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Abstract:  
 
A year-class curve is a plot of log cpue (catch per unit effort) over age for a single year class of a 
species (in contrast to the better known catch curve, fitted to multiple year classes at one time). When 
linear, the intercept and slope estimate the log cpue at age 0 and the average rate of total mortality, Z, 
respectively. Here, we suggest methodological refinements within a linear least squares framework. 
Candidate models may include a selectivity term, fleet-specific parameters, and polynomials in year to 
allow for gradual variations of Z. An iterative weighting method allows for differing precisions among 
the different fleets, and a forward (one-step ahead) validation procedure tests predicted cpue against 
observed values. Choice of the best approximating model(s) is made by ranking the biological 
credibility of each candidate model, then by comparing graphic plots, precision of prediction, and the 
Akaike Information Criterion. Two example analyses are (i) a comparison of estimated and true results 

for five stock simulations carried out by the US National Research Council, and (ii) modelling three 
beam trawl surveys for plaice (Pleuronectes platessa) in the North Sea. Results were consistent with 
known, age-related, offshore migrations by plaice. Year-class curves are commended as a widely 
applicable, statistically based, visual, and robust method. 
  
 
Keywords: analysis of relative residual variance, cpue, fish stock assessment, forward validation, 
iteratively weighted least squares, North Sea, plaice, year-class curve 
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Introduction 

A more or less linear decline in the logarithm of cpue indices over age is typically observed for 
many commercially important species of marine fish caught in trawls (Jensen, 1939; Silliman, 
1943; Beverton and Holt, 1957, section 13), and has even been reported for the larval stages 
of Atlantic mackerel caught in plankton nets (Sette, 1943).  We have also seen this for several 
species of European trawl-caught fish, at least for the older, fully selected ages.  A noteworthy 
feature, also reported by Beverton and Holt (1957, p. 182), was that the slopes, which 
estimate a time-averaged value of Z, the coefficient of total mortality, showed little variation 
either across different year-classes or over a period of more than a decade (Cotter, 2001).  It 
should be pointed out, since there is often confusion, that these ‘year-class curves’, as they 
are called here, are not the same as 'catch curves' (Ricker, 1975; Jensen, 1985).  A year-
class curve is fitted to the successive ages of one year-class but a catch curve is fitted to 
successive year-classes as observed at their respective ages in one catch, i.e. when no time-
series is available.  Year-class curves allow estimation of relative annual recruitments 
whereas catch curves only allow estimation of average recruitment. 
 
Since Z is the sum of fishing and natural mortality ( MFZ += ), year-class curves, with Z 
described by a constant average value, stand in contrast to methods of fish stock assessment 
that estimate variations of F, and perhaps M as well, over A age classes and Y years.  The 
models used for these methods replace the single parameter Z with up to (A +Y) or even (A * 
Y) parameters for F, and perhaps more again for M (Deriso et al., 1985; Gavaris, 1988; 
Megrey, 1989; Shepherd and Nicholson, 1991; Shepherd, 1999; Grønnevik and Evensen, 
2001).   Cotter et al. (2004) argue that assessment models requiring estimation of large 
numbers of parameters can signal spurious changes in F or Z because of weaknesses in the 
data, the assumptions, or the model itself.  It is concluded that, if there are major doubts 
about any of these aspects, a simpler modelling method is advisable, and that year-class 
curves have much to offer in that circumstance.  Other uses for year-class curves could be as 
a visual screening method for cpue data preparatory to some more elaborate modelling 
method, or when only limited computing resources are available.   
 
Year-class curves are easily estimated using ordinary least squares linear regression.  The 
present paper proposes the following developments with the aim of improving estimation and 
prediction without loss of the computational and statistical benefits of the linear least squares 
method: 

• use of an iterative weighting method for data sets from different sources (Cotter and 
Buckland, 2004); 

• a set of nested, candidate models for the curves, and a general, albeit somewhat 
subjective, protocol for selecting the best;  

• use of polynomials in year to permit Z to vary gradually over time with the minimum 
number of additional parameters; 

• use of an analysis of relative residual variance (Cotter, 2001) to estimate the 
precision of different fleets, given the chosen model; and  

• a forward (one step ahead) validation procedure for testing the predictive abilities of 
different models and for estimating prediction errors.   

