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Abstract:

The work presented here reports the expression of immune-related genes during ontogenesis in the
oyster Crassostrea gigas. Expression patterns of 18 selected genes showed that RNAs detected in
oocytes and 2—-4 cell embryos are of maternal origin and that gene transcription starts early after
fertilization. The expression patterns of 4 genes (Cg-timp, Cg-tal, Cg-EcSOD and Drac3) suggested
that hemocytes appear in the gastrula-trochophore stages. The localization of Cg-tal expression
suggested that hematopoietic cells were derived from vessels and/or artery endothelia cells.
Moreover, a bacterial challenge affected the level of expression of genes. Indeed, a change in
expression levels was observed for Cg-LBP/BPI, Cg-timp, Drac3 and Cg-MyD88 genes in larval
stages upon exposure to non-pathogenic bacteria. In early juveniles, a modulation was also observed
for Cg-LBP/BPI, Cg-timp, Cg-MyD88 and for Cg-tal, according to the concentration of bacteria.
Altogether, the results showed that studying the appearance of immunocompetent cells through their
ability to express immune-related genes is a tool to gain insight the ontogenesis of the oyster immune
system.

Keywords: Bivalve mollusk; Hemocytes; Mollusk immunity; Hematopoiesis; Cell proliferation; Rel/NF-
kB pathway
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1. Introduction

In adult mollusks, the immune system is based on an innate system [1-3]. The internal
defense mechanisms can be split into cell-mediated and humoral mechanisms: it has become
increasingly apparent that both are interrelated and closely associated with hemocytes which
are the main immunocompetent cells [4-7]. Hemocyte populations in bivalve mollusks have
been the subject of extensive studies but the localization of hematopoietic site(s) remain(s)
uncertain. The generally accepted belief is that hemocytes rise from differentiation of
connective tissue cells [5].

To gain insight into the immune response in oysters, genomic approaches have been
developed and therefore several immune related genes have been characterized in Crassostrea
gigas. Escoubas [8] and Montagnani [9] isolated and characterized two proteins, olKK (oyster
IxB kinase like protein) and Cg-rel, which share structural and functional properties with
elements of the Rel/NF-«kB pathway in vertebrates and in Drosophila [10,11]. Moreover, three
additional cDNAs of the Rel/NF-kB pathway were isolated including the adapter proteins Cg-
MyD8S8, Cg-ECSIT, Cg-TRAF3 [9,12]. Based on homology with the Rel/NF-kB pathway in
insects, the function of the Rel/NF-kB pathway in oysters may serve to regulate genes that are
involved in innate defense and/or development [10,13]. A transcription factor, Tall/SCL,
belonging to the transcription factor class of bHLH (basic helix-loop-helix), has been
characterized and has been shown to be specifically expressed in adult oyster hemocytes [14].
Moreover, several effectors have been studied for their potential involvement in the oyster
immune response, e.g. Cg-timp, a tissue inhibitor of metalloproteinase [15], that is expressed
specifically in hemocytes and is inducible after bacterial challenge and shell damage. Cg-timp
may be an important factor implied in defense mechanism and in wound healing like in

Vertebrates [16]. A second effector is Cg-EcSOD, an extracellular superoxide dismutase
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which is involved in LPS-binding and which is also specifically expressed in hemocytes [17].
In addition, Cg-def, Cg-defhl and Cg-defh2 are antimicrobial peptides (defensins) isolated
from mantle edge and hemocytes, respectively [18,19]. Cg-def showed an unaffected
expression following a bacterial challenge, whereas Cg-defh2 expression was affected.

While, the immune response has been characterized for the oyster adult, so far, during
ontogenesis very little is known. At the cellular level, Elston [20] described the presence of
phagocytic cells (referred as coelomocytes) in the visceral cavity of veliger larvae in
Crassostrea virginica. Moreover, Elston and Leibovitz [21] observed motile phagocytes
containing bacterial fragments in the visceral cavity, and recorded the extrusion of redundant
phagocytes through the velum in oyster larvae (C virginica and C. gigas). At the molecular
level, only Herpin [22,23] has identified and characterized the transforming growth factor 3
(TGF ) superfamily that includes bone morphogenetic proteins (BMPs), activins (Cg-ALR1)
and TGF- B sensu stricto. These effectors would play a key role in numerous biological
processes including early embryonic development and immune regulation.

