
P
le

as
e 

no
te

 th
at

 th
is

 is
 a

n 
au

th
or

-p
ro

du
ce

d 
P

D
F 

of
 a

n 
ar

tic
le

 a
cc

ep
te

d 
fo

r p
ub

lic
at

io
n 

fo
llo

w
in

g 
pe

er
 re

vi
ew

. T
he

 d
ef

in
iti

ve
 p

ub
lis

he
r-a

ut
he

nt
ic

at
ed

 v
er

si
on

 is
 a

va
ila

bl
e 

on
 th

e 
pu

bl
is

he
r W

eb
 s

ite
 

 1

  
Probabilistic Engineering Mechanics 
Volume 22, Issue 2, April 2007, Pages 113-126 
doi:10.1016/j.probengmech.2006.08.003 
© 2006 Elsevier Ltd All rights reserved 
 
 

Archimer, archive institutionnelle de l’Ifremer 
http://www.ifremer.fr/docelec/ 

 

 
 
 

Survey of stochastic models for wind and sea state time series 
 

V. Monbeta, b,  , , P. Ailliota,   and M. Prevostob,  
 
 
a Department of Applied Statistics, University of South Brittany, BP 573, 56017 Vannes cedex, France 
 

b Hydrodynamics and Metocean, IFREMER/DCB/ERT/HO, BP 70, 29280 Plouzané, France 
 
 
 

 
 
 
 
 
 
Abstract:  
 
The knowledge of sea state and wind conditions is of central importance for many 
offshore and nearshore operations. In this paper, we make a complete survey of 
stochastic models for sea state and wind time series. We begin with methods based 
on Gaussian processes, then non-parametric resampling methods for time series are 
introduced followed by various parametric models. We also propose an original 
statistical method, based on Monte Carlo goodness-of-fit tests, for model validation 
and comparison and this method is illustrated on an example of multivariate sea state 
time series.  
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1 Introduction 
The knowledge of sea state and wind conditions is of central importance for many 
offshore and nearshore operations. For instance, wind time series permit to evaluate 
the power values produced by wind turbine, or to investigate load matching and 
storage requirements (Brown et al., 1984), (Castino et al., 1998). The evolution of 
sea state and wind conditions is also determinant in coastal erosion (Waeles et al., 
2004). And several questions concerning safety, 



reliability and feasibility of offshore activities (O’Caroll, 1984), (Monbet et al.,
2001a) as well as maritime transport (Baxevani et al., 2004), (Ailliot et al.,
2003) and the drift of floating objects (Ailliot et al., 2006b)) or oil spills are
directly related to wave and wind conditions.

Even if there is a huge amount of data collected on physical quantities related
to wind and waves, they remain sparse relatively to the size of oceans (simply
one can not observe everywhere at the same time). Hence estimates of risks
for undesired scenarios for ocean operations are usually computed by means
of stochastic models. Often scenarios are defined as excursions above critical
values of some responses of complicated systems and Monte Carlo can be the
only way to derive probabilities of interest.

In this paper, we make a survey of stochastic models for wind and sea state
time series and we focus mainly on simulation. We have chosen to consider
only time series at the scale of the sea state (i.e. with time step from 1 to 6
hours) and at a given geographical point. As a consequence, events at the scale
of waves are not modeled and no spatial information is taken into account.
Several authors have proposed spatio-temporal models, see for instance (Van-
hoff et al, 1997), (Baxevani et al., 2004), (Ailliot et al., 2006a) and references
therein.

In section 2, after a short description of the various sources of data, we discuss
what a good model should be and then we briefly present various methods to
deal with the non-stationarities (interannual variability, seasonal and daily
components,...). Then the most famous tools for time series modeling, i.e. the
Box and Jenkins method (Box et al., 1976) and some extensions of it are
introduced in section 3. Non parametric resampling methods are described
in section 4. These methods was rarely proposed in the literature for sea
state processes but we think that they could be of high interest for many
applications. In section 5, various parametric models are briefly presented.
Then, in section 6, a validation method is proposed to measure the ability of
a model to simulate realistic artificial sequences. Finally, in section 7 some of
these methods are illustrated on a multivariate time series describing sea state
conditions along a ferry line in Aegean Sea.

2 Generalities

2.1 Data

The data which describe wind and sea state conditions can be gathered in two
categories: gt;
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In situ observations obtained from ships, buoys, satellites, ...

Outputs of meteorological models, i.e. hindcast, nowcast or forecast data.

Some authors have compared the quality of these different kind of data, see
for instance (Woolf et al., 2002), (Caires et al., 2004), (Izquierdo et al., 2005)
and references therein. The main drawbacks of buoys data is that they often
include missing and noisy data and the longer buoy time series are typically
only about 10 years long. Satellite data are recorded with very small time
steps along the track but it generates sparse data in time for a given location.
Generally, outputs of numerical models are easier to use because these data
are available on long period (up to 50 years) and there is no missing data. But
their quality is not always good, in particular, they are known to be smoother
as in situ data and also to underestimate extreme events.

Let us now introduce some notations for the synthetic parameters which are
used throughout this paper. For more precise definitions, see (IAHR, 1989).
gt;

Hs: significant wave height (m). For Hs the most common definitions are
the average of the highest one-third of wave heights or 4 times the standard
deviation of the sea surface elevation process. These definitions are equivalent
for seas with narrow band spectra. There is a third definition of Hs, namely
Hs = 4

√
m0, where m0 is the zeroth-order moment of the sea state spectrum.

T : wave period (s). The most often used definitions are the spectral peak wave
period, which is the inverse of the frequency at which the spectral density
function of the elevation time series is maximum, and the zero crossing period
which is the average time between successive zero downcrossing waves.

Θm: mean direction to which waves are traveling (degree).

U : wind intensity (ms−1). It is the mean of the speed of the air particles at 10
meters over a fixed time period (20 minutes in general).

Φ: wind direction (degree). It is the mean direction from which the wind is
blowing at 10 meters over a fixed time period (20 minutes in general).

In practice, for each sea state, the sea state parameters Hs, T and Θm can
be deduced from the wave directional spectra, and this spectra may exhibit
several peaks. It is the case for instance when several systems coexist, such as
wind sea generated by local winds and swell radiated from distant storms. For
some applications, it can be useful to separate the wave energy into different
components (see Wang et al., 2001), but such separation is not considered in
this paper.
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2.2 What is a good model?