 
Two examples of using the year-class curve method are briefly presented.  The first tests 
precision of estimation using simulated stocks (National Research Council, 1998) for which 
true results were available.  The second uses cpue data for plaice (Pleuronectes platessa) 
from Dutch beam trawl surveys carried out by the Institute for Marine Resources and 
Ecosystem Studies (IMARES).  It is intended to suggest how an analysis of year-class curves 
might be carried out, as well as to demonstrate one of the strengths of the year-class curve 
method, namely that alternative models can easily be tested and compared.  Choosing the 
“best approximating model” is an important component of statistical modelling (Burnham and 
Anderson, 2002) but few, existing stock assessment methods allow much flexibility for that 
purpose.  The analyses were carried out with a package written in the R programming 
language and referred to as YCC ('Year-class Curve').  It is freely available from the first 
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author, and is being built into the FLR software suite for fish stock assessments (http://flr-
project.org). 

 

Theory 

Derivation of the year-class curve model 

The following derivation aims to be pragmatic and simple, rather than conformable with the 
advancing mathematics of catch-age equations (Xiao, 2006).  The usual model of mortality 
over time t, assuming no net migration to or from the stock, is  
 

    ZNdN
=

dt
 

 
where Z, the instantaneous rate of total mortality, is here expected to have a negative value.  
[The absence of a minus sign before Z  is unconventional in fisheries work but leads to 
Equation (2) having all terms positive, as is conventional for regression models.]  Solving 
gives 
 
    ( )ZtNN expt 0= .    (1) 
 
We now assume that catch per unit effort (cpue, denoted U) is a constant proportion of N, i.e. 

 for all ages included in the analysis, and that Z represents a constant, average 
value over time.  Then, taking natural logarithms of Equation (1), restricting attention to one 
year-class, c, substituting age for t, and adding a random error term, e, gives the basic model 
for a year-class curve: 

qNU =

 
   ( ) cacca ,,0, eageZUU loglog ++=    (2) 
 
where  is the cpue index for age zero, a is the age-class, i.e. the age in years as an 
integer index, while age is age in years as a real number.   e is assumed to be normally 
distributed around zero with residual variance .   

cU ,0

2σ e

)1log(

Allowing for non-linearity with age 

Frequently, the observations appear to be better fitted by a curve over age than by the 
straight line represented by Equation (2).  This could often, but not exclusively, be explained 
by the inclusion of young age groups that are not fully selected by the trawl.  They can either 
be removed from the analysis, or a term can be added to Equation (2) to allow for the 
curvature, a convenient possibility being the term +age .  It increases gradually from 
zero with age in a curve that seems to simulate trawl cpue data well when young fish are less 
well caught than old, while a negative coefficient simulates the opposite effect.   For lack of a 
better name, it is here referred to as the selectivity term but there is no clear relationship with 
the well-known logistic selectivity function commonly used for trawls.  That function is avoided 
here because its parameters cannot be estimated within a linear least squares framework.  
The regression coefficient for selectivity is denoted S.  Equation (2) becomes 
 

( ) ( ) cacca eageSageZUU ,,0, 1loglog ′log = + + + +    (3) 
 
Note that estimates of Z ′  and S will tend to be highly correlated because both relate to age 
and, for this reason, Z ′  estimated from fitting eq. (3) is likely to be a biased estimate of total 
fishing mortality, Z .  Z can be estimated numerically as the slope of the fitted  for the caU ,log
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age at which full selectivity is thought to occur, often the oldest age for trawl fisheries.  The 
estimation is over a small interval of age, i.e. as ageU ΔΔ ln .  The validity of the estimate 
depends on having an adequate range of ages in the data to find the age of full selectivity, 
and on the number of fish observed around that age.  

Alternative models for different fleets 

The word 'fleet' is used here to refer either to a single vessel (such as a research vessel 
carrying out a survey) or to a fleet of many vessels (such as a commercial fishing fleet).  
Different fleets are likely to exhibit different cpue for a given stock density because of different 
fishing powers.  This can be allowed for by adding a fleet factor, V ,  to Equation (3): f

 
  ( ) ( ) eVageSageZUU 1logloglog fcafcfca ,,,0,, ++++′+=   (4) 
 
where  and  is the number of fleets.  V  brings all fitted   to 
the level of one fleet treated as the standard (Cotter, 2001).   