In this paper, 18 genes potentially involved in immune system in adult oyster and in
other organisms were selected in order to study the immune system during the oyster
development. The expression pattern of each gene was analyzed in various development
stages of Crassostrea gigas. The expression level of selected genes was also studied

following an experimental bacterial challenge.
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2. Materials and methods

2.1. Oyster developmental stages

Oysters at various developmental stages were produced at the IFREMER hatchery, La
Tremblade (France), from mature oysters (5 females and 3 males) collected at the oyster parks
in Marennes-Oléron bay. Several genitors were used to take account oyster genetic variability
at population level and consequently to minimize individual variability [24,25]. One hour
after fertilization, embryos were placed into 150 L tanks at a density of 100 embryos/L. All
steps of fertilization and rearing were performed in 0.2 um-filtered seawater at 23°C and
aerated under air bubbling. Three independent spawns were performed.

The following stages were identified microscopically and collected: oocytes before
fertilization, 2-4 cell stage embryos, morula, blastula, gastrula, trochophore larvae, D-hinged
larvae, veliger larvae, larvae aged of 7 and 22 days post-fertilization , metamorphosing larvae
and spat (Fig. 1). For total RNA extraction, one million individuals were pooled from oocytes
to D-hinged larvae stages; whereas for the later developmental stages only 250,000
individuals were collected. For the spat, total RNA from three organisms was extracted in

individuals.

2.2. Experimental bacterial challenge

Three non-pathogenic bacterial strains (Vibrio tasmaniansis, V. anguillarum and
Micrococcus luteus) were grown separately overnight at 20-25°C in saline peptone water
(peptone 15g/L ; NaCl 15g/L) for Vibrio strains, or at 30°C in Luria-Bertani medium for M.
luteus. Experimental bacterial challenges were carried out by immersing the 200,000 embryos
or larvae from 3 independent biparental fertilizations, in 2.5 L aquarium filled with filtered

seawater at 20°C under air bubbling. The experimental exposure was performed with a
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mixture containing the three strains at 3.107 live bacteria/L. Non exposed embryos and larvae
were used as the unchallenged controls. Samples were collected 10 and 24 h post-challenge
for RNA extraction. For spats of 3 months old, 50 individuals per experimental condition
were used. Experimental exposure was carried out by immersing early juvenile oysters in 20
L seawater tanks with the bacterial mixture described above (3.107 and 5.10° bacteria/L). In
parallel, some spats were not exposed and used as controls. Samples were collected 24 h after

bacterial challenge then processed for RNA extraction.

2.3. RNA extraction and reverse transcription

Total RNA was extracted using TRIzol™ Reagent (Invitrogen) according to the
manufacturer’s protocol. After total RNA treatment with DNase I (2U, Invitrogen), a second
TRIzol extraction was achieved to inactivate DNase. The total RNA concentrations were
determined by OD,¢ measurements and the RNA integrity was checked by electrophoresis.
Two pg of total RNA extracted from each developmental stage were reverse transcribed using
200 units of M-MLV reverse transcriptase (Invitrogen) according to the supplier’s

instructions.

2.4. In situ hybridization (ISH)

All samples were fixed in a solution containing 35% formaldehyde, 40% ethanol and 2%
ammonium hydroxide. After dehydration, animals were embedded in Paraplast and seriate 7
um sections were cut, mounted on poly-L-lysine coated slides, and stored at 4°C until use.
Digoxigenin (DIG)-UTP-labelled and [*>S]UTP-labelled anti-sense and sense riboprobes were
generated from linearized DNA plasmids by in vitro transcription using RNA labelling kits,

T3 and T7 RNA polymerase (Roche) and [*’SJUTP (Amersham). DIG-labelled riboprobes
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(40-100 ng/slide) and **S-labelled riboprobes (10° ¢.p.m. per slide) were hybridized on tissue

sections according to the previously developed protocol [26].

