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Microcanonical multifractal formalism: application to the
estimation of ocean surface velocities
J. Isern-Fontanet, A. Turiel, E. Garćıa-Ladona, J. Font
Institut de Ciències del Mar (CSIC), Barcelona, Spain

Abstract. In this paper we investigate the validity of the multifractal formalism to study
Sea Surface Temperature (SST). It is shown that SST patterns observed in moderate
resolution SST images have anomalous scaling properties characteristic of a multifrac-
tal structure. The most probable origin of the observed structures is the turbulent char-
acter of the oceanic flow as they evolve slowly and are very persistent in times compat-
ible with ocean mesoscale dynamics (several days). The spectrum of singularity expo-
nents indicates that the dynamics of the processes leading to the geometrical arrange-
ment of the SST patterns is quite general over the available range of scales. As a con-
sequence, multifractal techniques can be used to extract properties of the underlying flow.
In particular, the geometry of the SST multifractal components is closely linked with
the ocean flow, which allows to build a reasonable guess of the sreamfunction (defined
as the Maximum Singular sreamfunction, MSS) from a single SST image. Thus, the ocean
surface velocity field can be easily inferred, with some limitations. As multifractal anal-
ysis is in essence a geometrical approach, the method is able to retrieve a high resolu-
tion velocity field, well localised in space, but with some indetermination on the mod-
ulus and sense of velocity vectors. To solve this, a general framework for the integration
of extra information is proposed, what is illustrated with an example merging MSS with
altimetric data.

1. Introduction

In spite of the great importance of understanding tur-
bulent dynamics to provide an adequate picture of many
geophysical processes, turbulence is still one of the major
unsolved problems in fluid dynamics. Due to their chaotic
shape, turbulent flows cannot be easily described with some
few global quantities, and hence an enormous amount of de-
grees of freedom must be retained to properly describe them.
From all approaches to turbulence, the most successful one
is the statistical analysis, favoured by the existence of many
independent degrees of freedom at all scales contributing to
the final motion. However, turbulence gives rise to intermit-
tency and so the distributions of the relevant quantities have
heavy tails; as a consequence, statistical analyses of turbu-
lent flows demand a great amount of data to obtain reliable
estimates of dynamical quantities. This has also been the
case in geophysical flows, where reliable statistical analysis
have been mostly restricted to small scale flows. We know
much more properties about geostrophic turbulence from
numerical modeling than from the direct analysis of obser-
vations.

Earth observation satellites has been a great revolution
allowing for the first time ocean processes to be adequately
sampled [Munk , 2000]. Remote sensing have uncovered a
picture of the ocean characterized by a complex geome-
try, crowded with eddies of different sizes and filamentary
structures similar to what theory predicts. The range of
scales covered by infrared or colour images span over three
decades (roughly from one to thousand of kilometers) and
they are acquired several times per day. Consequently, re-
mote sensing data sets are today in a stage to furnish the
best framework, in which techniques and concepts devel-
oped for the study of turbulent flows may lead to better

Copyright 2006 by the American Geophysical Union.
0148-0227/06/$9.00

understand the statistical properties of the complex ocean
dynamics. Some examples of this approach are the charac-
terization of ocean vortices [e.g. Isern-Fontanet et al., 2003;
Morrow et al., 2004; Isern-Fontanet et al., 2006b], velocity
statistics [Llewellyn Smith and Gille, 1998; Gille and Smith,
2000; Isern-Fontanet et al., 2006c] or the stirring properties
of the ocean [e.g. Abraham and Bowen, 2002; Waugh et al.,
2006].

Many of such studies rely on the knowledge of the ocean
velocity field which is difficult to be directly measured from
remote sensing. Despite very recent advances in space borne
radar technology [e.g. Chapron et al., 2005], presently sur-
face ocean horizontal velocities are regularly estimated from
altimetric measurements. However, altimeters only pro-
vide information about the cross-track geostrophic velocity.
Then, interpolation methods are required to recover both
components of surface velocities [e.g. Le Traon and Ogor ,
1998], which has the effect of strongly reduced the capa-
bility to investigate wavelengths below 100 km [e.g. Ducet
et al., 2000]. Alternatively, many efforts have been previ-
ously done to estimate surface currents from infra-red sen-
sors through different methodologies [i.e. Emery et al., 1986;
Kelly , 1989; Whal and Simpson, 1991; Wu et al., 1992; Vi-
gan et al., 2000a, b; Bowen et al., 2002]. A general charac-
teristic of the existing methods is the requirements of having
a cloud-free time-series of images.

Recently, a different approach has been introduced based
on the geometrical properties of advected tracers [Turiel
et al., 2005b]. Coherent vortices in a turbulent flow strongly
interact, which has the effect of permanently stretch and fold
small-scale filaments ejected from vortex cores and gener-
ate small-scale tracer gradients between eddies. Therefore,
the spatial structure of a tracer inherits some properties of
the underlying flow, in according to what has been theoret-
ically and experimentally shown in some works [Abraham
and Bowen, 2002; Turiel et al., 2005b, a]. This has the ef-
fect of organizing the geometry of the flow as a hierarchy of
fractal sets, called singularity manifolds, each one associated
to a singularity exponent: this is the so-called multifractal

1
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formalism for fully developed turbulence (FDT) [Parisi and
Frisch, 1985; Frisch, 1995]. This geometrical arrangement
of the flow is intimately linked to the energy cascade, which
allows to study its properties from the geometrical proper-
ties of any tracer for which advection is important enough.
Furthermore, as singularity manifolds are advected by the
flow, assessing tracer singularities allows to detect the main
streamlines, and then, through a suitable interpolation algo-
rithm, the sreamfunction of the flow could be reconstructed
[Turiel et al., 2005b, a].

A key point in this approach is the assumption of a mul-
tifractal structure on tracer images. In the context of at-
mospheric flows, there are many evidences of such a mul-
tifractal hierarchy [i.e. Chigirinskaya et al., 1994; Lovejoy
et al., 2001; Sachs et al., 2002; Turiel et al., 2005a]. In the
ocean, time series of temperature, fluorescence and other
biochemical tracers also exhibit multifractal characteristics
[Lovejoy et al., 2001]. However, up to our knowledge there
are no evidence on the multifractal properties of the geo-
metrical arrangement of ocean tracers, as for instance the
spatial distribution of SST. If this is verified and assum-
ing that the dynamics of the ocean is similar to that cor-
responding to FDT, one can reasonably expect that tracers
in the ocean possess the same singularity manifolds as the
underlying turbulent ocean flows. Thus we should be able
to deal with a method to estimation of the velocity field of
the ocean. Therefore, the objective of this paper is twofold.
First, it will be shown that moderate resolution SST images
of the ocean (Pathfinder SST in our case) exhibit a multi-
fractal structure and, therefore, multifractal techniques as
the proposed MSS method can be used to give an estima-
tion of the sreamfunction. Second, the paper discusses the
limitations of these multifractal methods and show how the
combination with other data (altimetry in this study) can
be used to overcome them.