First of all, the response to this question depends on what the model is built
for. The contexts of use considered in this paper are: explanation of a physi-
cal phenomena, time series simulation, forecasting, time series reconstruction.
However, a particular attention is paid to simulation and reconstruction. The
word reconstruction can refer to two different problems: missing data recon-

struction which uses the observed time series itself for missing values com-
pletion (Stefanakos et al., 2001) and cross-reconstruction where a time series
is reconstructed given another one. For instance a wave time series can be
approximately reconstructed given a wind time series (Ailliot et al., 2003) or
wave time series at other locations (Arena et al., 2004)

Once the context of use is specified, the choice of the model relies on a com-
promise between its ease of use and its accuracy in describing various features
of the physical phenomenon.

The ease of use can be measured qualitatively according to several criteria:
gt;

model robustness to the data source (ship, buoy, satellite, meteorological
model). As mentioned above, there may exist missing or aberrant data, the
data may not be recorded at a constant time step or only descriptive statistics
may be available, such as marginal distributions or persistence durations, for
instance (Vik, 1981), (Hogben, 1987).

model robustness to the nature of the process. Each sea state parameter has
specific characteristics, its evolution may also depend on the geographical area
and on the season. Furthermore, depending on the considered application, the
process may be univariate or multivariate, and in the second case a strong
dependence may exist between the components as for Hs and T or Hs and
U . Finally, the state space of the considered parameters can be either finite,
positive or the torus R/2πZ for the circular processes Θm and Φ.

mathematical properties: amount of data needed to accurately estimate the
model, asymptotic properties of the estimators...

necessary time for implementation of the algorithms, and running estimation,
simulation or reconstruction.

The accuracy of a model can be evaluated by comparing statistics of the ob-
served time series with those computed from artificial realizations of the model.
Generally, only graphical comparison are performed, and it does not permit to
measure the goodness of fit. We propose in section 6 a formal method, based
on Monte Carlo tests, to compare and validate the models. It quantifies, in
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particular, the ability to restore chosen features of the observed time series
such as the marginal cumulative distribution functions (cdf), the distribution
of annual extremes, the distribution of storms duration, the autocovariance
functions, etc.

2.3 Modeling non-stationarity

Generally, several types of non-stationary components can be identified in me-
teorological time series. In particular, there may exist interannual components
induced by natural cycles (ENSO, IPO, NAO...) or human activities, seasonal
components and also daily components.

Athanassoulis and Stefanakos (1995) identified year-to-year variability in sea
state time series by comparing mean annual values. Different methods have
been proposed to describe trends in time series (see Brockwell et al.(1991)).
For example, they can be approximated by a polynomial function and then
eliminated in order to obtain a trend-free time series. However, such approach
is difficult to implement here because of the few amount of data with respect
to the temporal scale of the events.

Seasonal components are generally easy to observe on meteorological time
series and several methods have been proposed to describe these components
(see Cunha et al., 1999, for a recent review). Two methods are commonly
used: gt;

Let {Yt} denote the process under consideration. It can be assumed, in a first
approximation, that the following decomposition holds (Walton et al. (1990),
Medina et al. (1991), Stefanakos et al. (2005)):

Yt = m(t) + σ(t)Y stat
t (1)

where m and σ are deterministic periodic functions with period one year which
represent respectively the seasonal mean and standard deviation of the pro-
cess. And {Y stat

t } is assumed to be a stationary process. Methods for esti-
mating the deterministic components m(t) and σ(t) and for checking the sta-
tionarity of Y stat

t have been discussed by Athanassoulis et al. (1995). When
{Yt} is an univariate process, m and σ can be approximated by a low-order
trigonometric polynomial. An other common approach consists in computing
the estimates of the monthly mean and the monthly standard deviation as
seasonal pattern. The periodic functions m and σ are then deduced by repeat-
ing the same estimated pattern over successive years (Stefanakos et al., 2005),
(Monbet et al., 2001a). This last method is easily generalized to multivariate
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processes. In this case, σt is a matrix which must describe interactions between
the different components.

In (Boukhanovski et al, 1999) and (Stefanakos et al., 2002), the assumption
that m(t) and σ(t) are deterministic is relaxed in order to introduce random
variation, and it is assumed that

Yt = m(t) + σ(t)(Y stat
t + εt) (2)

where εt is a white noise process evolving at a monthly time scale.

An other approach consists in supposing that the process is piecewise station-
ary and to fit separate models for each month or for each season of the year
(Brown et al., 1984), (Borgman et al., 1991).

In the first method, it is assumed that the standardized process Y stat
t is sta-

tionary, and it may be a too strong assumption in some cases. However, its
main advantage is that the estimation of m and σ does not require a lot of
data, typically 3 or 4 years of data provide accurate estimates. On the con-
trary, in order to apply the second method, more data i generally required
since a different model is fitted each month. Furthermore, artificial ruptures
of the model are induced between successive months. But a great advantage
of this method over the first one is that the stationarity assumptions seem less
restrictive.

Some wind and sea state time series also exhibit daily components. The most
common method to remove this components is to use the decomposition (1),
with m and σ periodic functions with period one day (see (Brown et al., 1984),
(Daniel et al., 1991)).

In the sequel, we suppose that all the studied processes are stationary.

3 Models based on Gaussian processes

In general, wind and sea state time series cannot be assumed to be Gaussian.
For instance, the marginal distribution of these processes are often asymmet-
ric with positive support and positive skewness. However, when they have a
continuous state space, it is possible to transform these time series into time
series with Gaussian marginal distributions. If the transformed time series is
supposed to be Gaussian, we can then use one of the existing techniques to
simulate Gaussian processes (ARMA models, exact simulation methods,...).
Let us describe more precisely the simulation method in a general framework.
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Let {Yt} be a stationary process with values in Rd. We assume that there
exists a transformation f : Rd → Rd and a stationary Gaussian process {Xt}
such that Yt = f(Xt). The procedure consists in three main steps: gt;

Model calibration, which consists in determining the function f and the sec-
ond order structure of the process {Xt}. In practice, f is chosen such that
the marginal distributions and the second order structures of the processes
{f(Xt)} and {Yt} match. Transformation of different nature can be applied :
Box-Cox transformation which directly operates on the process (Cunha et al.,
1999), Rozenblatt transformation which is based on the marginal distribution
of the process (Monbet et al., 2001a) and the g−transformation described in
(Rychlik et al., 1997) which preserves the crossing level of the process.

Sample generation in which realizations of the process {Xt} are generated
given the second order structure estimated in the previous step.

Mapping. In this step, the generated samples of {Xt} are transformed into
samples of {Yt} using the transformation f .

This general method includes in particular the method of Box and Jenkins
(1976) and the Translated Gaussian Process method which are described more
precisely hereafter.

3.1 Box and Jenkins method

The method of Box and Jenkins (1976) is undoubtedly the most usual model
for wind time series (Brown et al., 1984), (Daniel et al., 1991), (Nfaoui et al.,
1996) and sea state time series (O’Carroll, 1984), (Stephanakos, 1999), (Cunha
et al., 1999), (Yim et al., 2002). It is also used in many other application fields.