2.5. Conventional polymerase chain reaction (PCR)

Primer sequences, designed with primer 3 software (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi) were selected to amplify products in the size range of 125 to

391 bp. Primer sequences are showed in Table 1. PCR were performed using buffer (2 mM
MgCl,), dNTPs (0.4 mM of each), primers (0.2 uM of each), 1 unit of Taq polymerase
(Promega), first strand cDNA sample (0.5 ul), and water. All reactions were performed in
25ul volume in a PTC-100 Programmable Thermal Controller (MJ Research, Inc.) for 35
cycles. Each sample was amplified twice from each independent spawns. Ten ul of the
amplification products were driven on agarose gel (1.5%). The elongation factor 1a (Cg-EF-

1a) cDNA [27] was amplified for every sample as a positive control for PCR.

2.6. Quantitative real-time PCR

Quantitative real-time PCR (Q-PCR) analyses were performed using the Lightcycler
system version 3.5 (Roche Molecular Biochemicals) with the Lightcycler-FastStart DNA
Master SYBR Green I (Roche Applied Science). Q-PCR reactions were achieved for 40
cycles in 10ul volume with final concentration 1X Lightcycler-FastStart DNA Master SYBR
Green I (3 mM MgCl,), primers (0.5 uM of each) and first strand cDNA (0.5 ul). The primer
sequences, designed with primer 3 software, and conditions are listed in Table 2. Melting
curve analysis was performed with continuous fluorescence acquisition (65 to 95°C at a
temperature transition rate of 0.05°C/s) to determine the amplification specificity.
Amplification efficiencies (E) were calculated according to the following equation: E=10"

1/slope) [28].
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The relative expression level of each gene during the oyster ontogenesis was calculated
for 100 copies of the housekeeping gene (Cg-EF-1a) by using the following formula:
N = 100 x 2(CEF-Io~Ctiarget gene) 991

For the challenged developmental stages, the relative level of target gene expression was
based on a comparative method [28,30]. The relative quantification value of sample,
normalized to the Cg-EF-1o gene (internal control) and relative to the unchallenged sample, is

expressed as 2", where ACt = (Ct (target gene) — Ct (EF-1a) and AACt = ACt (challenged

sample) - ACt (unchallenged sample).

2.7. Statistical analysis
Data were analyzed using ANOVA and Student’s t-test and differences were considered

statistically significant at p<0.05. All results are represented as mean =+ standard error.

2.8. Selection of immune related genes

In order to acquire data on the transcription of immune-related genes during development
in C. gigas, we have analysed the expression of 18 genes chosen from a C. gigas EST library
[12], identified by DD-RT-PCR (differential display reverse transcription PCR) [14,15] or
cloned by PCR using degenerated primers [9]. Genes were selected according to their putative
function, such as their implication in antimicrobial response, in signaling pathways, in cellular

proliferation and in cell cycle (Table 3).

3. Results

3. 1. Expression pattern of 18 immune-related genes during oyster ontogenesis
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First, a qualitative screening by PCR was performed in order to examine the expression
patterns of each selected gene during development. Then, quantitative screening by Q-PCR
was performed for 7 genes. The results for both PCR and Q-PCR analysis from the three
independent spawns and three individual spats did not show significant differences meaning
that the genetic variability of genitors did not affect the results.

Qualitative PCR was performed with total RNA isolated from 11 development stages
(oocytes, 2-4 cell embryos, morula, blastula, gastrula, trochophore larvae, D-hinged larvae,
veliger larvae (2 and 7 days), pediveliger larvae (22 days) and spat; Table 3). The reference
gene, Cg-EF-1a, was amplified in all stages and in the three independent experiments. Thus
Cg-EF-1a gene was used as a control.