Due to the important and non trivial theoretical concepts
which need to be introduced and which deserve full discus-
sion in an oceanographic context, we have decided to orga-
nize the text in a progressive way. First, in section 2 we
outline the theoretical background of the multifractal for-
malism, which is the root of the proposed method for the
estimation of ocean velocities. Section 3 briefly presents all
the data used. Then, in section 4 the method for the esti-
mation of singularities is presented and the validity of the
Microcanonical Multifractal Formalism for SST images is
verified. After that, the method to retrieve the Maximum
Singularity sreamfunction (MSS) and its application to data
is presented in section 5. The possible ways to integrate ad-
ditional information in the framework of MSS are presented
in Section 6; we present there the example of integrating
altimetry. Finally, an overall discussion and conclusions of
the paper are given in section 7.

2. General theory

There exists an extensive scientific literature on the roots
of the multifractal formalism in the context of FDT, its con-
nections with anomalous scaling in the structure functions
and the geometrical interpretation of scaling exponents in
terms of a hierarchy of fractal manifolds [Parisi and Frisch,
1985; Novikov , 1994; She and Leveque, 1994; Arneodo et al.,
1995; She and Waymire, 1995]. However, there is much less
literature establishing the explicit passage from the classical,
statistical formalism (based on structure functions and the
assessment of the multiplicative cascade), known as Canon-
ical formalism, to the geometrical one (in which Parisi and
Frisch’s singularity manifolds are explicitly separated from
a given signal).

The idea about a geometrical approach to the study of
the FDT and microcanonical exponents can be tracked back
in the early works by Meneveau, Sreenivasan and collabora-
tors Chhabra et al. [1989]; Meneveau and Sreenivasan [1991];

Sreenivasan [1991] . However, technical limitations on the
determination of the local singularity exponents and the
greater amount of statistical measurements had left this idea
a bit aside. Since then, some progresses have been made in
order to uncover geometry from data, mainly concentrated
on the extraction of the multiscale skeleton of wavelet trans-
form maxima [Muzy et al., 1991; Bacry et al., 1993; Arrault
et al., 1997; Amaral et al., 1998; Ivanov et al., 1999; Struzik ,
2000]. However, this multiscale skeleton can hardly be used
to assign a singularity to each point. In spite of these ini-
tial limitations, recent advances in signal processing [Turiel
et al., 1998; Turiel and Parga, 2000] have allowed to recover
the geometrical perspective of the energy cascade allowing
to define a new formalism, called the Microcanonical Multi-
fractal Formalism.

2.1. Canonical Formalism

Since the famous Kolmogorov’s 1941 papers [Kolmogorov ,
1941a, b; Hunt et al., 1991], much research has been con-
ducted to explain the properties of fully developed turbu-
lence in terms of scale invariant quantities characterizing the
behaviour of statistical averages of some dynamical quanti-
ties. In a rather general formulation, we can define the local
structure function of order p and size scope r, denoted by
Sp(r), as the order-p moment of a dynamical variable εr,
namely:

Sp(r) = 〈εpr〉 (1)

where the average is taken over an appropriate ensemble of
realizations or over a single realization large enough when
ergodicity or at least stationarity of the moments can be
assumed [Davis et al., 1994; Frisch, 1995]. The variable εr
must refer to a statistical stationary quantity defined over
a given resolution scale r; common choices include linear
increments of the velocity,

εr(~x) = |v(~x)− v(~x+ ~r)| (2)

and local energy dissipations on balls of radius r,

εr(~x) =
∑

ij

∫
Br(~x)

d~x′
(
∂ivj(~x

′) + ∂jvi(~x
′)
)2

(3)

Kolmogorov’s 1941 theory predicts that, at any order p,
the structure function Sp(r) is scale-invariant with respect
to the scale scope r, what manifests in a power-law depen-
dence in the inertial range,

Sp(r) ∝ rτp ; r � 1 (4)

In addition, Kolmogorov predicted that all the multiscal-
ing exponents τp could be related in a simple way: they
should fit a linear relation,

τp = H p + β (5)

where the coefficient H is given by the scaling properties
of the maximum of εr,

max
~x

εr(~x) ∝ rH ; r � 1 (6)



ISERN-FONTANET ET AL.: MULTIFRACTALITY AND OCEAN VELOCITIES X - 3

while the coefficient β is related to the behaviour of the sup-
port of εr (i.e., the set where εr is different from zero), in
the way:

rβ ∝ S0(r) =

∫
d~x′ 1

εr(~x′)6=0
(7)

According to Kolmogorov’s model of linear multiscaling
exponents, the energy is concentrated on a fractal manifold,
given by the support, at which all the points contribute ex-
actly the same, namely rH . We can immediately deduce the
dimension of this fractal manifold by the scaling property
given by equation (7); following Falconer [Falconer , 1990],
the support scales as rd−D, where d is the dimension of the
embedding space (d = 2 in the case of 2D turbulence) and D
is the fractal dimension of the support. Hence, comparing
with equation (7) we have D = d− β.

It was soon realized that the linear scaling proposed by
Kolmogorov did not fit experimental curves; experimental τp

[Arneodo et al., 1996] present “anomalous scaling”, that is,
a marked separation from the linear behaviour. The curva-
ture of τp makes Kolmogorov’s picture a bit more complex.
Now, the points in the support do not possess the same
scaling rH any more; instead, the support is split in differ-
ent scaling fractal components (manifolds), each one scaling
differently. We are hence constrained to pass from a single
fractal scheme to a multiple fractal framework.

A simple empirical obtention of the multiscaling expo-
nents τp is not enough to provide a theoretical insight on
the process which give rise to the scale-invariant proper-
ties of fully developed turbulence. It was then required to
introduce a model to explain anomalous scaling: the multi-
plicative cascade. First, for any 0 < κ < 1 let us construct
a random variable ηκ such that

〈ηp
κ〉 = κτp (8)

The existence of such a variable will depend on the proper-
ties of τp. A necessary condition is the constant concav-
ity/convexity of τp as a function of p [Carleman, 1922],
which is granted because the τp are obtained from actual
order p-moments. In fact, the concavity of τp indicates the
sign of the cascading process [Gupta and Waymire, 1990]
that we will introduce in the following. To simplify the dis-
cussion, we will assume that for the variable εr the cascade
is verified as a down-scaling process; the up-scaling counter-
part can be easily generalized from this case.

Provided ηκ exists for any κ and recalling the definition
of the structure functions, equation (1), for any two scales
r < L it follows:

〈εpr〉 = 〈ηp
r
L
〉 〈εpL〉 (9)

for all p. As a consequence, we can write:

εr
.
= η r

L
εL (10)

where the symbol
.
= means that both sides have the same

distribution. In equation (10), which is known as the cas-
cade relation, it is assumed that η r

L
is a random variable

independent from εL. The reason for calling such a relation
a “cascade” comes from the fact that, if we introduce any
intermediate scale r′, r < r′ < L, we obtain:

η r
L

.
= η r

r′ η r′
L

(11)

what is trivially verified according to the definition of the
cascade variable, equation (8). So that, the cascading pro-
cess can be verified in any number of intermediate stages and
in all cases the final result will be the same: in some sense,
the down-scaling injection process is in statistical equilib-
rium. Equation (11) also implies that the random variables
ηκ possess infinitely divisible distributions [Novikov , 1994;
She and Waymire, 1995], what enormously restricts the class
of allowed processes. Many experimental facts have con-
firmed the existence of the cascade in flows under fully de-
veloped turbulence [Chhabra et al., 1989; Frisch, 1995; Ar-
neodo et al., 1996; Lovejoy et al., 2001]; hints also exist on
their presence in oceanic flows [Abraham and Bowen, 2002;
Turiel et al., 2005b].