1,,1 −= Nf K F F f fca ,,N Ulog

 
Equation (4) implies that Z ′  and S are common to all fleets.  This may be appropriate if all 
fleets fish the same subset of the stock with gears having similar selectivity functions with 
age. On the other hand, nesting of one or more of these parameters within fleet may be more 
appropriate.  This is denoted by subscripting with f.  So, if each fleet fishes the same subset 
of the stock but with a different selectivity function we would estimate  parameters , or 
if, say, catches of some fleets are affected by age-dependent migrations into, or out of the 
survey area we would estimate  parameters .   The model with all terms nested within 
fleets, including the log cpue index at age 0,  is referred to as the ‘global’ model: 

FN fS

F fN Z

 
  ( ) ( ) eVageSageZUU 1ln..lnln fcaffffcfca ,,,,0,, ++++′+=  (5) 
 
It is equivalent to fitting Equation (3) separately to each fleet except that only one common 
residual variance is estimated. 

Allowing for changing slopes over time 

Z may vary over time because of changing fishing practices, rates of natural mortality, or 
migrations.  The Z  or Z ′  slope of a set of year-class curves can be made linearly variable 
over time by adding an age*year variable to one of the models above.  Curvature can be 
added with the polynomial terms age*year2 and age*year3.  This is more parsimonious with 
parameters than using Z  for each year and age class, leaving more degrees of freedom 
for estimating precision.  Polynomials also have the advantage that they are easily estimated 
within a linear least squares framework.  Random walks or autocorrelated processes might be 
used instead but would require a more elaborate estimation procedure.  

ya,

 
Polynomials can result in huge numbers (e.g. year3) in the predictor matrix that can cause 
serious rounding errors during least squares matrix inversion.  To reduce the problem, the 
year variables should be transformed to )(yearmeanyeary ii −=  where i indexes rows in 
the predictor matrix.  Next, the polynomials should be orthogonalised so as to reduce 
changes in Z ′  from values previously estimated without the polynomial term.  This is 
achieved with ( )( )ii yy mean−=′iy , ( )( )222 mean iii yy −=′y , y etc..  (This transform may 
not be important for the odd powers since the mean is then expected to be zero for balanced 
data.)  The transformed variables are orthogonal because, if the same ages are present in 
every year,  , as required, and the same for the other powers of ( 0...10 =+++′ Ayi )∑ iy′ .   
Thus, instead of Z age in models (2) to (5) above, we can use  

 or a subset of these terms. 3yage ′3
2

2 ZyageZy +′+′10 ZageZ + age
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Weighting different fleets 

Different series of cpue data are likely to estimate stock parameters and year-class curves 
with different precision depending on the season and area covered by the fleet, on the 
precision of age-reading and other practical aspects, and on how well the chosen model fits 
the data.  Weighting of different data sets to reflect their precision with respect to the chosen 
model is therefore desirable.  Cotter and Buckland (2004) suggest that the weighting 
estimated for each fleet’s data set should be balanced with the reciprocal of the estimated 
residual variance specific to that fleet computed after the model is fitted, i.e.  .  
They describe how the method can be implemented using iteratively weighted least squares 
(IWLS) taking into account the d.o.f. contributed by each fleet to the estimates of each 
parameter.   Usually, 2 or 3 iterations produce stable values.   Additionally, using the fleet 
specific residual variances, the relative precision of the different fleets can be compared using 
F tests (Cotter, 2001).  Note that biased cpue series will produce biased weights (Quinn and 
Deriso, 1999, p. 353).  Fleets that appear exceptionally precise should be scrutinised to see 
whether biased sampling may be the cause, e.g. due to clustering of observations in 
restricted times or places (Cotter and Buckland, 2004). 

2ˆˆ −∝ ffw σ

 

Finding the best model: AIC and forward validation 

The possible models for year-class curves have widely different numbers of parameters, and 
too few or too many in a model can both lead to biased estimation.  Burnham and Anderson 
(2002) make a good case for using the Akaike information criterion (AIC)  to select the best 
approximating model or models, rather than a sequence of F and t tests for the statistical 
significance of parameters.  A summary of their approach  is: 

1. Create a list of candidate models based on “thoughtful, science-based, a priori” 
reasoning.    One of these models should be the global model that includes all 
feasible and important parameters so far as is consistent with the principle of 
parsimony.  Biologically infeasible models should be excluded from the list. 