The PCR results have led to divide the selected genes in 3 clusters (Table 3) according to
transcript detection during development. In the first cluster, including the Cg-def (mantle),
Cg-defh2 (hemocyte) and ficolin3 genes, no transcript detection was observed whatever the
developmental stage. In the second cluster, including the a-2 macroglobulin, MMP, Drac3,
Cg-tal, Cg-timp and galectin 8 genes, the transcripts were always detected in early stages
(oocytes and 2-4 cell embryos) and in older stages (trochophore to spat). Detection of
transcripts was variable in morula, blastula and gastrula stages. In the third cluster, transcripts
were systematically detected for every gene during all developmental stages. In this group, 4
components belong to signal transduction pathways, i.e., Cg-MyD88, Cg-ECSIT, Cg-TRAF3
and Cg-rel. The 5 others comprised the Cg-LBP/BPI, Cg-EcSOD, Ring3, Lyn and vav genes.

Quantitative PCR expression patterns were performed for 7 genes (Drac3, Cg-tal, Cg-
timp, Cg-LBP/BPI, Cg-MyD88, Cg-EcSOD and galectin 8) during various stages of
development. These genes were chosen because they are representative of the clusters 2 and 3
previously described (Fig. 2). Moreover, these genes are involved in adult immune response

as protease inhibitor (Cg-timp), as recognition receptors by binding to lipopolysaccharide and
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saccharide ligands on the microbial surface to trigger a host immune response (Cg-LBP/BPI,
Cg-EcSOD and galectin 8), as proteins involved in cell proliferation (Drac3 and Cg-tal), and
as proteins of signaling pathways (Cg-MyDS88) (Table 3).

A transcript level decrease of Drac3, Cg-tal, Cg-timp and galectin § (cluster 2), Cg-
LBP/BPI, Cg-MyD88 and Cg-EcSOD (cluster 3) were observed in morula, blastula and
gastrula stages (Fig. 2) compared to previous stages (oocyte, 2-4 cell embryo). Drac3 and Cg-
tal transcript abundance significantly increased (p<0.05) in the trochophore larvae compared
to gastrula stage expression levels. From the D-hinged larvae to the spat, while the Drac3
transcript level decreased significantly (»p<0.05) but not uniformly, the Cg-tal transcript level
increased progressively and significantly (p<0.05) (Fig. 2). Cg-timp transcript level (Fig. 2)
increased 25-fold in the pediveliger larvae (p<0.05) comparatively to D-hinged larvae. This
increase was followed by a significant decrease of the level in spat (»p<0.05). Concerning Cg-
LBP/BPI, the number of transcripts increased significantly from trochophore larvae to spat
(»<0.05). For Cg-MyD&8, transcript level increased significantly (p<0.05) from D-hinged
larvae to pediveliger larvae. The highest level of expression was observed in the
metamorphosing larvae. Finally, both for Cg-EcSOD and galectin 8 effectors, transcript
numbers strongly increased in metamorphosing larvae and spat. In this older stage increases

of 177-fold and 50-fold were seen for Cg-EcSOD and galectin 8, respectively.

3. 2. Localization of Cg-timp, Cg-EcSOD, Cg-tal, and Drac3 expression

In order to identify the potential site of hematopoiesis and to better understand the
immune response, transcripts of 4 genes (Cg-timp, Cg-EcSOD, Cg-tal, and Drac3) were
detecting using in situ hybridization (ISH) in 4 larval stages (D-hinged larvae, veliger larvae

(2 and 7 days), pediveliger larvae) and in spat.
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No labelling was obtained whatever the larval stages and the labelling methods (DIG-UTP
or [*>S] UTP) for the 4 tested genes, while unlabelled hemocytes were always observed. In
spat, a strong hybridization signal was observed for Cg-EcSOD and Cg-tal only (Fig. 3). Cg-
EcSOD hybridization signal was localized in hemocytes attached to blood vessel endothelium,
in circulating hemocytes and in infiltrating hemocytes in gills, mantle and digestive gland.
Cg-tal hybridization labelling was observed only in hemocytes attached to blood vessel

endothelium.