Let us first consider the univariate case for simplicity. The transformation
g = f−1 is selected in the family of the Box-Cox transformations (Cunha et

al., 1999):

g(y) = (yλ − 1)/λ for 0 < λ ≤ 1 and g(y) = ln(y) for λ = 0

Parameter λ is selected in such a way that the marginal distribution of Xt =
g(Yt) is roughly Gaussian. Various methods can be used to estimate the param-
eter λ (Brown et al., 1984), (Daniel et al., 1991). Generally, for Hs, the trans-
formation g(y) = ln(y) is used (O’Carroll, 1984), (Stefanakos et al., 1999),
the marginal distribution of this process being generally well approximated
by a lognormal distribution. For the wind intensity, one generally applies a
Box-Cox transformation with 0.5 < λ < 1 (Brown et al., 1984), (Nfaoui et al.,
1996). When the process is multivariate, a Box-Cox transformation is usually
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applied independently on each component.

Then, once the transformation f has been selected, an ARMA model is ad-
justed to the transformed time series. For the process Hs, the following models
have been proposed: AR(1) (O’Carroll, 1984), ARMA(2,2) (Stefanakos et al.,
1999), AR(20) (Cunha, 1999) and ARMA(4,4) (Yim, 2002). For the bivariate
time series (Hs, T ), Guedes Soares et al (2000) select AR(4) or AR(5) mod-
els depending on the location. For the wind intensity U , models AR(1) (Toll,
1997), AR(2) (Daniel et al., 1991), (Nfaoui et al., 1996), (More et al., 2003)
or AR(4) (Poggi et al., 2003) have been used, more complex models giving no
improvement.

3.2 Translated Gaussian Process

For wind and sea state parameters, another approach, based on the same prin-
ciple is also popular. It is a non parametric method, in which the function f
is selected on the basis of the normal score transformation and the Gaussian
process is simulated by using exact simulation algorithms. This approach was
been initially proposed by (Walton et al., (1990)) in order to simulate real-
izations of the process Hs and then extended by (Borgman et al., 1991) to
multivariate time series (Hs, T,Θm) and it was also applied, for example, by
to simulate the wind pressure on buildings (see (Gioffre et al., 2000) and ref-
erences therein) and by (DelBalzo et al., 2003) to simulate (Hs, T,Θm) using
buoy and ship observations . In the sequel, it will be denoted TGP (Translated
Gaussian Process).

The normal score transformation, which permits to transform a continuous
random variable Y into a Gaussian variable X, is defined as

x = N−1FY (y)

where FY is the cumulative distribution function (cdf) of Y and N is the stan-
dard normal cdf. For multivariate variables Y = (Y1, · · · , Yn), a first general-
ization consists in applying independently the transformation on the various
components:

(x1, · · · , xd) = g(y1, · · · , yd) = (N−1FY (1)(y1), · · · , N−1FY (d)(yd))

with FY (i) the cdf of {Y (i)}. This method is used for example in (Borgman
et al., 1991) and in (Gioffre et al., 2000). However, it was shown in (Monbet
et al., 2001a) that this transformation does not allow to restore the marginal
joint distribution when a strong relation exists between the components of the
process. The Rozenblatt transformation (3) can then be used:

g : (y1, · · · , yd) → (3)
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(

N−1FY (1)(y1), N
−1FY (2)|Y (1)=y1

(y2), · · · , N−1FY (d)|Y (1)=y1,···,Y (d−1)=yd−1
(yd)

)

where FY (1) denotes the cdf of Y (1) and FY (k)|Y (1)=y1,···,Y (k−1)=yk−1
the one of

the conditional distribution P (Y (k)|Y (1) = y1, · · · , Y (k−1) = yk−1). In (Monbet
et al., 2001a), the case of (Hs, T ) was given as example. In (Ailliot et al.,
2001) a transformation which takes into account the specificity of the circular
parameters Θm is proposed for the process (Hs,Θm). Using the same idea, in
section 7 the transformation (4) is used for (U,Φ):

g : (u, φ) → (R−1FU |Φ=φ(u), FΦ(φ)) (4)

where R denotes the cdf of a Rayleigh distribution. If we denote (L,Θ) =
g(U,Φ), with g defined by (4), then it can be shown that the bivariate marginal
of (Lcos(Θ), Lsin(Θ)) is Gaussian.

Generally, the cdf used to defined the transformation f are estimated using non
parametric methods (see (Athanassoulis et al., 2002) and references therein).
Parametric models have also been used, in particular to approximate the tails
of the distribution (Walton et al., 1990). Several authors have also proposed
parametric models for the multivariate distribution of metocean parameters
(see (Athanassoulis et al., 1994) and references therein, for example). (Ferreira
et al., 2002) compare parametric models and kernel density estimates to for
the joint probability of Hs and T . And some papers concern more general
approaches. For instance (Fouques et al., 2004) describe two general methods
in order to derive an approximate joint distribution from the margins. The
first one matches the correlation matrix only, whereas the second one, which
is based on a multivariate Hermite polynomials expansion of the normal dis-
tribution, is able to match joint moments of orders higher than two.

Once the initial process is transformed into a process which is assumed to be
Gaussian, the second order structure can be estimated as in (Borgman et al.,
1991) and (Monbet et al., 2001a). It may occur that the autocorrelation func-
tions of the generated time series are significantly different from those of the
initial sequence (see section 7). Gioffre et al. (2000) have proposed a solution
to this problem in the particular case where the normal score transformation
is applied independently on the different components.

The final step consists in simulating realizations of the stationary Gaussian
process {Xt} whose marginal distribution is the standard Gaussian distri-
bution and whose autocorrelation function is known. Various exact simula-
tion methods have been proposed (Borgman et al., 1991), (Grigoriu, 1995),
(Popescu et al., 1998)
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3.3 General discussion

The Box and Jenkins method is convenient to make simulation, forecasting
and reconstruction (see for instance Stefanakos (1999), Guedes Soares et al.

(1996), Ho et al. (2005)). Until now, TGP method has been only used for
simulation, however it could also be applied for reconstruction and forecast
since the underlying Gaussian process is completely characterized.

Both, Box and Jenkins and TGP methods seem to robust to noisy data (Mon-
bet et al., 2001a). These methods are easy to adapt and they have been used
for various metocean parameters, as it is shown in the references above. Their
main limitation is the dimension of the time series: it is difficult to apply these
methods to time series with several components, in particular when the rela-
tion between the different components is complex. Indeed, in this case it may
be hard to transform the original time series into Gaussian ones.