2. Fit all the candidate models and estimate the AIC using exactly the same set of data 
for all cases.  The small sample AIC, denoted AICc, should be used when the 
number, n, of independent observations is less than approximately 40 times the 
number, K, of estimated parameters, θ̂ :    

 ( )( ) ( ( ))12ˆLikelihood −+−= KnnKθlog2AICc

i AICAIC

−  
3. Compute the AIC differences for each model relative to the best (minimum AIC), i.e. 

min−=Δi , and use these to compute the odds against each of the 

models relative to the best, i.e. ( )iΔ− 5.01 . exp

a year and within a fleet.   Estimation of random year effects would remove some within-year 

4. Select the best model if it is clearly more likely than any other, or alternatively, select 
the set of R best supported models and use the methods of multi-model inference  
(MMI) based on Akaike weights.   

 
When modelling fish stocks, the a priori reasoning referred to concerns the biology and 
fishery for the species.  For example: are there good reasons to expect that selectivity, 
apparent mortality over time taking into account possible migrations, and apparent 
recruitments by year-class will be similar or different among different fleets?  Equation (4) 
above, with or without nested parameters and polynomials in year, is intended to provide 
candidate models for cpue data, with Equation (5) being the global model.  However, it may 
be possible to eliminate some of these models on prior scientific grounds and, if so, this 
should be done.    A clearly best model may not appear at step (4) which, as Burnham and 
Anderson (2002) point out, is perfectly reasonable because of the complexity of biological 
systems.    
 
Here, we partially adopt Burnham and Anderson’s approach to model selection and 
estimation, and we have not attempted MMI.  One reservation is that a model that fits all 
available data well is not necessarily good for predicting next year’s stock, the primary task of 
a stock assessment.  A second is that the AIC statistic for year-class curves may be 
invalidated because of dependence among observations of cpue across different ages within 
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dependence, e.g. due to weather or cruise-leader effects, but it appears to be a complicated 
task for the range of nested models suggested here, and may not improve predictive abilities 
of fitted models (since a random effect is not predictable).  For these reasons, we did not 
attempt it.    
 
The method of forward validation was developed to supplement the AIC method because of 

orward validation starts with selection of a starting year, v,  near the beginning of the data 

these reservations.  Starting from an early year and proceeding forwards in the time-series, it 
finds the differences between the predicted log cpue and the observed log cpue for one year 
after the time domain of the data used to fit the model.  The preferred model is the one whose 
mean difference is closest to zero, and for which the mean square of the differences is lowest.  
This is merely a simulation of a fish stock assessment working group making predictions each 
year for the coming year, then checking them when the outcome is known, and, for this 
reason, we are proposing forward-validation in preference to the more widely used cross-
validation.    
 
F
series and for which there are sufficient observations to estimate all parameters of the 
selected model.  All available data up to and including year v are fitted, and predictions 
formed for year 1+v .  For linear models, the fitted model may be used directly for prediction, 
but for polynomial models, extrapolation beyond v may produce erratic results.  A Taylor 
series prediction method based on differential coefficients estimated close to, but behind the 
v’th observation is then preferable.  This is described in an Annex.  The predicted log cpue 
are compared with observed log cpue for each fleet and each age in year 1+v  to form 
prediction errors, Uv log1+δ .    Next, the same model is fitted in the same way to 1+v  

observations, and s and errors prepared for year 2prediction +v , and so on, unti  
penultimate data year is reached and prediction errors are form with the final data year.  
Note that successive prediction errors from forward validation are not independent.  An outlier 
at the beginning of a series could cause serial correlation of prediction errors for that fleet for 
several years afterwards.   
 

l the
ed 

 weighted estimator of the mean square prediction error for next year’s log cpue for age-

  

A
class a and fleet f  is 
 

( ) ∑∑ += ifaiia,f nUn 2
,1 logMSPE δ   (6) 

here  is the number of years of observations fitted for the i’th forward validation step.  This 

  

 
w in

orestimat  assumes a linear relationship between the number of years of observations and the 
reliability of the model fitted to them, whilst also giving more weight to recent observations.  
The MSPE would often be greater than the residual variance, 2

eσ .  Similarly, a mean 
prediction bias factor can be estimated from 
 

( )( )∑∑ += ifaiifa nUn ,1, logexpMPB δ   (7) 

his estimator is anti-logged and so has value 1 when prediction is perfect. 

 complication with forward validation arises when Z is allowed to vary over time.  Here, we 

 further choice to be made is whether to estimate prediction errors separately or jointly for 
each age and/or fleet.  Initial screening of candidate models is much simpler if interest is 

 
T
 
A
are using low degree polynomials in year for this purpose.  It can be expected that, when the 
index, i, is small, the polynomial terms will fit short period fluctuations of Z over time but, when 
i approaches the penultimate data year, the same polynomial terms will fit longer period 
trends in Z leaving the short period fluctuations to appear as noise.  For this reason it is 
suggested that MSPE for polynomial functions should be estimated using only the last half of 
the data series, depending on the length of the series available and the amount of short 
period noise that is thought to exist in the data. 
 