The cascading process is a sign of the existence of a tightly
hierarchized structure in the flow; however, in the form dis-
cussed above, it is just a statistical signature, difficult to
relate to definite objects with physical meaning. The first
step to establish a link with the geometrical arrangement of
flows can probably be traced in Parisi and Frisch’s deriva-
tion on the multifractal structure of flows under cascading
processes [Parisi and Frisch, 1985]. They assumed that,
due to the anomalous scaling, the points in the support of
εr do not share a single value of scaling exponent H as in
Kolmogorov’s theory, equation (5). On the contrary, the
support is split in different fractal components Fh, each one
having a different scaling exponent h. As the fractal mani-
folds can have different fractal dimensions, we introduce the
concept of singularity spectrum D(h), defined as the (Haus-
dorff) fractal dimension of the component Fh. As before, at
a scale r the amount of points assigned to a the component
Fh goes as rd−D(h), so the distribution of scaling exponents
at a given scale r is given by:

ρr(h) ∝ rd−D(h) (12)

According to Parisi and Frisch, the multiscaling expo-
nents τp can be immediately related to the singularity spec-
trum, in the way:

τp = inf
h
{ph + d − D(h)} (13)

Equation (13) is a cornerstone in the multifractal deriva-
tion, because it allows relating a geometrical characteristic
(the singularity spectrum) with the multiplicative cascade.
So that, when we arrive to obtain the singularity exponents
in a given realization, we can recover all the properties of the
multiplicative cascade. An important feature for the singu-
larity spectrum is to be a convex function of h; under such a
circumstance, the Legendre transform in equation (13) can
be inverted and the singularity spectrum is calculated from
the multiscaling exponents; namely:

D(h) = inf
p
{ph + d − τp} (14)

A well-behaved singularity spectrum should correspond to a
convex curve which is one of the requirements in the Micro-
canonical Multifractal Formalism presented in the following.

2.2. Microcanonical Formalism

To give the final step from statistics to geometry, two ad-
ditional ingredients are in order. First, we need a method
capable to assess the local scaling exponent to be assigned
to each point. It should be realized that the concept of lo-
cal scaling exponent is in fact more easily recognised as the
one of Hölder or singularity exponent. The introduction of
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singularity exponents allows a generalization of the classical
Taylor expansion of functions; in addition, it serves to relate
scaling properties of a variable with its regularity properties
according to Functional Analysis. Then, the local singular-
ity exponent h(~x) of a given field s(~x) at the point ~x can be
obtained, for any vector ~r small enough, from the following
scaling

1

r
|s(~x+ ~r)− s(~x)| ∼ rh(~x) (15)

Results on wind tunnels and other laboratory experiences re-
veal that such scalings are generally observed (see Arneodo
et al. [1996] and cites therein). By means of equation (15),
a local singularity exponent h(~x) can be associated to each
point ~x , which accounts for the local properties of changes
in scale of the function s. The singularity exponent informs
about the local regularities of the function and its degree
of continuity or discontinuity around the given point. The
name “singularity exponent” does not necessarily imply that
the function is divergent at the point; large values of h(~x),
on the contrary, indicate that the function is very smooth
[Arneodo et al., 1995]. Expressions as equation (15) are
generically known as Singularity Analysis for the function
s(~x).

The second ingredient is the relation between the scaling
properties of the flow, in general difficult to quantify, to the
scaling properties of related variables much more accessible
and easily to observe. A typical case is that of scalar vari-
ables: quantities on which the flow, as a first approximation,
acts as if they were tracers. For purely passive scalars, it
immediately follows that the scaling properties appearing in
the asymptotic regime are those derived from the scaling on
the flow [Frisch, 1995]. For non-passive scalars, the ability
to relate local scaling exponents emerging from the scalar
to those of the flow rely on the assumption than the cor-
rections to the material derivative do not affect the smaller
scales in an important extent and so they can be neglected.
A clear example are ocean flows, where the necessary resolu-
tion to compute a reliable estimate of the velocity structure
function is still inaccessible while for tracers such as the
SST obtained by remote sensing is rather feasible. Accord-
ing to some studies, the multifractal properties of oceanic
barotropic flows are not affected by the presence of baro-
clinic instabilities [Abraham and Bowen, 2002]. As a matter
of fact, if a multifractal hierarchy à la Parisi & Frisch is
evidenced for a given scalar, we will accept that its most
plausible origin is the turbulent flow driving the scalar.

Now we have the basic elements to set up the microcanon-
ical formalism and recover dynamical information from the
geometrical properties of the flow. Given a scalar signal
s(~x), we will say that it is associated to a microcanonical
multifractal if and only if:

i) For any point ~x,

Trs(~x) ∼ rh(~x) (16)

is verified over a large enough range of scales r, where Tr is
a size-dependent local functional which acts on the variable
s(~x) and generalizes equation (15).

ii) The distribution of singularities at any valid scale r
follows equation (12), for the same curve D(h).

iii) The curve D(h) derived from equation (12) is convex.
Condition i) means that any point can be assigned to a

fractal singularity manifold Fh, so the multifractal decom-
position is exhaustive; in addition, as these sets are of fractal
nature, i) guarantees that each component is scale invariant.
Condition ii) means that the relations among the different
members of the hierarchy can be referred to an invariant, the
singularity spectrum D(h), so the whole hierarchy is scale-
invariant. The third condition is not strictly necessary, but

it is important to complete the link with statistics: as the
curveD(h) is convex, it coincides with Parisi and Frisch’s es-
timate, equation (14). Hence, the singularity spectrumD(h)
exactly corresponds to the multiplicative cascade. This is
very relevant for us, because a convex, invariant singularity
spectrum is plausibly linked to oceanic turbulence and so it
can reasonably be inferred that the observed multifractal is
of oceanic origin.

An interesting question is the explicit calculation of the
singularity spectrum D(h). Assuming that equation (16)
holds in a given range of scales, it allows to calculate the
singularity exponent h(~x) associated to each point ~x. Then,
the empirical histograms, which are directly linked to D(h)
(see equation 12), can be used to obtain the singularity spec-
trum. We proceed in a similar way to what is done in Turiel
et al. [2006a, b]: as we know that the support of h has
maximum dimension d, there exists a fractal component of
such a dimensionality, that is, there is a value h1 such that
D(h1) = d. This necessarily corresponds to the mode of
the probability distribution, that is the more common value
in the empirical histogram of singularities ρ(h). So, we nor-
malize the histogram by its maximum to remove the implicit
proportionality constant in equation (12), and so we can re-
trieve the singularity spectrum from a single scale, in the
way:

D(h) = d −
log

(
ρ(h)
ρ(h1)

)
log r

(17)

Condition iii) can be easily verified from the expression
above; condition ii) will be verified when the singularity
spectra resulting from the application of equation (17) at
different scales r are compared together. We are now ready
to apply this theoretical framework to satellite SST images
and check out its validity in this context.