3. 3. Relative quantification of immune-related gene expression after a bacterial challenge
during development

The impact of bacteria challenge was studied by evaluating the differential expression of
the 7 genes studied above, i.e. Cg-tal, Cg-LBP/BPI, Cg-timp, Drac3, Cg-MyD88, Cg-EcSOD
and galectin 8. The transcript levels of these genes were quantified by Q-PCR in 4
development stages (gastrula, D-hinged larvae, veliger larvae, pediveliger larvae). No
expression difference was observed for Cg-EF-Ia between unchallenged and challenged
animals (data not shown) for all developmental stages. Hence, Cg-EF-Ia was used to
normalize the transcript levels.

The low levels of expression exhibited by Cg-EcSOD and galectin 8 genes during
development (Fig. 2) was unaffected by the bacterial challenge (data not shown). It appeared
that the transcript number of Cg-fal increase in D-hinged and veliger larvae, however these
differences were not statistically significant (Fig. 4).

Cg-LBP/BPI transcript abundance increase significantly (3 fold, p<0.05) in veliger larvae
24 h post stimulation comparatively to unchallenged animals. These results reveal that Cg-
LBP/BPI expression is modulated by the bacterial challenge according to developmental

stages (Fig. 4).
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Cg-timp relative expression in the D-hinged larvae 24 h post stimulation (Fig. 4) was
more than 8 fold higher than in the control (p<0.05). In veliger larvae, a significant increase
of the Cg-timp transcript level (4 fold, p<0.05) was observed 10 h post stimulation. Cg-timp
expression was affected by the bacterial challenge.

A significant increase of the relative expression of Drac3 (p<0.05, Fig. 4) was observed
both in D-hinged larvae and in veliger larvae (3 and 3.4 fold, respectively) 10 h post
stimulation. In pediveliger larvae, a significant increase of the relative expression (2.4 fold,
p<0.05) was obtained 24 h post stimulation. Drac3 was the only gene to be significantly
inducible in pediveliger larvae among all the genes that were tested. These results showed a
Drac3 transcript level increase 10 h post stimulation in early larval stages, whereas in
pediveliger larvae, just before the metamorphosis, the induction took more time since the
transcript level increased after 24h.

Cg-MyD3&S relative expression in D-hinged larvae was more than 6 and 33 fold higher 10
h and 24 h post stimulation, respectively compared to unchallenged animals (p<0.05, Fig. 4).
In veliger larvae, the transcript level was significantly higher (»p<0.05) in challenged animals
compared to unchallenged ones (15 fold). The Cg-MyD&8 transcript abundance was strongly

increased in D-hinged and veliger larvae following bacterial stimulation.

3. 4. Relative quantification of gene expression in spat after a bacterial challenge
To investigate the possible inductibility and involvement in immune response of Drac3,
Cg-EcSOD, galectin 8, Cg-timp, Cg-tal, Cg-LBP/BPI and Cg-MyD&8 in spat, relative
expression of these genes were monitored using Q-PCR in whole challenged and
unchallenged individuals. The transcript abundance was measured 24 h after exposure (Fig 5).
Drac3, Cg-EcSOD and galectin 8 gene expressions were not affected by bacterial

stimulations. Cg-timp, Cg-tal and Cg-LBP/BPI transcript levels were significantly higher (2.1,
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2, 2.1 fold respectively, p<0.05) in challenged spats vs unchallenged spats following exposure
to 5.10° bacteria/L. Cg-MyDS8S relative expression, in challenged animals, was more than 1.7
and 4 fold higher with 3.10” and 5.10% bacteria/L respectively, than in unchallenged animals
(»<0.05). However, relative expression was significantly lower when animals were exposed to
3.10" bacteria/L than relative expression measured in animals exposed to 5.10° bacteria/L (2.5
fold). These results reveal that in spat, expression of some genes was affected by the bacterial

challenge and that the magnitude was dependent on the concentration of the bacteria.
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4. Discussion

In oysters, differences in the susceptibility to pathogens are observed between larvae,
juveniles and adults. While some studies of immunity in oyster adults have been performed
[1,31], so far, little is known about the immune system ontogenesis [32,33]. In this study we
investigated the expression of 18 genes, potentially involved in immunity during development
of the pacific oyster and studied the impact of a bacterial challenge.

