level 

(Morrison et al. 2003). This was not either satisfactory, as, due to the non-linearity of the 

 than the 

sects result in 

ssification of 5 

count for the 

actual diversity observed in the processed dataset ( Tzeng et al. 2002, Daverat and Tomas in 

press). For instance, a  large data set of 270 eel Sr:Ca transects was classified with a 

ividual curve 

fe histories defined a priori, the classification 10 

l. While time 

It emerged from this overview of previous work a need for an unsupervised and well-founded 

computational method that could at the same time account for the temporal nature of the 

r:Ca ratio) in 15 

al processing 

 studies have 

ing purposes 

(Troadec et al. 2000; Fablet 2005) or other issues such as stock discrimination (Campana and 

Casselman 1993), or fish individual status (Cardinale et al. 2004). Within a signal processing 20 

framework, each Sr:Ca measure is associated with a hidden state variable standing for an 

environmental information (in our case, an habitat and the associated water mass), and the 

temporal nature of the sequence of Sr:Ca measures can be restored from the otolith growth 

pattern. Formally, the reconstruction of the individual patterns of habitat use is stated as the 

Bayesian reconstruction of the temporal sequence of the hidden state variables from the 25 

otolith growth pattern, the first years of the fish life have a greater spatial resolution

last years of the fish life. As a consequence, evenly spaced Sr:Ca measures tran

non equal number of measures for each year of the fish life. In addition, the cla

individual migratory behaviours relied on  a priori classes, which may not ac

supervised method accounting for the mean and the variations of each ind

(Daverat and Tomas in press). From classes of li

of the eels resuled from a visual interpretation of the associated Sr:Ca signa

consuming, such a scheme also appears rather subjective.  

sequential measures and infer a relevant interpretation of the chemical signal (S

terms of environmental information (here the habitat visited by the fish). Sign

methods appeared as a promising tool to tackle this issue. Multidisciplinary

already applied signal processing techniques to process fish otolith data for age



observed sequence of Sr:Ca signatures. The proposed scheme mainly relies on Gaussian 

mixture models and hidden Markov models. All these developments were implemented under 

 method was 

 in terms of 

 a method for the treatment of 5 

sequential measures taken on an otolith growth axis is further discussed. 

Data sets 

r:Ca 10 

in three main 

5 eels (60%) 

in the estuary habitats and 14 eels (7%) in the coastal habitats. The aim of this study was to 

characterize the habitat use patterns of eels from the Gironde river basin, during their 

continental growing phase as a yellow eel. Sr:Ca ratios transects were used to track the eels 15 

e part of the 

el mark to the 

 consisted in 

a concentrations in 8 µm diameter spots, evenly 

spaced every 20 µm along the otolith longest growth axis from the glass eel mark to the edge 20 

of the otolith. Along this transect of Sr:Ca measures, the position of each annual age mark 

Calibration over time of Sr :Ca series . 

The interpretation of the macrostructures, so-called “rings”, laid annually (Berg 1985) 

observed on the otoliths along the longest growth axis, provided an estimation of individual 25 

growth patterns. The elver mark was set as the origin of the time axis and only the interval 

Matlab 7 using Netlab (Nabney 2001) and CRF (Murphy 2004) toolboxes. This

applied to the interpretation of 192 eel otolith Sr:Ca transects of measures

individual habitat use histories. The generalisation of such

 

Material and Methods 

An eel ecology study (Daverat et al. 2005), led to the acquisition of 192 individual eel S

series. The fish samples were collected in the Gironde river basin SW France 

habitats (water masses). 63 eels (33%) were collected in freshwater habitats, 11

movements across freshwater, brackish and marine habitats. Hence, only th

otolith corresponding to the continental life of the eel was retained (from glass e

edge). The acquisition method was described in Daverat et al. (2005), and

electron microprobe measures of Sr and C

was recorded as a distance from the glass eel mark. 



between the elver mark and the edge was taken into account, as the ecological issue was the 

continental habitat use pattern of the eel after the glass eel stage until the time of capture. 

ith respect to 

e series was 

). In the 5 

e will refer to this time axis as the age axis, since it refers to the time spent from 

the elver mark. 