A
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restricted to one measure for each fleet.  For this purpose, the  average MSPE per age class 
can be calculated: 
 

  f
A

a fa Af∑ =1 ,MSPE      (8) 

classes in fleet f  for which predi  
r a
e 

ted stocks 
tock Assessment Methods of the US National Research Council 

 of catch-at-age simulations of five stocks that were used as part of a 

odels, their estimated MPB factor, and, very briefly, the reasons for 
referring them over other candidate models plus any reservations about them are given in 

e (“tuning”) data for North Sea plaice taken from an ICES stock 
, 2005).  It illustrates how an analysis of year-class curves might be 

 2003; and 

 
re A  is the number of age ction errors are available. whe f

Anothe pproach that might be more suitable for skewed prediction errors  would be to 
examin quantiles of the prediction errors for each fleet pooled across all ages.  Later 
evaluation of the short-list of preferred models could involve examination of MSPE and MPB 
for age-classes individually, particularly those of most importance for predicting the future size 
of the stock. 
 

xamples E

NRC simula
The Committee on Fish S
(NRC) published details
review of various assessment methods (National Research Council, 1998).  Summaries of the 
principal varying features of the NRC data sets are given in table 1.  Here we used the 30-
year series of simulated survey abundance indices of numbers-at-ages 2 – 14, and weight-at-
age matrices.  Candidate models were fitted with the YCC package to each set of data and 
compared, then the preferred model was used to estimate numbers-at-age and recruitment 
annually without knowledge (at the time) of the true values underlying the simulations.  Since 
both biomass and recruitment were estimated on a ‘per unit effort’ basis by YCC whilst the 
NRC values were absolute, it was necessary to standardise both the NRC true values and the 
YCC estimates to units of standard deviations from their respective mean values in order to 
compare the two time-series on the same scales.  (Note that this also standardised the 
variances of the series.) 
 
Details of the preferred m
p
table 2.  Some of the comments relate to voluminous, unreported diagnostic results.  True, 
and estimated trajectories of biomass and recruitment obtained with the preferred model for 
each data set are shown in Figure 1a, b respectively.  For biomass, the trajectories of the 
simulated survey observations are also shown in Figure 1a since they formed the input to 
YCC and their variance around the truth could have caused some of the imprecision of the 
YCC estimates.  Inspection of Figure 1a and b indicates that biomass and recruitment were 
estimated with reasonable precision for most of the five simulations, especially considering 
that  only the survey data were used.   Set 3 gave most difficulties, as expected due to the 
step change in survey catchability after year 15 (Table 1).  It was handled by splitting the 
survey into two ‘fleets’.  Forward validation was extended back to 25 years (instead of to 10 
years for the other sets) so that the MSPE/Age class included results for the first survey.  
Catchability of the survey over years 16 to 30 was estimated to be 2.4 times that during years 
1 to 15.  The true value was 2.0.  Figure 1a shows a large overshoot of estimated biomass in 
year 15 apparently due to over-estimation of 6 to 9 year-olds in that year which in turn was 
linked with over-estimation of recruits in years 6 to 9 (Figure 1b).  Bearing in mind the 
irregularities in set 3, the analysis with YCC was considered acceptable. 
 

laice in the North Sea P
This example uses survey cpu
assessment report (ICES
applied in a stock assessment, suggests uses for some of the outputs offered by YCC, and 
gives results consistent with known migrations of plaice.   Data were for three beam trawl 
surveys carried out by IMARES for the stock assessments of plaice and sole.  The short 
names for the surveys and details of the data they provided are: 

• ‘BTS Isis’, for fish aged 1 to 9 years, for years 1985 to 2003; 
• ‘BTS Tridens’ for fish aged 2 to 9 years for years 1996 to
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• ‘SNS’ for fish aged 1 to 3 years, for years 1982 to 2002. 
BTS Isis covered the south eastern North Sea with twin 8-m beam trawls with 8 tickler chains.  