3. Data
3.1. Pathfinder SST data

In this study we have used daily Pathfinder Sea
Surface Temperature (SST) data version 5.0 down-
loaded from the Physical Oceanography DAAC at JPL
(http://podaac.jpl.nasa.gov, product number 216). This
dataset is a new reanalysis of the AVHRR data stream
developed by the University of Miami’s Rosenstiel School
of Marine and Atmospheric Science (RSMAS), the NOAA
National Oceanographic Data Center (NODC) and NASA’s
Physical Oceanography Distributed Active Archive Center
(PO.DAAC). This reprocessing uses an improved version of
the Pathfinder algorithm [e.g. Kilpatrick et al., 2001] and
processing steps to produce twice-daily global SST and re-
lated parameters back to 1985, at a resolution of approxi-
mately 4 km, the highest possible for a global AVHRR data
set form NOAA 7, 9, 11, and 14 polar orbiting satellites.

Among the several tests done in this study we have se-
lected two sample images corresponding to ascending passes
(day measurements) for the Gulf Stream and the Agulhas
current areas in May 8, 2000 and November 26, 2002 re-
spectively; see figure 1. All pixels have been included in our
analysis, even those with a quality flag of 0, but excluding
those corresponding to land.

3.2. MODIS SST and brightness temperature data

To validate the results obtained using Pathfinder SST, we
have also used MODIS Terra L1b and L2 data in the Gulf
Stream area corresponding to May 8, 2000 downloaded from
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the Goddard Earth Sciences Distributed Active Archive
Center (GES-DAAC, http://daac.gsfc.nasa.gov/MODIS/).
In particular, long wavelength (11-12µm) SST product
(MOD28L2) that combines brightness temperatures from
channels 31 and 32 has been used. The geolocated and
corrected brightness temperature products (MOD021KM)
from channel 31 only (band center 11.03µm; band width:
0.5µm) has also been used, which is the most similar band
to AVHRR channel 4 used in previous studies [e.g. Bowen
et al., 2002]. No cloud mask was applied in order to have a
situation as close as possible to Pathfinder data.

3.3. Altimetric data

For comparison with SST data, in this study we have
used Delayed-Time Maps of Sea Level Anomaly (DT-MSLA)
produced by Collecte Localisation Satellites (CLS) in
Toulouse (France) and distributed by AVISO (Ssalto/Duacs,
ftp://ftp.cls.fr/pub/oceano/enact/msla/, SSALTO/DUACS
User Handbook [2006]), which combine the signal of all avail-
able altimeters. These maps are processed including usual
corrections (sea-state bias, tides, inverse barometer, etc.)
and with improved ERS orbits using TOPEX/Poseidon as
a reference [AVISO User Handbook , 1996; Le Traon et al.,
1998]. TOPEX/Poseidon has been also used to reduce the
contamination of ocean signal variability on the ERS mean
prior to the computation of its mean profile [Ducet et al.,
2000]. SLA are then regularly produced by subtracting a
seven-year mean value (1993-1999) and prior to the analy-
sis, data are low-pass filtered using a Lanczos filter with a
cutoff wavelength that depends on latitude in order to re-
duce altimetric noise [Ducet et al., 2000]. SLA maps are
finally built, every 10 days, using an improved space/time
objective analysis method, which takes into account long
wavelength errors, on a regular grid of 1/3×1/3 degrees [Le
Traon et al., 1998; Ducet et al., 2000]. To have an estima-
tion of the sea surface topography (η) the RIO-03 Combined
Mean Dynamic Topography [CMDT, Rio and Hernández ,
2004] has been added to the maps of SLA.

4. The multifractal structure of SST images
4.1. Singularity analysis

The key element for the application of the microcanoni-
cal formalism is the ability to obtain singularity exponents.
Equation (15) is very appealing and it is easy to relate to
properties of the flow. However, it does not hold in gen-
eral, because of the existence of long-range correlations in
the flow which could mask the softest singularity exponents
[Arneodo et al., 1995]. To deal with the existence of such
long-range correlations, s(~x) has to be filtered. However,
we do not want to impose a fixed scale in the filter which
could truncate the range of valid scales or, even worse, which
could mask the value of the scaling exponents. Continu-
ous wavelet transforms, defined as projections of the signal
at different resolutions, are appropriated to filter multiscal-
ing functions without disturbing scale invariance properties
[Daubechies, 1992; Arneodo et al., 1995]. According to the
derivations presented in Arneodo et al. [1995], let us consider
a wavelet Ψ capable to vanish any polynomial contribution
up to a given order [Arneodo et al., 1995; Arneodo, 1996].
Equation (15) has a wavelet-transformed counterpart, in the
way:

TΨs(~x, r) ∼ rh̃(~x) (18)

where TΨs(~x, r) is the wavelet projection of s over the
wavelet Ψ at the point ~x and the scale r > 0, defined as:

TΨs(~x, r) ≡
∫
d~x′ s(~x′)

1

r2
Ψ

(
~x− ~x′

r

)
. (19)

TΨs(~x, r) represents a convolution of the signal by a ver-
sion of the wavelet Ψ re-sized by the scale factor r. Equa-
tion (18) has been shown to be fully operative for studying
turbulent flows, and has a more general scope than equa-
tion (15): equation (15) implies equation (18), but the con-
verse is not true. In fact, equation (18) leads to the same
singularity exponents as equation (15) when no long-range
correlation is present and can be employed to perform the
statistical analysis of the energy cascade [Muzy et al., 1991;
Bacry et al., 1993; Kestener and Arnéodo, 2003]. However,
equation (18) has some numerical problems [Struzik , 2000],
mainly due to the requirement of using wavelets Ψ with
several zero-crossings, what reduces the spatial resolution
in the determination of the singularity exponents [Turiel
and Pérez-Vicente, 2004; Turiel et al., 2006a]. This problem
has been solved by processing the modulus of its gradient,
|∇s|(~x), instead of the signal itself. If the signal is multifrac-
tal, the gradient modulus field verifies a relation analogous
to equation (18), namely:

TΨ|∇s|(~x, r) ∼ rh(~x) (20)

(see, for instance, Turiel and Parga [2000]; Grazzini et al.
[2002]), where the exponents h(~x) are simply related to the
exponents h̃(~x), h(~x) = h̃(~x) − 1 [Daubechies, 1992; Turiel
and Parga, 2000; Kestener and Arnéodo, 2003]. The advan-
tage of processing gradients instead of signals is that the
family of functions Ψ suitable to perform the analysis be-
comes larger, and in particular positive functions can be
employed, what gives a fine resolution [Turiel and Parga,
2000]. For this reason we will use equation (20) as the prac-
tical implementation of the operator in equation (16).