The actual temporal resolution of the Sr:Ca series depends both on the sampling resolution of 

s experiment 

nd for young 10 

growth years, 

due to slower 

growth. Therefore, the results issued from the analysis of interpolated Sr:Ca time series need 

to be cautiously analyzed in terms of temporal precision, especially for the last years of the 

15 

of the habitat 

type for eels of the Gironde watershed. Three habitat categories were considered according to 

salinity compartment: river, estuary and marine habitats. We further modelled the distribution 20 

of Sr:Ca signatures for each habitat as a Gaussian distribution parameterized by a mean model 

and a standard deviation.  

Different models could be chosen. In this study, two different cases were investigated. The 

first one was a constant model parameterized by a mean value. In order to test for the 

influence of seasonality and age on the incorporation of strontium, a linear model with two 25 

Annual rings were used as time references to transform Sr :Ca series acquired w

the distance to the elver mark to time series using a linear interpolation. The tim

interpolated at a monthly precision (that is to say a time sampling rate of 1/12

following, w

the electron microprobe and obviously of the otolith growth rate. In a previou

(Daverat et al. 2005), a mean otolith growth rate of 20 µm per month was fou

individuals, so that  about 11 Sr:Ca measures are usually sampled for the first 

whereas from the 6th year fewer measures (down to 3 or 4) may be available 

life of the older individuals. 

 

Determination of habitat-related Sr:Ca model 

Following Daverat et al. (2005), Sr :Ca measures can be regarded as a proxy 



explanatory variables (fish age and month) was also considered. Formally, let us denote by 

g(.|ΘH,σH) the Gaussian distribution of Sr:Ca measures for habitat H, parameterized by the 

ard deviation σH. Using a constant model   ΘH=mH, g(.|mH,σH) is 

computed for a Sr:Ca measure y as: 

mean model ΘH and the stand

( ) 
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Considering a linear model, ΘH is explicitly defined by the mean value mH, the effect of the 

age λA and the effect of the season λS. For a Sr:Ca measure y at age a and hydrological season 

s (normalized average monthly flow), the associated likelihood g(y|a,s,ΘH,σH) is given by: 
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The constant model is a particular case of the linear model with λ =λ =0. 

uld note that no labelled data is available to perform this estima

a mixed set of Sr:Ca measures {yi} associated with unknown habitats (with

considered ones). The estimation of the parameters of the hab

{ ,Θ

A S Hence, in the 10 

subsequent, we will only detail the developments for the latter. 

As a first step, we aim at determining for each habitat type H the associated model parameters 

(ΘH,σH). One sho tion, but only 

in the three 

itat models 15 

} { }MERHHHH ,,, ∈σπ  is then stated as an unsupervised issue. To this end, given the Sr:Ca 

measures {yi} relative to explanatory variables {ai,si}, the whole distribution of {yi} is 

ussian habitat modelled as a Gaussian mixture issued from the superimposition of the three Ga

models: 

{ } { }( )
{ }
∑

∈
∈ Θ=Θ

MERH
HHiiihMERHHHHiii saygsayp

,,
,, ),,,(,,,, σπσπ , 20 

where R, E and M stand for the labels relative to the three habitats: respectively, river (R), 

estuary (E) and marine area (M). πR, πE, πM are the prior probabilities for each habitat. Given 



{yi} and {ai,si}, we aim at estimating the parameters of the mixture model {πH, ΘH, σH}H ∈ 

{R,E,M} such that { } { }( )MERH ,,∈

according to the maximum likelihood (ML). This model estimation is carried 

EM (Expectation-Maximization) alg

HHHsayp ,,,, Θ σπ  best fits to the distribution of the dataset {yi} 

out using the 

orithm (Bishop 1995). The computations involved in this 

5 

ing the mean 

values of the Gaussian modes. We rely on the statement that the lower the salinity of the 

habitat the lower the mean Sr:Ca measure (Fig. 1). 

h mode was 

 influence of 10 

 between the 

contributions of each group of predictors permited to evaluate the relative importance of 

habitat, season and age (Silber et al. 1995). These statistical tests were performed with R 

15 

ries of Sr:Ca 

measures as illustrated (Fig.2). This issue resorts to the estimation of the temporal sequence of 

the habitat-related path and is formally stated as a Bayesian labelling issue, that is to say 20 

retrieving the temporal habitat sequence {x } corresponding to a given observed series of 

Sr:Ca measures {yt}, where, for each time t, xt is a label: R (river), E (estuary) or M (Marine 

area).  