For Box and Jenkins method, statistical criteria exist to help in the choice of
the order of ARMA models and to validate the model (tests on the residuals..).
Moreover statistical properties of these models are well known (see Brockwell
et al., 1991). As far as we know, convergence properties of TGP have not been
studied. When the underlying models are parametric, they do not need a
large amount of data for the estimation. In TGP, the autocorrelation function
and eventually the marginal distributions are estimated using non parametric
methods and it may require larger data sets than in the case of parametric
models.

The methods discussed in this section are extensively used in many application
fields, so that they are implemented in quite a lot of softwares. And they run
quickly.

It has been found that these methods provide a good description of the
marginal distribution and the second order structure of the time series. How-
ever, they cannot restore some non-linearities which exist in many natural
phenomena. For example, for a monovariate stationary Gaussian process with
0 mean, the time durations of the sojourns above a threshold s0 has the same
distribution as the time durations of the sojourns below the threshold (−s0).
The transformed time series has similar characteristics and thus can not suc-
ceed in reproducing both calm and storm durations if they have different
characteristics, as it is generally the case for sea state time series.
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4 Resampling methods

Resampling methods have only been seldom used for meteorological time se-
ries. The principle is simple since it consists in randomly sampling in the data.
These methods are generally used for bootstrap estimation and it was proved
that it allows to estimate the distribution of a wide range of estimators in the
case of independent observations (Efron et al., 1993) and also of time series
(Härdle et al., 2003).

We describe here briefly standard methods for time series resampling. More
details can be found in (Härdle et al., 2003) and references therein.

4.1 Block resampling

Resampling by block is a well known method for implementing bootstrap for
time series. For a time series {yt}, blocks are defined as follows:

Bi = {yti , yti+1, · · · , yti+li}

Times ti and block lengths li are sampled randomly. The resampled time series
is the sequence of blocks:

{B1, · · · , BN}
The blocks may be overlapping or not. The length of the blocks can for instance
be sampled from the geometric distribution. Refer to (Lahiri, 2003) for a survey
and exhaustive references.

Block bootstrap has been used to derive the statistical properties of many es-
timators (mean, variance, spectral density, etc.) for time series under quite low
assumptions. For instance, several authors have shown that the block boot-
strap is an efficient method to estimate confidence intervals for any function
of the empirical mean (see (Härdle et al., 2003) and references therein). But,
this method may not be appropriate for applications which involve persis-
tence statistics. Indeed, if the blocks are small the probabilities of sojourns in
a set as well as autocorrelation functions may not be well reproduced. If the
blocks are long the resampled time series tends to be an exact replication of
the observed time series and no innovation is brought by the simulated time
series.

As far as we know this method has never been used to resample sea state time
series. But (Hogben et al., 1987) proposed a sampling method where observed
time durations of sojourn over given levels are arranged at random. The main
advantage of this method is that it can be applied when only persistence data
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are available. A discussion on duration statistics for sea state time series can
be found for example in (Soukissian et al., 2001) and (Jenkins, 2002).

4.2 Resampling Markov chains

This method consists in assuming that the observed time series is Markovian
and a non parametric method is used to estimate transition kernel. Finally,
realizations of the chain are simulated with this empirical kernel. Generally,
the transition kernel is estimated locally using nearest-neighbor estimators.

As concerns meteorological applications, nearest-neighbor resampling was first
proposed by (Young, 1994) to simulate daily minimum and maximum tem-
peratures and precipitations. Independently, (Lall et al., 1996) used an analog
method to generate hydrological time series, and (Buishand et al., 2001) used
basically the same method for multi-site generation of artificial meteorological
time series.

Nearest-neighbor resampling for time series {yt} is based on a very simple
idea. Let us assume that we have already generated the t − 1 first values
ysim

1 , · · · , ysim
t−1 . We search in the data the k nearest neighbors of ysim

t−1 . One
of these neighbors is randomly selected and the observed value for the date
subsequent to the selected point is adopted as the simulated values at time t
(Buishand et al., 2001)..

Various discrete probability distributions or kernels may be used to select
randomly 1 of the k nearest neighbors. (Lall et al., 1996) suggested to use a
kernel which assigns a higher probability to the closer points, as for instance
pj = 1/j

∑k

i=1
1/i
, j = 1, · · · , k where the point j = 1 is the closest point and j = k

the most distant. (Monbet et al., 2005a) have suggested a more sophisticated
method which permits to sample points which has not been observed, as in
smoothed bootstrap methods (Efron et al., 1993). This method, named Local
Grid Bootstrap (LGB), has also been used to simulate realizations of the
multivariate sea state processes (Hs, T ), (Hs, T, U) (Monbet et al., 2004) and
(U,Φ) (Ailliot, 2004). It was shown that this method restores most of the
characteristics of the data, such as the marginal distribution, the distribution
of storm durations and inter-arrivals as well as the autocovariance functions.
This method is illustrated on wind data in section 7.

4.3 General discussion

As mentioned above, resampling methods can be used for simulation. Some
of them can also be adapted to perform forecast and reconstruction. For in-
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stance, (Ailliot et al., 2003) used a nearest neighbor method to simulate time
series of (Hs, T,Θm) at several locations (x0, · · · , xL) along a line to study the
profitability of a maritime line in Aegean sea (see also Section 7). (Caires et

al., 2005) proposed a non parametric regression method to correct outputs of
meteorological models. And another method, based on a non-parametric Hid-
den Markov model is described in (Monbet et al., 2005b) to reconstruct Hs

time series given wind time series (see also (Marteau et al., 2004a)). However,
one of the main drawback of non parametric methods is that their descriptive
power is about null.

All the methods introduced in this section can be used with noisy and miss-
ing data. Indeed, missing data do not affect the nearest neighbor search, and
aberrant data may have a positive probability to be resampled but this proba-
bility can be estimated. One of their main advantage is that they can be easily
adapted for various time series (wind, wave, circular time series, ...) because
of the few assumptions required. For circular data, a particular attention has
to be paid to the choice of the distance used for nearest neighbor search and
kernel estimation (Athanassoulis et al., 2002). If simulation is combined with
cross-reconstruction, the dimension of the time series is not a difficulty. In-
deed, when the dimension is high, simulation can be performed in two steps:
the time series of a subset of components are generated first, then the other
components are simulated given the first time series (see (Ailliot et al., 2003)
and Section 7).

Some asymptotic convergence properties of resampling and reconstruction
methods have been studied (see (Monbet et al., 2005a), (Monbet et al., 2005b)
and references therein). In practice, it is known that a large amount of data
is needed for estimation in non parametric methods. An other well known
drawback is the difficulty to choice the smoothing parameters such as the
bandwidth parameters which appear in the probability density function esti-
mators.