¿From a theoretical point of view, all wavelets lead to
the same singularity exponents [Daubechies, 1992]. In fact,
all the wavelets lead to very similar results in experimental
situations, that is, when applied to discretized data [Turiel ,
2003]; nevertheless some wavelets may perform better than
others. Two questions must be taken into account when
choosing a wavelet for analyzing real data. First, the wavelet
must be able to discriminate all the singularities in the given
range [Turiel , 2003; Turiel and Pérez-Vicente, 2004], what
is related with the tail of the wavelet. Second, the wavelet
must allow to access scales as small as possible in order to at-
tain an optimal spatial resolution. This drives the choice to
positive wavelets (when they can be employed; for instance,
with measures), as the minimum resolution of non-positive
wavelets are limited by the number of zero crossings [Turiel
et al., 2006a].

A family which has been shown [Turiel , 2003; Turiel et al.,
2006b] to be the most efficient to attain good discrimination
and resolution capabilities is the Lorentzian family, namely:

Lβ(~x) =
1

(1 + ~x2)β
, β ≥ 1 (21)

The best resolution is attained by β = 1, but L1 has heavy
tails and so it truncates singularities above a given threshold
[Turiel , 2003; Turiel et al., 2006b]. A simple way to circum-
vent this difficulty is to define the wavelet by means of ap-
propriate discretized weights which approximate L1 in the
shorter scales and with lighter tails. This wavelet has proved
to be very efficient in practice [Turiel et al., 2005b, a, 2006b],
attaining good resolution and discrimination capabilities.
We will always use this wavelet for the rest of the paper.
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4.2. Results

We verify here that the requirements i-iii) defining
the microcanonical multifractal formalism are satisfied by
Pathfinder SST data. To do that we must explore the de-
gree of accuracy of equation (20) to perform singularity anal-
ysis. We have chosen SST images corresponding to the Gulf
Stream area and Agulhas current region (figure 1). With
these data, the available range of scales to be explored is
limited by below due to the finite resolution r0 (typically,
one pixel, ∼ 4 km for Pathfinder SST images) and by above
due to the finite size (L). Assuming that equation (20) holds,
the singularity exponent h(~x) is computed performing a log-
log regression on equation (20) (that is a linear regression of
ln(TΨ|∇s|(~x, r)) vs ln r) from r0 up a valid scale, rM < L.
As rM increases, a decrease in the linear regression coeffi-
cient is expected. For each choice of rM , 21 scaling points
are sampled uniformly along the logarithmic axis from ln r0
to ln rM . We will consider that equation (20) is valid when
the regression coefficient is above 0.9 (in absolute value).
We thus define the validity radius at the point ~x, R(~x), as
the maximum radius rM foe which equation (20) is valid.

In top row of figure 2 we present the radii R(~x). Equa-
tion (20) is found to hold for radius up to 110 pixels for the
Gulf stream image and 149 for the Agulhas image (which
corresponds to ∼441 km and ∼596 km respectively). The
maximum validity radii are maximal in the central part of
the image and decrease close to the image limits and the
coast, due to the presence of these boundaries. Regions
contaminated by clouds (e.g. bottom left corner of both im-
ages) have smaller but non vanishing R(~x). This is because
clouds have their own multifractal structure [Arrault et al.,
1997; Turiel et al., 2005a] which is, in general, different form
cloud-free areas. For that reason, the multifractal hypoth-
esis also holds inside clouds but radii are smaller as clouds
are rather small in the studied images.

Having associated a singularity exponent to each point
in the image, we can obtain an explicit multifractal decom-
position, that is, to assign points to the different fractal
components. In addition, we can obtain the empirical esti-
mate of the distribution of singularities at different scales,
(conditions ii) and iii)). A visual inspection of the singular-
ity exponents associated to the same images (second row of
figure 2) is very revealing. A grey-level representation of the
singularity exponents is a possible visualization of the mul-
tifractal hierarchy, and this does not only delineate the most
obvious patterns in SST images (such as boundary currents
and several mesoscale eddies) but also highlights some sub-
tler structures. Notice that the presence of long-range cor-
relations in original SST (for instance, due to the meridional
variations of temperature) masks all such small-amplitude
structures which are revealed by the enhanced detection ca-
pability of singularity analysis, which are independent of the
local amplitude.

The empirical probability density function (PDF) of sin-
gularity exponents are unimodal (figure 3) and we obtain
convex singularity spectra D(h) when equation (12) is ap-
plied. When the singularity spectra arising from different
minimum scales are compared, we still obtain essentially the
same convex curve for all the images analyzed (not shown)
so validating its scale-invariant character.

One may wonder if the rich picture of exponents revealed
by the singularity analysis can be affected by, or even be,
the result of noise contamination in the algorithm used to
get the SST images. It has been noticed [Bowen et al., 2002]
that, when tracking oceanic structures, Brightness Temper-
atures (BT) as recorded by some infrared channels leads
to better results than the multichannel derived SST image.
This has been attributed to a possible increased influence of
noise due to the AVHRR algorithm (NLSST, Walton et al.

[1998]), as it based on the difference of temperatures from
AVHRR channels 4 and 5. In Figure 5 we compare the
singularity analysis for a SST image and the correspond-
ing BT, both from MODIS. The analysis over the BT gives
better results with an improved discrimination over subtler
patterns, although the SST image also allows to recover the
main mesoscale features. However, when the analysis is done
over MODIS SST and BT images reduced (by pixel averag-
ing) to a resolution equivalent to that of Pathfinder, both
analysis provides almost indistinguishable results. If now we
compare with the Pathfinder SST image we can appreciated
that results are equally good for singularity detection as BT
ones (compare Figure 2, bottom left, with Figure 5, bot-
tom). So far, noise effects are important at the resolution
of MODIS images and when working with them the choice
should be shifted to BT images. However, for the scope of
the results here presented Pathfinder images perform almost
equally well.

Another important issue is the oceanic origin of the ob-
served multifractal structure. Infrared signals may be con-
taminated by atmospheric conditions that themselves also
have multifractal properties. Figure 4 presents a sequence
of exponent images obtained during several days in a large
area around the Gulf Stream. As it can be observed from the
figure, many structures (indeed the Gulf Stream signature
itself, but also some mesoscale eddy-like structures) can be
recognised during several days. The structures evolve slowly
(in the scale of days), according to a plausible oceanic origin
compatible with mesoscale dynamics which is not likely for
any atmospheric feature having in general shorter charac-
teristic times. Certainly, the presence of clouds introduces
occlusion and some perturbation on the neighbouring areas,
but due to the local character of the singularity exponents
this type of perturbations are short-ranged compared to the
textures in the oceanic regions.