Within a Bayesian framework, this labelling issue comes to the determination of the best 

sequence  according to the Maximum A Posteriori (MAP) criterion, that is to say 25 

iterative procedure are detailed in Annex I. 

The estimated mixture parameters are finally assigned to each habitat by sort

The goodness of the fits of the constant model and the linear model for eac

compared with AIC (Akaike Information Criterion) method (Awad 1996) and the

age and season on Sr:Ca value was tested according to correlation statistics

model prediction and the data (McCullagh and Nelder 1989). The comparison of the 

software (RDevelopmentCoreTeam 2005). 

 

Estimation of individual habitat use from Sr:Ca series 

Our goal was to analyze the individual patterns of habitat use from the se

t

( )Txx ˆ,....,ˆ0



retrieving the temporal sequence of habitat categories corresponding to the maximum 

posterior likelihood given the acquired series of Sr:Ca measures: 

( ) ),...,,...,(minargˆ,....,ˆ 00),...,(0
0

TTxxT yyxxpxx
T

=   

Eq. 1

solutions are 5 

measures {yt} and labels {xt} are statistically 

independent. Equation (2) reduces for each time t to: 

 
Further assumptions are required to solve for this minimization issue. Two 

investigated. First, assuming that Sr:Ca 

{ }
)(minˆ

,, ttMERHt yHxpx ==
∈

 arg

Eq. 2 

Using the estimated Gaussian mixture model { } { }MERHHHH ,,,, ∈Θ σπ , the posterior likelihood 10 

function )( tt yHxp =  is computed as: 

{ }( ){ }
)

{ }∈

=Θ=

MERH
H

HHiiiHsayHxp

,,
2221

111,,,,,
σ

σπ  
(

(∑∈ Θ

Θ

HiiiH
MERHHHHiiii sayp

sayp
,,1

2

,,,
,,,

π
σπ

This first model is however rather simplistic and does not explictily model fish m

among habitats. To account for these temporal dynamics, first-order Gaussian h

models (Rabiner 1989) are used. These models were initially developed and 

speech analysis. As il

)

ovements 

idden Markov 

exploited for 15 

lustrated (Fig. 3), two main components are involved: a prior on the 

temporal dynamics of the state variables {xt} which models fish movements from xt-1
 to xt and 

a data-driven term characterizing the probabilistic distribution of the observed Sr:Ca measures 

y  given the habitat type x .  

The temporal prior is stated as a first-order Markov chain. This resorts to the assumption that, 20 

given the sequence of state variables (x0, x1, ..., xt-1) from time 0 to time t-1, the state variable 

at time t only depends on xt-1. It means that this model only keeps the memory of its last state 

to jump to the next one. Formally, this leads to the property that 

t t



)(),,...,( 1011 −− = tttt xxpxxxxp . Consequently, a first-order Markov chain is fully 

characterized by its transition matrix Γ: 

),()( HHHxHxp Γ=== 21211 tt −

which specifies the likelihood that the fish is in habitat type H1 at time t give

habitat type H  at time t-1. The graphical representation of the transition matr

(Fig stress that some transitions may be forbidden, that is to say pair o

sequence involving

, 

n that it is in 

2 ix is provided 5 

. 4). Let us f habitats for 

which  (for instance, the transition from A to C in Fig. 4). However, this does 

not prevent from reaching one state from another by going through other states, if there is a 

 several transitions with a non-null likelihood. For instance as illustrated 

 to C going 10 

In addition to the prior component, the data-driven model actually specifies the computation 

of the likelihood p(yt|xt) of a given measure given its state value. This model resorts to the 

characterization of the probabilistic distribution of the observed measures for each state. From 

the Gaussian mixture models of Sr:Ca measures, likelihood p(yt|xt) is formally defined as: 15 

0),( 21 =Γ HH

(Fig. 4), whereas direct transitions from A to C are impossible, paths from A

through B are possible. 

( )saygHxyp σ,,,),( Θ=Φ= HHttt1

where denotes the set of habitat-related Sr:Ca models

, 

{ } { }MERHHH tt ,,
,

∈
Θ=Φ σ . 