As concern the computational aspects, algorithms for resampling are generally
very simple to implement but they can be time consuming. A solution consists
in working with algorithms based on tree structures for the nearest neighbor
search (Monbet et al., 2004).

5 Parametric models

In this section, we discuss various parametric models which have been pro-
posed for wind and sea state time series. Linear autoregressive models are
discussed in section 3, and we focus now on finite state space Markov chain
models and on non linear autoregressive models. A section is also devoted to
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circular time series.

5.1 Finite State Space Markov chains

Let us briefly describe the general principle of the methods considered in this
section. gt;

When the process has a continuous state space, it is discretized in a finite
number of classes. This allows to use a representation as a finite state space
process.

This finite state space process is then supposed to be a Markov chain whose
transition matrix is estimated from the observed sequence.

New realizations of the process are finally simulated given the estimated tran-
sition matrix.

The success of this method is undoubtedly mainly due to its simplicity, and the
main limitation is probably the number of parameters which have to be esti-
mated in the case where no assumption is made on the shape of the transition
matrix. Various models have been proposed to reduce the number of parame-
ters. For instance, (Vik, 1981), assumed that Hs is a first-order Markov chain
with tridiagonal transition matrix, which means that only the transitions to
the closest states are allowed. The transition matrix is estimated in such a way
that the stationary distribution of the Markov chain and the mean durations
of persistence above certain levels match with those of the observed time se-
ries. A more general approach is proposed in (Raftery, 1985) who introduced
the Mixture Transition Distribution model. If r is the order of the Markov
chain, it is assumed that

P (Yt = j|Yt−1 = i1, ..., Yt−r = ir) = λ1qi1,j + ...+ λrqir,j

with Q = (qi,j) is a stochastic matrix and (λ1, . . . , λ2) are positive parameters
such that λ1 + ...+ λr = 1. This model has been fitted to time series of wind
speed (Raftery, 1985) and wind direction (Raftery et al., 1994), (MacDonald
et al., 1997). See also (Berchtold et al., 2002) for a recent review on Mixture
Transition Distribution models.

In (Ailliot et al., 2001) another approach is proposed for (Hs,Θm) where the
data are preprocessed before using a first-order Markov chain model. The
preprocessing consists in detecting the slope change times by fitting a linear
spline curve Hlin to the Hs time series. A marked point process (τ,H) is then
associated to Hlin, where τ denotes the dates when the slope changes and H
the significant wave height at these dates. Then a Markov model is proposed
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for the trivariate process (H, τ,Θm). It was found that this model permits to
reproduce the cdf of Hs and Θm, as well as the mean duration of the storms.

5.2 Nonlinear autoregressive models

In this part, we describe various autoregressive models which have been intro-
duced recently to model some non linearities which can be observed on wind
and sea state time series.

Artificial Neural Networks - During the last decades, artificial neural
networks (ANN) was successfully used to solve problems in ocean, coastal
and environmental engineering applications. ANN can be seen as particular
regression models in which the link function simulate the circulation of the
information in a biological neural network. The parameters of the regression
model are generally estimated by maximum likelihood or least square methods.
See for instance (Gurney, 1997) for an introduction to ANN. ANN was used
in order to model the evolution of U (Stephos, 2000), (More et al., 2003) and
(Hs, T ) (Deo et al., 2001), (Makarynskyy et al., 2004). The results obtained
by these authors show that ANN models permit to obtain better short term
forecasts than those obtained with linear autoregressive models. (Arena et al.,
2004) illustrate how multivariate ANN can be used to reconstruct Hs time
series in buoy networks.

Time-varying autoregressive models - (Huang et al., 1995) use a time-
varying autoregressive model of order 2 in order to forecast the wind speed.
The coefficients of the model are estimated in real time following the idea of
(Young et al., 1991). The autoregressive model of order r is given by:

Ut =
r

∑

i=1

at,iUt−i + εt (5)

Let Ψt = (at,1, · · · , at,r), then











Ψt = ψt−1 + Γt−1

Γt = HΓt−1 + Ωt

(6)

where I is the identity matrix, H is a diagonal matrix and Ω is a zero white
noise vector. Γ is a vector of dummy parameters which is either a white noise
process or a random walk process. The unknown parameter vector Ψ is either a
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random walk process or a smoothed integrated random walk process depending
on the matrix H. The parameters of model (5)-(6) are estimated by a Kalman
filter with state vector Ψ given observation vector {u1, · · · , ut}.

(Scotto et al., 2000) have proposed a Self-Exciting Threshold AutoRegressive
model for the process Y = Hs. It is assumed that:

Yt =
r

∑

i=1

a
(St)
i Yt−i + b(St) + σ(St)εt

with St = i if and only if Yt−d ∈ [ri, ri+1] for a fixed integer d. Here, r1 < r2 <
· · · < rM are parameters of the model and εt denotes a Gaussian white noise.
It is a switching autoregressive model, in which the regime at time t only
depends on the last values of the process. In practice, the identified model has
2 regimes, the evolution in the different regimes being described by AR(10)
models and d = 7, which corresponds to a delay of 21 hours. The authors
compare the results obtained with this model and those corresponding to
an AR(22) model. The sequences simulated with the Self-Exciting Threshold
AutoRegressive model was shown to have features closer to the data than
those simulated with the model AR(22), in particular as concern the marginal
distribution and the autocorrelation function.

(Ailliot et al., 2003) proposed a Markov Switching Autoregressive model (MS-
AR) for the wind intensity. In MS-AR models the observed proposed {Yt} is
represented by an autoregressive model of order r with parameters depending
on a non observable Markov chain {St}. This hidden variable represents the
”weather type”. More precisely, a bivariate process {St, Yt} follows a MS-AR
model if gt;

{St} is a Markov chain on a finite space {1, ...,M} with M > 0 the number
of regimes. This process is supposed to be hidden.

Conditionally to {St}, {Yt} is a non-homogeneous Markov chain of order r ≥ 0
on Y ⊂ Rd. More precisely, we assume that the conditional distribution of Yt

given {Yt′}t′<t and {St′}t′≤t only depends on St and Y t−1 = (Yt−1, · · · , Yt−r).
Then, it is assumed that for each st ∈ {1, ...,M} and yt−1 ∈ Yr, the condi-
tional distribution P (Yt|Y t−1 = yt−1, St = st) is a gamma distribution with

mean
∑p

i=1 a
(st)
i yt−i + b(st) and standard deviation σ(st).