We can therefore state that SST images verify all the
requirements of the Microcanonical Multifractal Formalism
which confirms its multifractal structure within the range of
available scales. Due to the existence of a multifractal hier-
archy, the most probable origin of the observed structures is
the turbulent character of the oceanic flow. In addition, the
applied singularity analysis provides an spectra of singular-
ity exponents which looks similar even for different regions
(see Figure 3) suggesting that the underlying processes lead-
ing to the multifractal structure are of similar nature. Dif-
ferent phenomena acting significantly on the system would
lead to a non-convex empirical D(h).

5. The Maximum Singularity sreamfunction
method

Results in previous section lead to decompose the signal
into different patterns (called singularity or fractal compo-
nents), each one characterized by a value of the singularity
exponents h(~x). The components can be classified from the
most singular (associated to sharp transitions in the signal)
to the less singular, associated to smooth, continuous ar-
eas [Turiel and Parga, 2000]. As a matter of fact, one of
the main advantages of multifractal formalism is the lack of
any continuity requirement on the signal; even more, some
of the fractal components are associated to discontinuities
and sharp transitions [Arrault et al., 1997; Turiel and Parga,
2000].

5.1. The Most Singular Manifold as the set of main
streamlines

The most singular points in the multifractal hierarchy are
of great interest because of their dynamical and statistical
properties. According to theory the Most Singular Manifold
(MSM), that will be denoted as F̃∞, is given by
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F̃∞ ≡ {~x : h(~x) = h∞}, (22)

where h∞ is the most singular exponent, that is, the mini-
mum observed value of singularity [Turiel et al., 1998; Turiel
and Parga, 2000]. This definition is however too restrictive
in practice, because there is an implicit assumption of homo-
geneity in the multifractal structure. Quite often, however,
the signals under analysis extend over regions consisting of
different areas, each one dominated by different structures
and separated by circulation barriers. In such cases, al-
though each part has a multifractal character, they do not
necessarily have the same multifractal structure with ex-
actly the same multifractal parameters, and in particular
h∞ needs not to be the same all over that region. To over-
come these difficulties the MSM is extended to a coarser
version. For our work, the MSM, now denoted F∞, will be
given by:

F∞ ≡ {~x : h(~x) < h0}, (23)

where h0 is the most probable value. This definition is a
coarse graining of the actual MSMs but fully operational in
practice and for the scope of this paper we will employ it.

From the statistical point of view, the MSM has been re-
lated with the vertex of the energy cascade in turbulence
[She and Leveque, 1994]. In 2D decaying turbulence stud-
ies it is observed that there exist a tendency towards an
alignment of passive tracer gradients and vorticity gradients
(active tracer) [Lapeyre et al., 2001]. From the dynamical
point of view, it has been experimentally shown that the
multifractal structure of reactive tracers is essentially the
same as that of passive tracers [Abraham and Bowen, 2002],
what has allowed to conclude that singularities are mainly
advected by the flow, a fact which is consistent with the
known theory [Frisch, 1995]. Bearing this in mind, each
fractal component of the tracer field can be regarded as the
union of some instantaneous stream-lines. An experimental
evidence is that observed fractal components in fluids have
dimensions greater than 1 [Turiel and Parga, 2000; Grazz-
ini et al., 2002; Turiel et al., 2005a, b], what is consistent
with having components consisting in streamlines. Separat-
ing each one of these stream-lines from a higher dimension
fractal component is very complicated, and can only be done
without imposing further requirements when the dimension
of the component is exactly equal to 1. This is precisely
the case for the MSM, what allows to recognize the main
stream-lines in the flow. Furthermore, the MSM is associ-
ated to the largest order singularities, so the stream-lines
associated are likely those inducing the strongest shear.

5.2. sreamfunction reconstruction from the MSM

Once the MSM is associated to the main instantaneous
stream-lines of the flow we can recover the velocity field
from the scalar images. In general for a given distribution
of the gradient of a signal, the SST in our case, defined
only over the MSM, there is an algorithm relying on the
statistical properties of FDT which allows to regenerate a
divergence-free field which coincides with the starting data
on the MSM and which is compatible with some basic sta-
tistical requirements [Turiel and del Pozo, 2002]. Indeed, in
this algorithm, the input data are the values of the gradi-
ent of the signal over the MSM, and the reconstruction is
performed by means of a linear vectorial kernel ~g. The re-
constructing kernel is completely defined when some require-
ments are imposed. These requirements are the following:
determinism, linearity, statistical translational invariance,

statistical isotropy and compatibility with the known shape
for the power spectrum. The reconstruction algorithm has
shown to be of great quality in different applications, includ-
ing image processing [Turiel and del Pozo, 2002], analysis of
meteorological images [Grazzini et al., 2002; Turiel et al.,
2005b] and time-series analysis [Turiel and Pérez-Vicente,
2003, 2005].

Given a multifractal signal, in this case the sreamfunc-
tion of the flow ψ(~x), we denote ∇∞ψ as the vector field of
gradients restricted to the MSM only, that is,

∇∞ψ(~x) ≡ ∇ψ(~x)δ∞(~x) (24)

where δ∞(~x) means a delta-like function defined over F∞
(so it gives contributions on F∞ only). The reconstruction
algorithm [Turiel and del Pozo, 2002] is given by:

ψ = ~g ⊗∇∞ψ (25)

where the symbol ⊗ stands for the convolution dot product,

~g ⊗∇∞ψ ≡ gx ∗
∂ψ

∂x

∣∣∣
∞

+ gy ∗
∂ψ

∂y

∣∣∣∣
∞

, (26)

and ∗ is the standard convolution product. The reconstruct-
ing kernel ~g has a very simple functional shape. In Fourier
space it reads:

~̂g(~k) =
i~k

k2
, (27)

where ~k is the wave vector. Taking into account that the
gradient of the sreamfunction must be perpendicular to the
stream-lines and that in fact ∇ψ = ~ez × ~v (~ez is the normal
vector perpendicular to the xy plane), the reconstruction
formula, equation (25), can be written in terms of the ve-
locity over the MSM (~v∞) as:

ψ = ~g ⊗ (~ez × ~v∞) (28)

The stream-lines forming the MSM give information
about the directions of the velocity vectors, but not about
their moduli or sense, which implies that they need to be
independently defined. The velocities over the MSM can be
written as

~v∞ = ξ∞U∞~v
∗
∞ (29)

where U∞ is the modulus of the velocity, ξ∞ the sign and
~v∗∞(~x) is a non-dimensional velocity field with modulus 1 and
the same sense of the velocities than that of the gradient of
s rotated counter-clockwise 90 degrees, that is, velocity is
made to point to the same side as ∇s(~x) × ~ez. The quan-
tities U∞ and ξ∞ must be given by some extra, external
source, as the analysis so far is geometric and do not allow
to retrieve them. In Turiel et al. [2005b] it was proposed the
simplest possible guess for these quantities:

UM
∞ = ξM

∞ = 1 (30)

This guess is a natural extension of the thermal wind
hypothesis, as it states that the sense (but not the direc-
tion) of the velocity comes from the one induced by the SST
gradient. When this guess is substituted in equation (29),
the function ψM (~x) resulting from the application of equa-
tion (28), is known as the Maximum Singularity sreamfunc-
tion (MSS), first introduced in Turiel et al. [2005b].