To exploit this Gaussian hidden Markov model, we first need to estimate the parameters of 

the prior term. Similarly to the estimation of the parameters of the Gaussian mixture model, 

etermine the 20 

transition matrix associated with the maximum likelihood for the whole set of samples: 

this estimation is performed according to the ML criterion which resorts to d

∏ Γ=Γ
Γ i

i
T

ii
T

i yyxxp ),,...,,...,(maxargˆ
00  

This maximization issue is solved for using the EM algorithm. We let the reader refer to 

Rabiner (1989) for a detailed description of this estimation procedure. We only review its 



main characteristics. This procedure iterates two steps until convergence. Given the current 

estimate Γk of the transition matrix, the Expectation step resorts to the computation of the 

posterior likelihoods: 

),,...,,.()( 0112
21

ki
T

ii
t

i
t

i

HH
yyHxHxpt Γ=== −ξ , 

1

i
),,...,.()( 01

ki
T

ii
tH

yyHxpt Γ==γ . 5 

The M-step follows to update the transition matrix  Γk+1 from these posterior likelihoods as 

their average over the whole dataset: 

∑∑

∑∑

= =i

i

N T i

HH

i

i

t

t

)(

)(

γ

ξ
= ==Γ

N T

t
H

i tHH

1 0

1 0
21 ),(

1

21 . 

Given the estimate of the parameters of the hidden Markov model, the determ

optimal MAP sequence ( )xx ˆ,....,ˆ  defined by  is solved exactly by

o al MAP sequence is the optimal habitat sequence for th

ination of the 

Eq. 2  the Viterbi 10 

algorithm (Rabiner 1989). This algorithm relies on the fact that any subsequence of the 

ptim e corresponding sequence of 

Sr:Ca measures. It involv putations similar to the forward procedure of the EM scheme. 

More precisely, it first com (from time 0 to time T) the likelihood, denoted 

by 

T0

es com

putes recursively 

)(tδ , of the most lik t sequence leading to habitat H at time t: 15 ely habitaH

),,,...,,,....,(max 10,...,
ΓΦ=−

−

Hxxxyyp ttOtxx
. 

At the final step of the forward procedure (i.e., time T), the habitat label maxim )(THδ  

ively the 

s to the 

efer to

provides the optimal habitat . A backward procedure then reconstructs recurs

optimal habitat sequence  by retrieving the state H1 at time t-1 which lead

reconstructed state  t with the maximum likelihood. We let the reader r  20 

Tx̂

,....,

e

 ( )Txx ˆˆ0

 at timtx̂

)(
1

=tH
tO

δ

izing 



Rabiner (1989) for a detailed description of the Viterbi algorithm and of the associated 

computations. 

ovements is 5 

ntitative and 

unsupervised categorization of the observed movement patterns. The movement pattern is 

defined as the sequence of the successive habitats visited by the fish. This sequence is defined 

attern issued 

e otolith set, the 10 

iours can be 

atterns.  

Since the habitat sequences are calibrated over time, a variety of measures can also be defined 

to characterize individual life traits. We focus on the analysis of the time at which the 

transitions from one habitat to another occur, and of the time spent in a given habitat between 15 

two transitions. For a given type of transition from habitat type H1 to habitat type H2 (i.e., 

within the set of transitions {R to E, R to M, E to M, E to R, M to R, M to E}), the whole set 

of habitat sequences 

 

Analysis of habitat sequences 

Given the set of the individual habitat sequence, a quantitative analysis of fish m

carried out. First the global analysis of the habitat sequences delivers a qua

by the quality and the order of the visited habitats: for instance, the movement p

from habitat sequence RRRREEEERRRRR is RER. Given the whol

automated and unsupervised classification of individual movement behav

determined, as well as the relative frequencies of these categories of movement p

( ) { }{ }
{ }NiTt i ,...,1,...,0 ∈

H1 to H2. These transitions are characterized by their transition times 

i
tx ∈  is analyzed to extract the set of all the transitions from 

{ }n
HHt

21
 and the times 

spent in H2 { }n
HHD

21
.

µ

 The 

e si

 and a set of quantities {w

statistical distributions of these quantities are then com

non-parametric techniqu nce they are clearly multimodal. More precisely, 

puted using a 20 

given a scale 

parameter n}, the likelihood p(w puted as: ) is com

( )− nww 2)(µ

tion times 

∑ −
n

exp

i

=
Z

wp 1)(

statistics of trans

, where Z is the normalization factor. putation of the  The com

{ }n
HHt

21
 is performed in terms of age, month and age group at 



which the transitions occur. Scale parameter µ is set to 1 for quantities given as monthly 

values and age groups and to 1/102 for quantities given as ages. 