of the North Sea.  The same 

hort-list of 6 candidate models considered, notes on the assumed 
iological meaning of each model, and in each case, comments on its scientific implications, 

e different models in Table 3, models #4 and #10 were preferred. Table 4 shows 
elected diagnostic results, plus reasons for preferring them over other candidate models, 

ed to model #4 at this stage because of its higher prior credibility 
able 3), its lower AICc , and its comparable MSPE/age-class for each of the three fleets 

BTS Tridens was an expansion into the central and northern part 
gear was used but with the addition of a flip-up rope to cope with rough ground.  SNS covered 
transects within coastal waters of the south eastern North Sea using twin 6-m beam trawls 
and aiming at younger age-groups than the two BTS surveys.  Figure 2 shows the coverage 
of the three surveys.   More information about them is available in two project reports (Beare 
et al., 2002; Piet, 2004).  A total of 291 observations of cpue at all ages was analysed.  
Forward validation was started 10 years behind the final data year using the Taylor series 
method.  Note that only 6 or 7 forward predictions were available for BTSTridens, and only 2 
age-classes for SNS, suggesting that MSPE for those surveys was  estimated poorly relative 
to those for BTS Isis. 
 
Table 3 shows the s
b
plus a three-level subjective ranking of its overall credibility prior to any statistical analysis.  
Models including polynomials in year were omitted at this stage because the biological 
credibility of various terms is little affected by whether or not Z is allowed to vary gradually 
over time.   
 
After fitting th
s
together with any reservations.  Models #4 and #10 showed the lowest AICc, good 
MSPE/age-class, and similar levels of MPB factor/age-class.  These models were therefore 
re-fitted with the addition of polynomial terms in year to see whether better fits or predictive 
abilities could be found.  For model #4, AICc was improved by polynomial terms but 
MSPE/age-class was either unchanged or became worse, and the unsteady behaviour of 
residuals on age observed with the linear models was not improved.  Giving priority to 
MSPE/age-class and the principle of parsimony, the preferred model was the linear model,  
#4.  For model #10, 1st and 2nd degree polynomials neither improved AICc nor predictive 
abilities.  The 3rd degree polynomial did improve AICc but not MSPE/age-class, or the 
unsteady behaviour of residuals.  For the same reasons as for model #4, the preferred model 
was the linear model, #10. 
 
Model #10 might be preferr
(T
(Table 4).  Taking model #10 as AICmin, 848.554699.5554 −=Δ , and the odds against 

model #4 are ( ) 53.1426.0exp1 =−  to 1, making erable to model 
#4.   
 
The v

ges for ea

 model #10 only slightly pref

alues of Z estimated numerically from models #4 and #10 at the maximum observed 
ch survey are compared in Table 5.  BTS Tridens showed the shallowest slopes a

(least negative values).  This is consistent with BTS Tridens covering the largest area of sea 
consisting of mainly offshore stations since estimated Z  is, in that case, likely to be less 
affected by age-dependent migrations of plaice out of the survey area.  SNS showed the 
steepest Z (most negative values) even though the maximum observed age was only 3.  
Model #4 estimated Z = –1.84 year-1 which is substantially different from the estimates for the 
other fleets.  This would imply very high losses of older fish from the SNS transects to 
offshore waters.  Model #10 estimated Z for SNS as –1.34 year-1  which is also quite distinct 
from the values for the other two fleets.  Since SNS was designed as a survey of young fish, 
detection of offshore migrations is not surprising and lends support for use of the YCC 
method.  Beverton and Holt (1957, p. 182-3) found average Z for North Sea plaice aged 5 to 
10 years old between 1929 and 1938 to be 0.83, a low value which they attributed to 
immigration to the fishing area off Lowestoft, and to discarding.  Concerning estimates of log 
cpue indices for plaice aged 0, models #4 and #10 gave series with different elevations but 
identical patterns (not illustrated), implying that the choice of model was unimportant for 
estimation of relative recruitment to year-classes in this case.   
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Figure 3 shows grey scale representations of the correlations of log residuals across ages 

igure 4 is a graphic presentation of the correlations between estimated parameters for model 