X - 8 ISERN-FONTANET ET AL.: MULTIFRACTALITY AND OCEAN VELOCITIES

5.3. Results

¿From the computation of the singularity exponents of
SST images, the MSM (identified with the main stream-
lines) has been extracted using a threshold h0 = 0.2. This
value has been selected because it represents a compromise
between capturing as much patterns as possible but keep-
ing the MSM lines as thin as possible. To show how the
choice affects the captured sets, in figure 6 we plot the re-
sulting MSM using several values of the threshold for the
Gulf Stream region. The threshold controls the number of
structures retained in the image. As the value of the singu-
larity threshold is decreased, the retained points correspond
to the sharpest gradients of the image, which are associated
to a mixture of ocean thermal fronts, land-water transitions
and cloud boundaries. A too small value of h0 would exces-
sively filter some coherent fronts, which are put in evidence
as h0 approaches the most probable value (compare the im-
ages for h0 = 0 and h0 = 0.1, 0.2) and then, as h0 goes
on increasing the MSM becomes thicker and thicker. Al-
though the MSM should represent streamlines, numerical
limitations and data resolution may force some lines to end
within the flow or intersect between them. Another impor-
tant aspect concerns the effect of land-water transitions and
cloud contaminated pixels. Land-water transitions are step-
like (as no value is assigned to the pixels on land) and so
the MSM aligns with the coastline. This part of the MSM
acts as a fictitious parallel current which actually represents
the boundary condition at the coast. This is very useful, as
it allows treating coasts with the same reconstruction for-
mula and produce sreamfunctions with the correct boundary
conditioning. A somewhat different situation appears with
clouds. Clouds are complex structures with their own inner
singularity organization and for that reason some exponents
are detected inside. However, the cloud-water transition be-
haves in a fashion much similar to the coastline, so inducing
an extra boundary condition (as if the cloud was an island;
see figure 2, third row, where their lower-left corner is con-
taminated by clouds). In this case the effect is not beneficial
as for coasts, as it distorts the actual flow course. However,
this boundary condition guarantees a short range perturba-
tion of the MSS and hence the influence of the clouds is kept
rather controlled in space (contrary to what happens with
other methods).

The computation of ψM from SST is straightforward (Fig-
ure 7). It provides an field with the same resolution as the
original SST image but in contrast, the MSS field reveals
a rich structure of eddies, fronts and similar features. A
qualitative comparison between the MSS and an indepen-
dent estimation of the streamfunction can be made just by
over-plotting the sea level anomaly η from altimetry to ψM

(Figure 7). A good correspondence between the isolines of
the MSS and η can be observed. In particular, there is a
good matching between mesoscale eddies and other struc-
tures from one field to the other in Gulf Stream image, a bit
worse in the case of Agulhas image. Notice that the MSS
contains a much richer structure due to its greater spatial
resolution. In some specific areas, sea level contours are not
co-located with MSS lines but cross them with a high angle
(see for example the area close to the point 40o S, 23o E).
However, when comparing with altimetry it is important to
take into account that sea level is measured only on satellite
tracks and an interpolation method have been used to re-
cover the 2D field. Recently, it has been shown that if only
two altimeters are used, which is the case of the altimetry
data here used, there might be some erroneous reconstruc-
tion of ocean flow patterns [Pascual et al., 2006].

In spite of the general good correspondence between
both fields, there are other qualitative differences. For the
Gulf Stream image, the Gulf Stream appears as a tube-like

structure (higher values of ψM in the center of the stream
decreasing towards the borders) instead of the step-like
shape (monotonic increase of the sreamfunctions towards
the South) that can be observed in altimetric maps. To shed
some light on this phenomenon, Figure 8 shows the vector
field associated to the MSS, ~v∗∞, for a small area centered
over the Gulf Stream jet. ¿From the figure it is evident that
velocities have opposite senses in the meridional boundaries
of the stream, which can be easily identified as the void re-
gion bounded by the MSS along the diagonal of figure 8 (see
also figures 2 and 6). The lack of internal thermal structure
within the jet leads the sreamfunction reconstruction using
ξ∞ = 1, to have a tube-like structure instead of step-like.
The origin of this erroneous determination of the sign of ~v∗∞
is the pointing of velocities in the direction derived from the
gradients of the SST. However, notice that when deriving
ψM from SST it will be a good approximation to the actual
ψ if temperature gradient points in the same sense as the
density gradient.

6. Integration external data sources: the
case of altimetry

As shown in the previous section the MSM is essentially
a geometric method very precise and useful to put in evi-
dence structures hidden in the original SST. The inferred
ψM is a first approximation to the real streamfunction that
has some limitations, in particular cannot retrieve correct
values of U∞ and ξ∞ and may fail in some cases to repro-
duce the velocity field related to some areas. This can be
overcome by integrating additional independent information
on the velocity field. Let us suppose that we have velocity
measurements coming from other devices (Lagrangian floats,
current-meters, ADCP measurements, etc.) that provide in-
formation over some points of the MSM. Let us denote by
~vi,∞ such velocity field. Now, U∞ and ξ∞ can be simply
evaluated using ~vi,∞ through

U i
∞ = ‖~vi,∞‖ (31)

and

ξi
∞ =

~vi,∞ · ~v ∗∞
|~vi,∞ · ~v ∗∞|

(32)

As an example, we will use geostrophic velocities derived
from altimetry to improve the results of the previous sec-
tion. This is an interesting case because altimeters provide
much more information compatible with the spatial cover-
age of an SST image and, from an operational point of view,
being both satellite data the combination can be done in a
routine way.

Given the sea surface topography η(~x), a velocity field
can be estimated through the geostrophic approximation

~vη(~x) = ~ez ×
g

f0
∇η(~x) (33)

where f0 is the Coriolis parameter at a reference latitude
and g the gravity. The geostrophic sreamfunction, denoted
by ψη(~x), is defined as:

ψη(~x) =
gη(~x)

f0
(34)

Now, introducing ψη(~x) in 31 and 31 we can recompute
ξη
∞ and Uη

∞. In Figure 9 we have presented these fields .
The value of ξη

∞ may change from one to another line of
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the MSM, but it is consistently constant along each stream-
line. More interestingly, the figures show that Uη

∞ is al-
most constant or changes smoothly along the MSS lines
in the Gulf Stream region; for the Agulhas area the Uη

∞
evolves smoothly during shorter segments due to the worse
agreement between altimetry and SST. Figure 10 plots the
same zoom of the velocity field over the MSS than figure 8
but with the calibrated velocities (~vη

∞) instead of the non-
dimensional ones (~v∗∞). From this figure it is evident not
only the variation of speed but the change of the sign of ve-
locities in the southern boundary of the Gulf Stream. Fig-
ure 11) shows the sreamfunction (ψη) integrating the ad-
ditional information. Stream-lines are almost compatible
with those from ψM (as both have been derived from the
same MSM) but in this case given a correcting the right di-
rection more consistent with the known shape of the Gulf
Stream. To finish, let us remark that the scheme used here to
incorporate additional information in order to improve the
streamfuction is general and can be applied without changes
to include direct in situ velocity measurements of velocity
coming from any device.