45167) has a 5 

ue of 46465). 

Habitat, age and hydrological season (river flow) factors all had a significant influence on 

Sr/Ca values for each habitat (p<0.001) (Table 1). 

The comparison of the relative contribution of the habitat factor with the contribution of both 

f SrCa values 10 

I 4.38-4.79], 

l. 1995). Since the effect of age and season is significant in terms p-statistics, we 

report the results of the analysis of the individual chronologies of habitat with respect to the 

linear model. 

 15 

odel and the 

ig. 5). As the 

e associated habitat sequences 

may be chaotic and may involve numerous short and unlikely transitions. On the contrary, the 20 

explicit modelling of fish movements between habitats thanks to the estimated transition 

odel. 

Consequently, this model was chosen to further characterize life traits from the estimated 

habitat sequences. Eels sampled in the Gironde watershed displayed a wide repertoire of 

habitat use patterns, such as residences all life long in the same habitat as defined in the model 25 

(river, estuary, marine area) or as single or multiple shifts among habitats (Fig. 6).  

Results 
Comparison between constant and linear models. 

The linear model accounting for habitat, age and season effects (AIC value of 

better performance than the model only accounting for habitat effect (AIC val

age and season factors revealed that habitat contributes more to the variation o

than age and season with a ratio of effect standard deviations of 4.58 [95%C

(Silber et a

Individual chronologies of habitat use.  

The comparison of the habitat sequences issued from the Gaussian mixture m

hidden Markov models showed the improvements brought by the latter one (F

Gaussian mixture models do not account for time coherence, th

matrix leads to the smoother results reported for the hidden Markov m



 

 

 of movement 

ur analysis is 5 

rns up to age 

6. As illustrated, 37 patterns are represented (Fig. 7). While only the first 20 patterns account 

for more than 80% of the samples, the first five patterns occur with a frequency greater than 

This resident 

ment patterns 10 

 6.5% of the 

a. While 33% 

of the sample was collected in the river, only 14.3% of the samples are labeled as residents in 

the river habitat. Similarly, the reported categorization leads to only 7.8% of residents in the 

 the estuary. 15 

ll as patterns 

nly between 

eably, up to 5 

successive migrations between the river and the estuarine area can be observed for the same 

individual before age 6. Fewer samples involve migrations among the three habitats. 20 

However, about 9% of the samples are associated to patterns including a first migration from 

the river to the estuarine area, and then one or several movements between the estuarine and 

the marine areas. Conversely, very few individuals (below 2%) move from the marine area to 

the river after a stay in the estuarine area. 

 25 

Analysis and classification of movement patterns 

From the overall analysis of the reduced habitat sequences, the different classes

patterns associated with the considered dataset were automatically determined. O

restricted to fish older than four years and take into account the movement patte

5%. Among the first four patterns, three correspond to resident behaviour. 

behaviour however account for only  28% of the samples and 72% of the move

involve at least one movement. Residents in the marine habitat account for

sample which is quite consistent with the 7% of fish collected in the marine are

estuary area while our sample is composed of 60% of fish collected in

Concerning migration behaviours, patterns involving only one migration as we

involving several migrations between two types of habitats are encountered, but o

the river and the estuarine area or between the estuarine and marine areas. Notic



 

 

irst 6 years of 

rtions of the 5 

 age and then 

as a function of season. In the overall sample (192 eels), transitions as a function of age or as 

a function of season, between two different habitats, were less frequent than stays in the same 

This indicates 

 to the residence in one habitat. 10 

Transitions between the river and the marine area did not occur. Besides, the reported results 

n-dependent. 

 

Analysis of transitions schedules and duration of habitat use 

at use before 15 

their absence, 

ary did not seem age specific (Fig. 9), but their frequency 

decreased with age with a maximum of transitions occurring at age 1. The duration of the stay 

in the river was less than two years with a maximum of fish spending less than one year in the 20 

river before moving to the estuary (Fig. 9). 

Transitions from the estuary to the river and transitions from the estuary to the marine area 

did not occur for a specific age of the eel, as shown (Fig. 10) but decreased as the age of the 

fish increased. Most eels spent less than one year in the estuary before moving either to the 

river or to the marine area (Fig. 10). 25 

Analysis of the transitions between habitats. 