Expression pattern analysis led to classify the 18 genes into three clusters (Table 3). Most
transcripts were detected in early stages (oocytes and 2-4 cell embryos) but not in later stages
as morula, blastula and gastrula stages. Assuming that embryonic transcription in Mollusks
only starts at the compacted morula stage [22], these results suggest that the transcripts
detected during the first two developmental stages (oocytes and 2-4 cell embryos) are not
produced by the embryo itself but are of maternal origin. RNAs of maternal origin are
probably degraded in the older stages explaining the decreases observed in morula, blastula
and gastrula stages. The early development of animals is programmed by maternally
synthesized RNAs and proteins that are loaded into the developing oocyte by the mother [34].
Because the subsequent phases of embryogenesis require products encoded by zygotically
synthesized transcript, these maternal RNAs are rapidly degraded but their stability is
regulated in space as well as in time. The complete degradation of these transcripts is
achieved differently according to the species [35,36]. Since, most likely the mechanisms that
regulate transcript stability are evolutionarily conserved in all metazoa [36], it is assumed that
maternal RNA might be regulated in a similar way in oysters.

Hemocytes, which are the immunocompetent cells of the oyster Crassostrea gigas,
participate in a variety of functions [5]. To investigate the putative site of hemocyte

generation during development, we quantified the expression and localized the expression
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sites of Cg-timp, Cg-EcSOD, Cg-tal and Drac3. These genes were selected because in the
adult oyster they are specifically expressed in hemocytes and are, therefore, considered as
hemocyte markers [9,14,15,17]. During oyster development, Cg-timp, Drac3 and Cg-tal
transcription levels increase from the trochophore stage. These results suggest that hemocytes
are generated at the gastrula-trochophore stages, relatively early after fertilization (10-12 h).
At the cellular level, it has been shown that hemocytes are phagocytic cells attached to the
surface of visceral cavity in veliger larvae [20]. Increases of Drac3 and Cg-tal expression
levels were observed in trochophore stage (Fig. 2). These results suggest that hematopoiesis
has been activated and could lead to an increase of hemocyte precursor cell number because
Drac3 and Cg-tal are specifically markers of the hemocyte precursor cells. Sasamura, et al.,
[37] showed in Drosophila that Drac3 is essential for hemocyte differentiation, and Barreau-
Roumiguiére et al., [14] demonstrated that Cg-tal belongs to the Tall/SCI family, which is
crucial for the generation of hematopoietic cells in early embryos [38-40]. Moreover, Tall is
one of the earliest markers of mammalian hematopoietic development i.e. its expression
precedes the formation of the hematopoietic sites in mouse [41].

During development, only Cg-EcSOD and Cg-tal expression sites were clearly observed
in serial sections from spat, suggesting that the ISH method is not sufficiently sensitive.
Detection with ISH is however dependent on the transcript number per cell. This could
explain the lack of detection of transcripts for some genes in early developmental stages. A
strong Cg-EcSOD positive ISH signal was observed in circulating and infiltrating hemocytes
throughout the animal. A Cg-tal signal was localized only in hemocytes attached to blood
vessel endothelium. No labelled cell was detected in connective tissue. By analogy with the
Tal/SCL role in hematopoiesis in other organisms, these results suggest that hematopoietic
cells could not arise from differentiation of connective tissue cells as suggested previously [5]

but could rather derive from the vessel or/and artery endothelia cells. Recently, it was
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demonstrated in mouse, human and chicken embryos that aortic endothelia cells can also give
rise to hematopoietic cells [42-44].