MS-AR models are simple generalizations of Hidden Markov models (HMM),
which correspond to the case r = 0. In (Ailliot et al., 2003), a non homogeneous
MS-AR models is also proposed for the process (U,Φ), where the transition
probabilities of the hidden Markov chain {St} depend on the wind direction.
More precisely, it is assumed that {St} is a non homogeneous Markov chain
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on {1, · · · ,M} with a transition matrix such that

P (St = j|St−1 = i) ' πi,jexp(κ
(j)cos(Φt − φ(j)))

where Π = (πi,j)i,j∈{1,···,M} is a stochastic matrix, (κ(j))j∈{1,···,M} are positive
parameters and (φ(j))j∈{1,···,M} denote parameters in [0, 2π[. This model is val-
idated on wind data in North Atlantic in (Ailliot, 2004), and it is shown that
the model restores the marginal distributions, the autocorrelation functions
and the distribution of the durations of storms as well as their inter-arrivals.
This model is also validated on wind data in Aegean Sea in section 7.

GARCH model - GARCH models have been proposed in (Toll, 1997) for
the process Y = U . In this paper, it is supposed that U is Markovian of order
r, the conditional distribution of Yt given (Yt−1, · · · , Yt−r) being described by
a gamma distribution with mean

µt =
r

∑

i=1

aiYt−i + b

and variance

σ2
t = α+

p
∑

i=1

λi(Yt−i − µt−i)
2 +

q
∑

i=1

κiσ
2
t−i

The identified model is of order r=2 and it is shown that it makes it possible
to predict the heteroscedasticity present in the wind time series.

5.3 Models for circular data

In the section 5, we have introduced a first family of model for directional time
series. Circular time series can also be described by autoregressive models.
Let {Φt} be a stationary process with values in R/2πZ. Mainly three types
of autoregressive models have been proposed in the literature for such time
series, and the use of these models for time series of wind direction is discussed
in (Breckling, 1989). gt;

Models obtained by ”wrapping” a real valued process (Wrapped Autoregres-
sive model). One supposes that Φt = Yt modulo 2π with {Yt} a real valued
process which follows an autoregressive model.

Models obtained by using a ”link function”, g : R → (−π, π) strictly monotonous
and checking g(0) = 0. This function is used to transform a real valued au-
toregressive process {Yt} into a process Φt = g(Yt) with values on the torus
R/2πZ.
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Models specifying directly the density of the conditional distribution P (Φt|Φt−1, · · · ,Φt−k).
It is for example the case of the autoregressive model of Von-Mises proposed
initially in (Breckling, 1989). The Von-Mises distribution with parameters
(θ0, k) is defined by its density:

f(θ) =
1

2πI0(k)
eκ cos(θ−θ0)

for φ ∈ R/2πZ with k > 0 the concentration and θ0 ∈ R/2πZ the mean
direction. The Von-Mises autoregressive model is then defined in the following
way: it is supposed that P (Φt|Φt−1, ...,Φt−k) follows a Von Mises distribution
with parameters (θt, kt) given by

κte
iθt = κ0e

iφ0 + κ1e
iφt−1 + · · · + κpe

iφt−p

with κ0, κ1, · · · , κp ∈ R
+ and Φ0 ∈ R/2πZ. In this model, the concentration

kt changes in time (heteroscedastic model) but it can also be assumed to be
constant.

HMM have also been proposed for time series of wind direction. In (Mac-
Donald et al., 1997), discrete (multinomial) distributions are used whereas in
(Holzmann et al. , 2005) continuous (wrapped-normal) distributions are used.

5.4 General discussion

A parametric model is generally build for a particular task and describes par-
ticular features of the data. For instance, ANN are currently used for short
term forecasts (for time lag varying from 3 hours to 48 hours) and reconstruc-
tion. (Pittalis et al., 2003) and (Tsai et al., 2002) used ANN to reconstruct Hs

and (Hs, T ) missing data in a buoy network. ANN have also been extensively
applied to correct wind outputs of meteorological model (see (Giebel et al.,
2003) and references therein). One drawback of ANN is the large number of
parameters that they involve and their lack of interpretability. MS-AR and
GARCH models are more parsimonious and physically interpretable. They
can be used to generate artificial sequences which restore specific features of
the data (heteroscedasticity, existence of several meteorological regimes, ...)
as it is illustrated in section 7.

The form of the model has to be specified and this is generally time expen-
sive because it requires a precise study of the data before the construction
of the model. It also limits the possibilities to export the model to other
time series. However, once the model is chosen, the estimation of the param-
eters can be performed automatically and should require less data than for
non-parametric models. In general, the parameters are estimated using the
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methods of maximum likelihood or least square. When maximum likelihood is
used the existence of missing values may complicate the statistical inference.
Statistical criteria such as Akaike (AIC) or Schwartz Bayesian (BIC) criteria
can be used to select the best model.

Most of the parametric models discussed in this section are usual for time
series, and softwares are available to fit these models.

6 Validation and comparison method

In the previous sections, various stochastic models are proposed for wind and
sea state time series. And we need criteria to chose among these models. In
this section, we present a general validation method, based on Monte Carlo
tests, which can be used to measure the ability of a model to simulate realistic
synthetic time series.

The most widespread method for model validation consists in comparing cer-
tain statistics calculated from the observations with those corresponding to the
considered model. In general, several criteria are used, such as the matching
of the mean and the variance of the marginal distributions, or more gener-
ally its cdf. When the temporal dependence is important for the applications,
other features are also considered, like the autocorrelation functions or the
distribution of the time duration of sojourns below or above given levels.

Meanwhile, the authors often perform only visual comparisons. Such approach
remains not entirely satisfactory because it does not make it possible to decide
whether the observed differences are significant or not. A more formal method,
based on Monte Carlo tests, is proposed below. For the sake of simplicity, it
is presented in the simple case of comparing means, but its generalization to
other statistics is straightforward.

Let {yt}t=1,···,T be an observed sequence of a real valued process {Yt} with
mean m and {Zt} a process corresponding to the model which has to be
validated. The mean of the marginal distribution of {Zt} is denoted m0. We
want to test

H0 : m = m0 versus H1 : m 6= m0 (7)

The considered test statistic is the empirical mean Y = 1
T

∑T
t=1 Yt, and the

associated decision rule is given by
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H0 is rejected if y =
1

T

T
∑

t=1

yt ∈ R(α)

where α is the level of the test. The critical region R(α) is such that PH0(Y ∈
R(α)) = α.

In order to compute R(α), we need to know the distribution of the test statistic
Y when H0 is true. When the model is complex, it is not always possible to
derive the exact distribution of the test statistic. In this case, we can use the
Monte Carlo method described hereafter to approximate this distribution: gt;

Simulate B time series of length T with the model:

{z(1)
1 , · · · , z(1)

T }
...