In order to keep a consistent temporal resolution through the fish life, only the f

life of the fish were further considered for the rest of the analysis. The propo

transitions from one habitat to another one were evaluated first as a function of

habitat as presented for instance for the estuary (Fig. 8) at the individual level. 

that movements among habiats are seldom compared

also shows that the occurrence of the transition is seaso

Age at transition between the river and the estuary and duration of the habit

changing habitat were investigated for eels of more than four years old. Due to 

transitions between the marine habitat and the river were not analysed.  

Transitions from the river to the estu



 

Discussion 

 in this study. 5 

lution of the 

 a measure of 

8µm size every 20 µm provided an approximate temporal resolution of one month for the first 

years of life up three months and more later than the 6th year. This constraint leads us to 

solution. Our 10 

 be improved 

sonal variations of the eel otolith growth. Despite the general 

variations of the eel otolith are known (Mounaix and Fontenelle 1994), a formalised model is, 

as far as we know, not available.  

 15 

 

haracteristics. 

ate 

was used to 

account for the significant influence on Sr:Ca values of age and season in addition to habitat. 20 

As expected, the contribution of habitat has been shown to be much greater than that of age 

and season. Outside the metamorphosis from leptocephalus larvae into glass eel, no 

significant effect of ontogeny due to growth or age was observed so far on Sr:Ca 

incorporation into eel otolith (Daverat et al. 2005; Kawakami et al. 1998; Kraus and Secor 

2003; Tzeng 1996). A validation using another fish species reared for two years in constant 25 

salinity failed in detecting any age effect on Sr:Ca incorporation into otoliths (Elsdon and 

 
Spatial and temporal resolution of the analysis 

The integration of the temporal dimension in Sr:Ca series was an important issue

Time series were reconstructed using resampling techniques. The spatial reso

analysis on the otolith was constrained by analytic requirements. In this study,

analyse only the first 6 years of life in order to keep a consistent temporal re

method was based on a constant growth of the otolith through the year. It would

by accounting for the sea

Habitat-related modelling of otolith signatures 

In this study, a mono-proxy approach was used to model habitat-related otolith c

The proposed unsupervised scheme based on Gaussian mixture models permits to estim

model parameters for each habitat zone from unlabelled data. A linear model 



Gillanders 2005). Age may affect Sr incorporation at a greater time scale than a few years, 

especially for some eels that can spend up to 20 years in their feeding habitats. As the mean 

ered, the age 

ry weak, was 

asses, of the 5 

 variations of 

the river flow were introduced in the model developed here. In this study site, measures of 

Sr:Ca ratio in the water, collected at different seasons showed that values were slightly 

estuarine and 

 and Sr:Ca value 10 

erimental and 

or 2004). 

Further applications of this model could take into account other types of effects such as 

physiology parameters, fooding conditions or temperature (Campana 1999; Campana et al. 

ponential, ...) 15 

is framework 

vironments or states experienced 

of Sr:Ca ratio with oxygen isotopes ratios as a proxy of 

 estimation of 20 

 
Reconstruction of habitats use chronologies 

The proposed method turned out to be particularly adapted to the analysis of large data sets. 

Our original data consisted in 192 individual Sr:Ca series containing 70 points of Sr:Ca 25 

measures on average. Hence a total of 14649 Sr:Ca measures, were analysed as 14649 events 

age of our sample was 7 years, and only the six first years of life were consid

effect was weak compared to the habitat effect. The season effect, although ve

explained by the seasonal variations of freshwater flows into marine water m

Gironde watershed and by the variations of water temperature. Hence, seasonal

fluctuating over the seasons without affecting the discrimination of marine, 

river habitats (Daverat et al. 2005). As expected, the relation between habitat

was very strong, a result validated for eels and other species using coupled exp

field validations (Daverat et al. 2005; Elsdon and Gillanders 2005; Kraus and Sec

2000). In addition, other kinds of parametric models (polynomial, log-normal, ex

could also be straightforwardly used. Besides, multi proxy approaches using multidimensional 

structural and/or chemistry otolith signatures may also investigated within th

with a view to retrieving a more precise estimation of the en

thought the fish life. The combination 

water temperature (Nelson et al. 1989) may for instance resort to a more precise

the temporal resolution of the measures in the example developed here.  



representing an habitat use. The proposed approach is computationally efficient, since only a 

few minutes are required to process the whole sample set, including both the estimation of the 

al patterns of 

ework is that 

ation of individual Sr:Ca series in terms of habitat use is provided 5 

From a methodological point of view, hidden Markov models have been shown to be much 

more efficient than Gaussian mixture models to reconstruct individual state sequences. These 

physiological 

for instance, 10 

ture). Besides, recent developments in the field of conditional random fields might 

also be investigated to take into account more complex time dynamics or continuous state 

sequence. 