obtained with model #10 for each survey.  The patterns for models #4 and #1, not illustrated, 
were nearly identical, implying that the observed correlation structure was a property of the 
data rather than a consequence of the model.  Patterns were different for each survey.  
Correlations were positive and high for SNS whilst BTS Isis showed more independence, i.e. 
more medium grey in Figure 3, and BTS Tridens was intermediate.  High correlations imply 
that parameters estimated by a survey should have larger standard errors than those 
obtained by least squares regression based on an assumption of independent residuals.  
Table 6, here called the D-table, shows the relative amounts of information contributed by 
each fleet to the estimate of each parameter in model #10, based on the number of 
observations and the fleet weightings, i.e. D in Equation. (4) of Cotter and Buckland (2004).  
Also shown in Table 6 are the parameters and standard errors on the log scale estimated 
after 3 iterative re-weightings, the absolute fleet weights (i.e. not constrained to add to 1, as 
they are in table 4), and the numbers of observations.  Table 6 may be used to indicate how 
much confidence to place on the standard errors of estimates.  As examples, the 1976 – 
1978, and 2002 year-classes and a selectivity factor were all estimated solely by BTS Isis 
and, since residuals appeared reasonably independent for this survey (Figure 3), the standard 
errors could be considered to be reasonable.  The coefficient of age (i.e. Z ′log  in Table 6) 
was estimated with substantial contributions of information from BTS Tride  SNS, both 
of which showed correlated residuals (Figure 3); the standard error of +/- 0.090 is therefore 
likely to be under-estimated.  The standard errors for the fleet and selectivity factors 
estimated solely by, and for SNS are likely to be substantially under-estimated because of the 
correlated residuals for that fleet (Figure 3).  Unfortunately, a link between the degree of 
under-estimation of the standard error and the degree of correlation among the residuals-at-
age is not available due to lack of statistical theory.  The D values for model #4, not shown, 
did not differ substantially from those for model #10 in Table 6, except for  Z ′log  for which 
each fleet contributed a separate estimate. 
 

ns and

F
#4.  That for model #10 was similar.  In both cases, estimated year-class parameters were 
highly correlated positively.  This is consistent with the two models estimating similar relative 
recruitments but with different elevations for, if one estimate is high, all are high when 
positively correlated.  With model #4  (Figure 4), all year-class estimates were positively 
correlated with the coefficient of age  estimated for BTS Isis. This is consistent with BTS Isis 
contributing the longest data series and the most age groups to the analysis.  With model #10 
(not illustrated) year-class estimates were most positively correlated with the coefficient of 
age which was common to all fleets.  The year-class estimates in Figure 4 were negatively 
correlated with the coefficient of selectivity estimated for BTS Isis because a large value 
depresses the estimated numbers of young fish in each year-class.   It may be helpful to note 
that the correlations among parameters, θ , are computed from ( ) ( ) 12 ..ˆcov −′= XXθ re 
X is the predictor matrix of the model.  he patterns in Figure on the 
choice of parameters in the model, and of years, ages, and fleets over which cpue were 
observed, and not on the observed values themselves.  Other strong relationships, both 
positive and negative, among estimated parameters are also evident in Figure 4 and may be 
worthy of further investigations but will not be commented upon here. 
 

eσ  whe
T  4 therefore depend 

ear-class curves obtained by fitting model #10 are shown in Figure 5a, b, c.  Those for Isis Y
are concave upwards while those for BTS Tridens show the opposite effect reflecting the 
different signs of S (Table 6).  The negative value for BTS Isis implies that old plaice were 
less well caught than younger fish, as is consistent with migrations by older fish out of the 
survey area.  The SNS curves showed a tendency to over-estimate older fish in the more 
recent years but, considering the shortness of the age series, this is not surprising.  Plots of 
residuals over year, year-class, and age were also examined for all surveys (not shown).  
Patterns over year were evident but were not cured by adding polynomial terms.  BTS Isis 
and, to a lesser extent, BTS Tridens showed waves in residuals over age.  The presence of 
patterns was not ideal but was not generally improved by other candidate models.  The 
patterns were accepted because of other favourable properties of model #10 noted above, 
and a reluctance to further complicate the set of candidate models on an ad hoc basis. 
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An analysis of relative residual variance (Cotter, 2001) was also carried out to see whether 

o summarise, models #4 and #10 were selected on prior biological grounds, competitive 