The quantification of Cg-tal, Drac3, Cg-LBP/BPI, Cg-timp and Cg-MyD&8S transcripts
following a bacterial challenge showed that transcription of these genes was activated
according to (i) the developmental stage, (i1) the time period between stimulation beginning
and quantification, and (iii) the amount of bacteria used for challenge. This suggests that these
genes are involved in protection against bacteria during development. In this study, the
increase in Cg-tal transcription observed after bacterial stimulation in D-hinged, veliger
larvae and spat could mean that haematopoiesis was activated and contributed to increase the
number of hemocytes. This increase in Cg-fal expression was concomitant to that of Drac3.
Since Drac3 is essential for hemocyte differentiation in Drosophila [37], these results suggest
that bacterial stimulation could activate hemocyte differentiation following proliferation.
Moreover, since hemocytes are oyster immunocompetent cells capable of non-self recognition
and where antimicrobial effectors are produced [1,5], their proliferation could contribute to
reinforce the immune response against bacteria in oyster. The hemocyte proliferation should
be involved in immune response in Drosophila [45,46] and crustacean [47,48].

Cg-LBP/BPI are thought to play a significant role in transducing cellular signal from LPS
and thus involved in the immune response [49,50]. During oyster development, Cg-LBP/BPI
transcripts were detected in all stages and a progressive increase in Cg-LBP/BPI transcription
was observed from D-hinged larvae to spat. In the larvae, the visceral mass has two prominent
components: the velum and the fluid-filled coelomic cavity containing the visceral organs
[51]. Various epithelia, especially in the velum and the mantle constitute the first barrier
against bacterial invasion. The progressive increase in Cg-LPB/BPI transcription seems to
correspond to the apparition of larvae epithelia. These results suggest that Cg-LBP/BPI gene

could participate actively in the first line of defense during development and also to an acute
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immune response following a microbial infection since Cg-LBP/BPI transcription was
activated in larvae stages after a bacterial challenge. Cg-LBP/BPI transcription began 10 h
post-stimulation and increased at 24 h. This may result from a hemocyte proliferation, as also
sustained by the Cg-fal and Drac3 expression increases.

Cg-Timp is a member of the tissue inhibitor metalloprotease family, which the most
widely recognized action is inhibition of matrix metalloproteases (MMPs). These genes
regulate the proteinaceous extracellular matrix homeostasis and a wide range of physiological
processes that include embryonic development, connective tissue remodeling, wound healing,
glandular morphogenesis and angiogenesis [52]. In this study, MMP and Cg-timp transcripts
were detected from the gastrula to the 22 days larvae suggesting that a local balance between
MMPs and TIMPs could be set up during the oyster development. The strong induction of
Cg-timp was observed in veliger and pediveliger larvae just before metamorphosis. During
metamorphosis, drastic morphological changes affect the specific larval organs [53]. These
results reinforced and completed the initial study of Montagnani et al., [32] and suggest that
Cg-timp plays an important role in tissue remodeling during the oyster metamorphosis. Like
in adults [15], Cg-timp transcription in D-hinged larvae, veliger larvae and in spat was
activated meaning that Cg-timp transcription is inducible in larvae and would participate in
host defense mechanism. In adult, optimal expression was obtained 9 to 12 h post-challenge
whereas in D-hinged larvae, the optimal expression was observed 24 h post-challenge. This
could result from the trigger of hemocyte proliferation and suggests that D-hinged larvae
immune system may not be completely mature.

Cg-MyD&S is expressed in all development stages (Table 3), but expression level remains
relatively low and the increase observed in metamorphosing larvae is moderate. Cg-MyD88
would be involved in regulation of genes involved in development. Indeed, in Xenopus,

XMyD88 protein function is required for axis formation [54] and in Drosophila, MyD88 is
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implicated in the dorsal-ventral pattern of embryo [55]. Interestingly, transcription level
increased strongly after bacterial challenge in all larval stages and in spat. The prominent role
of MyD88 in host innate immunity and inflammation has been studied in various vertebrates
and invertebrates species [56-58]. Our results indicate that Cg-MyD8S may be a key
component of the immune response because of its role in the Rel/NF-«kB signal transduction
pathway [9]. Components of this pathway plus other adapter proteins such as ECSIT, TRAF,
olKK, IxB [8,9], appear to be similar to Toll or TLR/IL-1 signalling effectors in Drosophila
and mammals respectively [11]. In Drosophila and mammals, Toll and TLR/IL1 pathways
regulate the expression of many genes involved in various mechanisms of the immune
response [59].