 

15 

ubjective and 

. 37 different 

sample, were 

identified within the processed sample set. The treatment of the same data set was performed 

according to a supervised classification in a previous study (Daverat and Tomas in press). 20 

This categorization exploited only six classes and failed in describing with precision the 

repertoire of behaviour of the eels. Those six classes had been defined a priori from the visual 

inspection of all the plots of the individual Sr:Ca series and from results for other population 

found in the literature which was not very robust. Previous work indeed mainly relies on such 

supervised classification with a view to testing a priori hypotheses on patterns of habitat use. 25 

habitat Sr:Ca Gaussian mixture model and the reconstruction of all the individu

habitat use. Compared to previous work, the key feature of this quantitative fram

a non-subjective interpret

from an unsupervised analysis. 

models could obvisouly take into account other types of discrete such as 

parameters, but they might be extended to continuous state variables (

tempera

Unsupervised extraction and analysis of movement patterns 

A major contribution of the proposed Bayesian framework lies in the non-s

unsupervised thus exhaustive categorization of individual movement patterns

patterns of habitat use, with 20 patterns accounting for more than 80 % of the 



In most cases, some individual patterns did not fit to  these a priori hypotheses (Kotake et al. 

2005; Tsukamoto and Arai 2001; Tzeng et al. 2002) and were withdrawn from the analysis. 

tterns greatly 

 the direct determination of the 

5 

t use patterns 

found for A. anguilla in the Baltic sea (Limburg et al. 2003; Tzeng et al. 1997) as well as 

those of other temperate eel species such as Anguilla japonica (Tsukamoto and Arai 2001; 

t al. 2003), as 

confirmed the 10 

sted by eels 

4; Daverat et 

al. 2005), a significant number of eels (about 72%) changed habitats once or more. 

Chronologies with multiple transitions between the river and the estuary found for some eels 

 the seasonal 15 

lated models 

r these seasonal fluctuations and Sr:Ca distributions are well discriminated 

d sequences, 

so that the hypothesis of patterns with multiple or seasonal movements was confirmed in the 

present study.  20 

As a by-product of the proposed approach, statistical descriptors of the fish movements 

between habitats, such as the distribution of the transition time from one habitat to another or 

the distributions of the time spent in a given habitat after a transition, were computed over the 

whole sample set. This resulted in a huge gain in analysis time and power, compared to 

previous methods that required to retrieve the information individually from each Sr:Ca 25 

On the contrary, the robust and unsupervised categorization of movement pa

improves the investigation of unknown populations thanks to

diversity of the patterns of habitat use and of the associated proportions.  

The diversity of habitat use chronologies reported here is consistent with habita

Tzeng et al. 2002), A. rostrata (Cairns et al. 2004; Jessop et al. 2002; Morrison e

well as A. australis and A. dieffenbachii (Arai et al. 2004). The present work 

existence of eels resident of their capture site (about 28%). Besides, as sugge

named “transients” (Tsukamoto & Arai 2001) or “nomads” in (Daverat et al. 200

collected in the estuary might be interpreted as an absence of movement under

fluctuations of river flows into the estuary. However, the estimated habitat-re

account fo

whatever the season. This makes unlikely the reconstruction of such mislabelle



series. The analysis of transitions revealed that movements between two different habitats 

were not as frequent as the residence in the same habitat along the fish life. The same result 

Morrison and 

d to adopt a 

h make them 5 

tats decreased 

as the age of the eels increased. Similar results were obtained for Anguilla japonica (Tzeng et 

al. 2002) and A. rostrata (Morrison et al. 2003) as well as A. anguilla (Daverat and Tomas in 

e year in one 

10 

lysis in terms 

ld consist in 

comparing individual parameters (size at age, age at maturity), of the different habitat use 

patterns. Such analysis could also focus on a specific stage of the fish (age or size class). 

of individual 15 

tes the actual 

 potential of 

ical archive, such as fish otoliths, to characterize individual life traits. A 

wide range of applications for the analysis of individual life traits might be stated as such a 

Bayesian reconstruction of the time series of a state sequence from a set of chemical and 20 

structural measures.  