{z(B)
1 , · · · , z(B)

T }

Compute the empirical mean z(i) = 1
T

∑T
t=1 z

(i)
t for each simulated sample

i = 1, · · · , B

Approximate the distribution of Y under H0 by the empirical distribution of
{y(1), · · · , y(B)}. This allows to compute an approximation of PH0(Y ∈ R) for
any region R ⊂ R or equivalently deduce an approximative critical region
R̃(α) such that 1

B
card({i ∈ {1, · · · , B}|z(i) ∈ R̃(α)}) = α.

Finally, H0 will be accepted if and only if y ∈ R̃(α).

This framework can be applied to compare other features like cdf or autocor-
relation functions. For this, a test statistic has to be chosen. As concern cdf,
the most popular test statistic is probably the Kolmogorov-Smirnov distance.
However, it is well known that it is more sensitive near the center of the dis-
tribution than at the tails. Due to this limitation, many analysts prefer to use
the Anderson-Darling statistic which gives more weight to the tails. But, as
this is an integrated deviation, like the Cramer-Von-Mises or chi-square dis-
tance, it can mask local differences. In (Ailliot et al, 2005), a more sensitive
test statistic was proposed, which permits to measure locally the goodness-of-
fit. This method is used in the next subsection to validate and compare three
models.
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7 Example: simulation of multivariate sea state time series along

a maritime line

In this section, an example is proposed in order to illustrate some of the models
discussed in the previous sections. The data sets considered in this part have
also been used in (Ailliot et al., 2003). The initial objective of this study was
to estimate the profitability of the maritime line Piraeus-Heraklion (Aegean
Sea) for a given passenger ship. For that, we had at our disposal two data sets:

gt;

3 years of data (from October 1999 to September 2002) describing the sea
state conditions (i.e. (Hs, T,Θm)) at N = 17 points along the maritime line.
These points will be denoted (x1, · · · , xN).

11 years (from January 1992 to December 2002) of wind data at a point
denoted x0, located near the middle of the maritime line (see 1)

The sea state data have been produced using the WAM model by the National
Center for Marine Research (NCMR), and the wind data are reanalysis data
produced by ECMWF. The amount of sea state data is clearly to small in
order to get reliable estimates of the variability of the sea state conditions,
and thus we have proposed to use a stochastic generator. In (Ailliot et al.,
2003), this sea state generator is combined with a crossing simulator. This
crossing simulator is based on polar diagrams which describe the response of
the passenger ship under consideration in different conditions. These diagrams
permit to compute, according to the sea state conditions on the maritime
line, if the crossing can be done in normal conditions, or has to be delayed or
canceled. And as a final result, we can deduce estimates of the distribution of
canceled and delayed crossings. In this paper, we will only focus on the sea
state generator.

The Piraeus-Heraklion line is located in Aegean Sea, which is a relatively closed
sea. Thus we can consider that the waves are essentially generated by local
winds and it seems natural to perform the simulation in two steps. At first, a
stochastic model is used to simulate artificial wind conditions at x0, and then
the sea state conditions corresponding to these artificial wind conditions are
cross-reconstructed. These two steps are described more precisely hereafter.

Simulation of artificial wind conditions

In order to simulate artificial wind conditions at x0, we have tried three dif-
ferent methods: gt;

The TGP method discussed in section 3. The transformation (4) is used to
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Figure 1. Map of the Aegean sea. Maritime line (x1, · · · , xN ) (stars) and point x0

(circle)

transform the original time series and an exact simulation method is used to
simulate the underlying Gaussian process.

The LGB method discussed in section 4.

The non-homogeneous MS-AR model introduced in section 5. In order to
simulate the wind direction, we have used a simple finite state Markov chain
of order 1 (see section 5.1).

These different methods have been fitted to the wind data for the months of
August. Then, they have been validated using the method described in section
6. In order to check the realism of the simulated sequences, the list of criteria
just below has been used. gt;

FU : cdf of the marginal distribution of U

FΦ: cdf of the marginal distribution of Φ

F(U,Φ): cdf of the bivariate distribution of {U,Φ}

Fextr: cdf of the monthly maxima of U

CU : autocorrelation function of U

F[U>1/2]: cdf of sojourn durations above level 1/2 max(u), with max(u) the
largest wind speed in the observed time series

F[U<1/3]: cdf of sojourn durations below level 1/3 max(u)
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The cdf FU , FΦ and F(U,Φ) are important criteria since the distribution of the
wind is strongly related to the distribution of the sea state parameters. Fextr

describes the interannual variability of the process at a monthly scale. The
autocorrelation function CU is a usual measure of linear dependence in time.
Finally, the cdf of sojourn durations F[Y >1/2] and F[Y <1/3] describe the time
duration of the stormy and calm conditions. These durations are also strongly
related to the severity of the sea state conditions.

For each criteria, Monte Carlo tests have been run on the basis of N = 1000
synthetic time series, each of them having the same length as the initial wind
time series. The results are given in Table 1. According to this table, the
TGP method successfully reproduces the bivariate marginal distribution of
the process but fails to reproduce its dynamics. This is also illustrated on
Figure 2. According to this figure, the model underestimates the first coeffi-
cients of the autocorrelation function and also the durations of the calm and
stormy periods. It indicates that the transformed time series is not Gaussian,
although its bivariate marginal distribution is Gaussian. On the opposite, the
LGB method successfully describes the dynamics of the process but can not
restore the marginal distribution of U and (U,Φ). According to Figure 3 this
method simulates too many data close to the mode of the distributions. It is
a well known problem of this kind of algorithm, and better results could per-
haps be obtained with an other choice of the bandwidth parameters. However,
the search of appropriate parameters is fastidious since there is no automatic
criterion. As concerns the non-homogeneous MS-AR model, the model with
M = 2 regimes and autoregressive models of order p = 1 has been selected
with BIC, and the results obtained with this model are better than the ones
corresponding to LGB and TGP. Indeed, this model reproduces all the cri-
teria, except the bivariate marginal distribution. According to Figure 4, the
model simulates too many wind from the north-west and not enough from the
north, but the distribution of the wind intensity in each sector seems to be well
reproduced. A better description of this bivariate distribution could probably
been obtained by using a more sophisticated model for the wind direction and
a higher number of regimes.