Cg-EcSOD is weakly expressed during development except in metamorphosing larvae and
in spat, where it is strongly expressed (Fig. 2). This gene which encodes an extracellular
superoxide dismutase, was only detected in hemocytes both in adults [17,60] and during early
stages. Moreover, the transcript level was unaffected by bacterial challenge. These results
suggest that Cg-EcSOD is constitutively expressed and is part of defences against reactive
oxygen species (ROS) and especially superoxide anion [61,62].

Altogether, the results showed that studying the appearance of immunocompetent cells
through their ability to express immune-related genes is a tool to gain insight the ontogenesis
of the oyster immune system. First, we showed that while transcription of immune genes in
embryos is initiated during the compacted morula stage, it remained low in gastrula and was
unaffected following a bacterial challenge. This may be due to the fact that immune system is
rudimentary and immature in early embryonic stages. Second, the major maturation events
leading to immunocompetence occurred between D-hinged larvae and veliger larvae. At these
stages, hemocyte generation/proliferation and induction of immune related genes are

concomitant. However, in pediveliger larvae, only Drac3 transcription level was increased.
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This stage, which is the last stage of oyster planktonic life, corresponds to anatomic and
physiologic intense changes which could be responsible for the reduced capacity of larvae to
respond to bacterial infection. Taken together, these results could explain the variability of

susceptibility to infections during development.
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Figure legends

Fig. 1. The life cycle of the oyster Crassostrea gigas. 1: Fertilized oocytes, 2. 2-4 cell
embryos, 3. Morula, 4. Blastula, 5. Gastrula, 6: Trochophore larvae, 7: D-hinged larvae, 8:
Veliger larvae, 9: Pediveliger larvae, 10: Spat and 11: Adult. Stage duration can be highly

variable, depending on temperature, food supply, and other factors.

Fig. 2. Expression level of immune-related genes during ontogenesis in Crassostrea gigas by
quantitative real time PCR. Each value is the mean + standard error of embryo or larvae pools

from three spawns and three individual spats. L: larvae.

Fig. 3. Detection of Cg-EcSOD and Cg-tal mRNAs in spat of Crassostrea gigas by in situ
hybridization. A: Cg-EcSOD in situ hybridization using anti-sense probe showed positive
signals in infiltrating hemocytes (arrows) in digestive gland (2), gill (3). B: Cg-tal, in situ
hybridization labelled cells were attached to blood vessel endothelium (5), the shape and the
localization of the positive cells evoke hemocytes (arrows). Control consisted of sections

hybridized with sense probe, no labelling was observed (1 and 4).

Fig. 4. Relative expression of Cg-tal, Cg-LBP/BPI, Cg-timp, Drac3 and Cg-MyD§&8 in
gastrula (6 h post-fertilization), D-hinged larvae (24 h), veliger larvae (2 days) and pediveliger
larvae (22 days) of Crassostrea gigas by quantitative real time PCR according to Livack and
Schmittgen method (2001), after a bacterial challenge (3.10” bacteria/L). Each value is the

mean + standard error of embryo or larvae pools from 3 independent biparental fertilizations.

[]10 h and [ 24 h post stimulation; * Significant difference with not challenged animals

(»<0.05). — : Relative expression of the unchallenged animals.
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Fig. 5. Relative expression in Crassostrea gigas spat of Drac3, Cg-EcSOD, galectin 8, Cg-
timp, Cg-tal, Cg-LBP/BPI and Cg-MyD4&8, following a bacterial challenge by quantitative real
time PCR according to Livack and Schmittgen (2001) method. Each value is the mean +
standard error of three individual spats at 24h post-stimulation. & : 3.10” bacteria/L, l: 5.10°
bacteria/L, * Significant difference with unchallenged samples (p<0.05). —— : Relative
expression of the unchallenged samples. These results were confirmed with two more

independent experiments.
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