 

was obtained for studies using mark recapture techniques (Jellyman et al. 1996; 

Secor 2003) and telemetry (Parker 1995) that found that most yellow eels ten

resident behaviour. Transitions are rare temporal events along the fish life whic

difficult to observe directly. In this study, transitions between two different habi

press). Analysis of transitions also revealed that most eels spend less than on

habitat before changing again. 

The unsupervised categorization framework enlarges the scope of possible ana

of fish ecology. Further developments of the analysis of eel habitat use cou

More generally it provides a powerful tool to assess the relative efficiency 

tactics in terms of fitness. At a broader scale, the proposed approach demonstra

interest in exploiting advanced processing techniques to fully exploit the rich

individual biolog



 

Annex I: EM parameter estimation for Gaussian mixture models 

ied out according to 

the maximum likelihood (ML) criterion. It resorts to the following maximization issue: 

The estimation of the parameters of the Gaussian mixture models is carr
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To solve for this maximization issue, we use the EM (Expectation-Maximization) algorithm 

(Bishop 1995). Let us denote by xi the variable stating that the ith sample is issued from habitat 

xi. The EM algorithm iterates until convergence two steps. At iteration k, the E-step computes 

the posterior likelihood 
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Given the posterior probabilities, the M-step aims at updating model parameters 
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The new model parameters  are estimated as the solution of the 

 by posterior likelihoods 
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following weighted least-square problem, where the weights are give
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where Zi is the vector defined by [1 ai si]. This weighted linear regression leads to: 
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ac R iF tor L  Ch sq Df Pr(>Chisq)

Habit 4 4 < 2.2e-16 at 374  2 

Seas  2.397e-08 on 31 1 

Age 1984 15 <2.2e-16 

Table 1: Anova table for the linear model. 
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Figure 1: Distribution of Sr:Ca values  and associated fitted Gaussian modes. 

 habitat sequence from the acquired Sr:Ca 
5 

Markov models: the arrows 
indicate the conditional dependencies xt|xt-1 for the temporal dynamics and the conditional 

10 
specifies the 

 B, C and D: 
 conditional 

ted transition 
 probability to leave each state is 1. Some transitions may be 15 

forbidden, i.e. associated with a null probability: for instance, transitions from B to A. A 
ent state (for 

instance, transitions A to A or C to C). 

 the Gaussian 20 
anel). 

idual eels consistent with a 
habitat (upper 

t from the river to the estuary (bottom left panel) or multiple 25 
movements between the river and the estuary (bottom right panel) X axis, estimated age 

nalysis of the movement patterns: frequencies of the movement patterns extracted 
30 

Figure 8: Proportions (Y axis, log scale) of instantaneous transitions from the estuarial states 
 a function of 

35 
Figure 9: Distribution of ages at transition from the river to the estuary and distribution of the 
river habitat use duration anterior to the transition. 
 
Figure 10: Distribution of ages at transition from the estuary to the river (plain line) or to the 
marine habitat (dots) (left panel) and distribution of the estuary habitat use duration anterior to 40 
the transition (right panel). 

 
Figure 2: Principle of the reconstruction of the time
mesures spatially sampled along a growth axis of the otolith. 
 
Figure 3: Graphical representation of the Gaussian hidden 

dependencies yt|xt for modeling the likelihood of measure yt given state xt. 
 
Figure 4: Illustration of the characteristics of the transition matrix which 
temporal dynamics of the state variable for a model involving four states A,
graphical representation of this transition matrix (the arrows illustrate the
dependencies between these states with associated likelihood with the associa
probabilities). As illustrated, the

particular case of transitions is the one corresponding to staying in the curr

 
Figure 5: Habitat use pattern issued from a given Sr:Ca series as obtained with
mixture model (GMM)  (left panel) or the hidden Markov model (HMM) (right p
 
Figure 6: Examples of estimated pattens of habitat for four indiv
residency in the estuary (upper left panel), or with a residency in a freshwater 
right panel), or a shift of habita

(years), plain line, Sr:Ca values, dash line, Hidden Markov Model estimation. 
 
Figure 7: A
from the estimated habitat sequences. 
 

to one of the three states (namely, river (dots), estuary (plain), marine (dash)) as
age or month. 
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