An other advantage of this model over the other models considered in this
section is its physical interpretability. The maximum likelihood estimates are
given in Table 2. According to this table, one important difference between
the two regimes is the value of the conditional standard deviation σ, which is
higher in the second regime. It indicates that the second regime is associated
to weather conditions in which the wind speed evolves quickly, whereas the
first regime corresponds to steady wind speed conditions (low volatility). This
is illustrated on Figure 5. And the two regimes are associated to different wind
directions (see Figure 6), the first one corresponding mainly to Northerlies and
the second one to Westerlies. This relation is described through the parameters
φ and κ.
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Figure 2. Autocorrelation function of the wind intensity U (left), cumulative distri-
bution functions of sojourn durations over 1/2 max(U) = 8.05ms−1 (middle) and
below 1/3 max(U) = 5.35ms−1(right). The time in abscissa is expressed in days.
Solid: observation, dashed: TGP model, dotted 95% interquantile interval for TGP
model.
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Figure 3. cdf of the marginal distribution of the wind intensity U (left) and the wind
direction Φ (right). Solid: observation, dashed: LBG model, dotted 95% interquantile
interval for LGB model.

Reconstruction of the sea state conditions The sea state conditions
{H(sim)

s , T (sim),Θ(sim)
m } corresponding to the simulated wind {U (sim),Φ(sim)}

are reconstructed by a nearest neighbor resampling method. In practice, at
each time t and each location xi, (H(sim)

s (xi, t), T
(sim)(xi, t),Θ

(sim)
m (xi, t)) =

(Hs(xi, s
∗), T (xi, s

∗),Θm(xi, s
∗)) where s∗ is solution of

min
s

{

ω1||U (sim)(t)e
√
−1Φ(sim)(t) − U(s)e

√
−1Φ(s)|| amp; amp; amp;

+ω2||H(sim)
s (xi0 , t− 1)e

√
−1Θ

(sim)
m (xi0

,t−1) −Hs(xi0 , s− 1)e
√
−1Θm(xi0

,s−1)||amp; amp; amp;

+ω3||T (sim)(xi0 , t− 1) − T (xi0 , s− 1)||
}

amp; amp; amp;

where ω1, ω2, ω3 denote fixed weights, ||.|| denotes the euclidean norm and xi0

is the point of the line {x1, · · · , xN} which is the closest to x0 (i0 = 16). Here,

24



5%

15%

25%

E

N

W

S

5%

15%

25%

E

N

W

S

Figure 4. Wind roses for the data (left) and the data simulated with the non homo-
geneous MS-AR model (right)

TGP LGB MS-AR

FU .282 [.003] .000 [.001] 0.078 [.005]

FΦ .003 [.000] .001 [.000] .004 [.000]

F(U,Φ) 0.210 [.001] .000 [.001] .000 [.001]

Fextr .012 [.012] .025 [.009] .137 [.008]

CU .000 [.001] .006 [.003] .001 [.000]

F[U>1/2] .000 [.007] .046 [.006] .015 [.002]

F[U<1/3] .000 [.007] .068 [.002] .042 [.003]

Table 1
Results of the Monte Carlo tests for the wind time series. The first value is the

observed statistic wobs and the value in bracket the cut-off value wα with α = 0.05.
The null hypothesis is rejected at the level α if wobs < wα

a
(i)
1 b(i) σ(i) πi,i φ(i) κ(i)

Regime 1 (i=1) 0.85 0.82 1.27 0.96 1.64 1.47

Regime 1 (i=2) 0.53 2.11 2.24 0.95 1.59 2.71

Table 2
Maximum likelihood estimates for the non-homogeneous MS-AR model

ω1, ω2, ω3 are chosen empirically.

We have used this simple method to compute the sea-state conditions corre-
sponding to the artificial wind conditions simulated with the non homogeneous
MS-AR model. Then, in order to check the realism of these artificial sea state
conditions, we have performed Monte Carlo tests, and the list of criteria just
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Figure 5. Evolution of the wind speed at x0 in August 2002. The dash-dotted [resp.
solid] line represents the date when the first [resp. second] regime is the most likely.
The regimes have been identified using the Viterbi algorithm

Figure 6. Distribution of the wind direction in the two regimes (identified using the
Viterbi algorithm). Regime 1 on the left and regime 2 on the right.

below has been used.

gt;

FHs
: cdf of the marginal distribution of Hs

FΘm
: cdf of the marginal distribution of Θm

FT : cdf of the marginal distribution of T

F(Hs,Θm): cdf of the bivariate marginal distribution of (Hs,Θm)

F(Hs,T ): cdf of the bivariate marginal distribution of (Hs, T )

F(U,Hs): cdf of the bivariate marginal distribution of (U,Hs)

CHs
: autocorrelation function of Hs

F[Hs>1/2] : cdf of sojourn durations above level 1/2 max(Hs)
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F[Hs<1/3]: cdf of sojourn durations below level 1/3 max(u)

Table 3 shows that all the considered statistics are well reproduced at location
16 (located near the middle of the maritime line), except the marginal distri-
butions of Θm and (Hs,Θm). This bivariate distribution is shown on Figure 7
and the lack of fit is in accordance to the one identified on the simulated wind
time series: the proportion of wave coming from the north is underestimated.
The joint distribution of U and Hs is shown on Figure 8.

FHs
FΘm

FT F(Hs,Θm) F(Hs,T )

.007 [.004] .000 [.002] .017 [.011] .000 [.001] .017[.011]

F(U,Hs) CHs
F[Hs>1/2] F[Hs<1/3]

.027 [.005] .024 [.001] .011 [.001] .031 [.005]

Table 3
Results of the Monte Carlo tests for the sea state time series at location 16. The

first value is the observed statistic wobs and the value in bracket the cut-off value
wα with α = 0.05. The null hypothesis is rejected at the level α if wobs < wα
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Figure 7. Wave roses for the data at location 16 (left) and for the simulated sequences
(right)

8 Concluding remarks

In this paper, we make a review of stochastic models for metocean time series.
The models are classified in three groups: gt;

non parametric models

models based on Gaussian approximations

other parametric models
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Figure 8. Joint distribution of U (x-axis) and Hs (y-axis). Data on the left and
model on the right

For each group of models, we discuss the possible uses of the models, their
advantages and drawbacks, etc. Then a quantitative method is proposed to
measure the ability of a model to restore chosen statistical feature like marginal
distribution, covariance functions, durations, etc., and this method allows to
validate or compare models for given data. And finally an example is dis-
cussed where a stochastic model is used to generate a multivariate time series
{U,Φ, Hs, T,Θm} at several location along a ferry line in Aegean Sea (Greece).

Finally, a lot of tools and methods are available for modeling metocean time
series and the choice of a model depends on the nature of the studied pro-
cess (univariate or bivariate, intensity and/or direction, ...), of the considered
location and also on the objectives of the users.

The review focus on models for time series at the scale of the sea state. And,
as a consequence, we have neglected many usual and interesting aspects of
metocean studies, such as, for instance, linear and non linear models for waves,
extremes, spatial process.
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