7. Conclusions

In the first part of the paper we have shown that the ther-
mal structures observed in SST images (Pathfinder SST)
exhibit a multifractal structure according to what it is ex-
pected for a turbulent flow. A singularity analysis has been
carried out to compute the scaling exponents associated to
the thermal gradients over the range of available scales in
the images. The spectrum of singularity exponents satisfies
the expected properties of multifractality found in fully de-
veloped turbulent flows. We have observed this for a time
series of images over the same area and for two different
areas, and in all cases we obtained roughly the same singu-
larity spectra. This fact could be related to the existence
of common mechanism in the generation of oceanic thermal
structures at the mesoscale, although much more system-
atic analysis over a greater set of images needs to be done
in order to prove it.

The singularity analysis confirms that SST images satisfy
the microcanonical multifractal formalism, which allows to
assign anomalous scaling exponents not only for global sta-
tistical properties of the field, as it is common in the liter-
ature on turbulence studies, but to assign it to each point
of the analyzed data. The singularity analysis applied to
the SST images have revealed a very rich structure of pat-
terns not evident from a look into the original image, so
working as an efficient edge detector. Another consequence
of this analysis is that the field can be separated in fractal
components, depending of the exponents values, which have
a direct translation in classifying data points in sets. The
most relevant set is associated to the most singular expo-
nent, the so-called the Most Singular Manifold, MSM. The
MSM for SST images studied here is associated to sharp
thermal fronts, not necessarily intense at a global scale but
at a local scale.

In the second part of the paper, the extraction of the
MSM from the SST images has been used to infer the most
informative streamlines, the Maximum Singular sreamfunc-
tion denoted as the MSS method. Thus, an ocean velocity
field over these streamlines can thus be obtained from a sin-
gle image. The crucial step here is to assume that the MSM
is related with the instantaneous sreamfunction because the
singularities are mainly advected by the flow. Despite of
a formal proof is needed, the results confirms that the ob-
tained field is very reasonable and comparable with for ex-
ample the sea level anomaly field from altimetry. However,
although based on general considerations on the statistical

properties of the flow, the method is essentially geometric as
no specific dynamical information of the system under study
is included. Since the direction of the velocity has to be tan-
gent to the streamlines, it can be obtained from the method
itself. But the modulus and sign of these velocities remain
undetermined. A first choice to solve this is to arbitrarily fix
the modulus of the velocity to 1 and derive the sign from the
sign of the tracer gradient. Although this does not provide
the correct sreamfunction everywhere, it has the effect of en-
hancing the structures present in SST images. Alternatively,
we have shown that a simple scheme can be built to include
additional information on the velocity field. Any indepen-
dent measurement or estimate of the velocity on the main
streamlines (Lagrangian drifters, current-meters, etc.) can
be integrated within the MSS method. Here, the case of in-
corporating the geostrophic velocities derived from altimetry
has been applied leading to a streamfunction that reproduce
much more correctly some undetermined features of the real-
istic sreamfunction. Thus the MSS method may potentially
be used to improve the existing altimetric maps, providing
higher resolution estimates of the geostrophic stream func-
tion or even to include dynamical constrains such as ones re-
cently implemented to analyze microwave SST Lapeyre and
Klein [2006]; Isern-Fontanet et al. [2006a].

Finally, the MSS method can be used as an alternative to
other methodologies developed in the past to infer motion
from satellite images [i.e. Horn and Schunk , 1981; Emery
et al., 1986; Kelly , 1989; Garćıa and Robinson, 1989; Whal
and Simpson, 1991; Wu et al., 1992; Kuo and Yan, 1994;
Côté and Tatnall , 1995; Afanasyev et al., 2002; Bowen et al.,
2002]. Roughly speaking, these methods obtain the veloc-
ity field through a matching algorithm of contour patterns,
edges or correlation analysis between windowed regions of
sequential images. In contrast, the major benefits of the
MSS method is that the streamfunction is obtained from a
single image and with same resolution as the original SST
image. In addition, as far as the hypothesis of multifractal-
ity is satisfied images of any other tracer; for example, ocean
color images from visible sensors should be equally valid for
retrieving the MSS. In many situations the SST may not be
a sufficient representative of the underlying flow. In such
case the information provided by visible sensors, which is
an integration over the first meters of the ocean, may reflect
better the flow of the upper layer of the ocean.
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Figure 1. Pathfinder SST images of the Gulf Stream
area for May 8 2000 (left) and the Agulhas current area
for November 26 2002 (right).
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Figure 2. Top: Radius R(~x) for which equation 18
holds for the SST images of figure 1. Bottom: Singular-
ity exponents, h(~x), for the same images.
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Figure 3. Top left: Empirical PDF’s for the singular-
ity exponents over the Gulf Stream area in May 6, 2000.
Top right: Associated singularity spectra, according to
equation (12). Bottom left: Empirical PDF’s for the
singularity exponents over the Agulhas region in Novem-
ber 26, 2002. Bottom right: Associated singularity
spectra for th Agulhas region. For all graphs, continuous
lines correspond to the curves obtained at the minimum
possible scale (that of Pathfinder SST image resolution, 4
km) while dashed lines are obtained when the minimum
scale is 32 km. Similar results were obtained at different
dates and locations.
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Figure 4. Singularity exponents as obtained from
Pathfinder SST images during several days in May, 2000
at the Gulf Stream area. Land pixels and those with
temperatures below 5 o C have been masked to ease com-
parison. Top row: 6 and 7 May. Middle row: 8 and 9
May. Bottom row: 10 and 13 May.
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Figure 5. Top: Singularity exponents detected from
a SST image (left) and the corresponding channel 31
brightness temperature (right) from MODIS in May 8,
2000 at the Gulf Stream area. Bottom: Same results
when resolution is reduced by a factor 4 (1 pixel=16 km).
The black dashed box corresponds to the area analyzed
with Pathfinder SST

Figure 6. Most Singular Manifold (F∞) obtained using
different values of the threshold exponent (h0). ¿From
left to right and from top to bottom: h0 = −0.1, h0 = 0,
h0 = 0.1, h0 = 0.2, h0 = 0.3, h0 = 0.4.
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Figure 7. Comparison between the MSS (ψM (~x)) and
the closest sea surface topography map (black lines, units
are cm) for the Gulf Stream area (top) and the Agulhas
current area (bottom).
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Figure 8. Detail of the non-dimensional velocities on the MSM (~v∗∞) for the Gulf Stream current.

Figure 9. Left column: Gulf Stream images. Right
column: Agulhas image. Top figures: MSM with a color
code corresponding to the value of U∞. Bottom figures:
MSM with a color code corresponding to ξ∞
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Figure 10. Detail of the calibrated velocities on the MSM (~vη
∞) for the Gulf Stream current.
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Figure 11. Normalized sreamfunctions ψη obtained
from the re-calibrated velocities for the Gulf Stream area
(top) and the Agulhas current area (bottom).