Discussion 

Year-class curves have several desirable features not all of which are available with other, 

least squares and AIC. 
mercial fishing.   

r-

d with fishers and other, non-

lative 

 a range of candidate models from which one may be 

 addition, the inclusion of polynomials in year allows year-class curves to vary gradually 

the residual variance exhibited by any one fleet was significantly higher than the residual 
variance of all the others, as judged by an F test.  Tridens showed the highest fleet weightings 
with either model #4 or #10 (Table 4), and correspondingly the lowest fleet-specific residual 
variances (Table 7).   The comparison of residual variances is somewhat different from that 
foreseen when this method was presented (Cotter, 2001) because the interest now is in 
whether one survey is significantly better, not worse than two others.  Here we tested ratios of 
fleet-specific residual variances as F for Isis/Tridens and SNS/Tridens.  The data and 
calculations for model #10 are shown in table 7.  The residual variances of BTS Isis and SNS 
were significantly higher than for BTS Tridens (p < 0.05), suggesting that BTS Tridens was 
achieving better precision.  This result is expected given that BTS Tridens covers a much 
larger survey area (Figure 2) but, bearing in mind dependence among some of the residuals 
and the short time-series for Tridens, the result should be treated with caution.  Results for 
model #4, not shown, were similar.  
 
T
predictive abilities, and low AICc.  Exclusion of polynomials in year was preferred for both 
models because the extra terms did not notably improve prediction variance, mean bias, or 
homogeneity of residuals.  This exclusion implies that Z did not change detectably over the 
survey period, from 1982 to 2003.   A final choice between the two models was not possible 
but may not be particularly important for an assessment of the stock since both gave 
comparable estimates of relative recruitments, and the trend in -Z  was clearly SNS < BTS 
Isis < BTS Tridens with both models (Table 5).  This is consistent with the increasing 
geographic spreads of the three surveys and the loss of plaice offshore with age.  Heincke 
(1905, p17) notes that for the North Sea: “the occurrence of the young plaice, from the coast 
to the open sea, is arranged like the steps of a ladder . . . the smallest and youngest quite 
close to land, the largest and oldest the furthest out”.  See also Metcalfe et al.(2006) and 
Rijnsdorp et al. (2006). 
 

more elaborate methods of stock assessment: 
• They are based on statistical theory for 
• They are equally applicable to cpue results from surveys or com
• They use continuous rather than categorical variables for all variables except yea

class and fleet, thereby reducing the numbers of parameters to be estimated and 
allowing best precision with the available observations. 

• They generate illustrated output which can be discusse
mathematical stakeholders, e.g. when selecting the best approximating model. 

• They allow fleets to be ranked for precision using their fitted weights and re
residual variances.  Results are model-dependent but may, nevertheless, be useful 
for assigning priorities to different sources of data. 

• They are quickly fitted. 
• They are compatible with

selected so as best to capture the biological and fishery-related factors affecting 
cpue. 

 
In
over time, a feature that was not suggested when they were previously described as a 
method for intercalibrating groundfish surveys (Cotter, 2001).  Allowing only a conservative 
estimate of variability in Z gives fewer opportunities for erroneously interpreting sampling 
variance or random year effects as trends in time.  The possibility of model-related bias 
arising from including or excluding polynomials can be checked by seeing whether predictive 
abilities are improved as seen by forward validation.  A weakness of year-class curves is that 
they are totally dependent on catchabilities remaining constant over time.  However, few, if 
any, cpue-based stock assessment methods are immune to this problem. 
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The large range of candidate models available for year-class curves opens up the problem of 

electing the best model is, however, not easy.  The results of the analysis of plaice in the 

ear-class curves do not allow absolute stock numbers or fishing mortality, F, to be estimated 

ear-class curve models could be augmented by inclusion of commercial fishing effort, E, 

  

how to select the “best approximating” model.  Some other methods for estimating stock 
parameters offer a more limited range of candidate models.  For example the XSA method 
offers only two, concerning whether or not abundances of the youngest age-classes are 
proportional to eventual year-class strength (Darby and Flatman, 1994; Shepherd, 1999).  
The small number of options simplifies the analyst’s task but may mean that model-related 
bias is being overlooked.  The several candidate models together with the visual means of 
examining them offered by year-class curves encourage thorough consideration of the 
biological relevance of each model to the species and locations of interest, as in Table 3.  
This would surely represent valuable use of a working group’s time, particularly if commercial 
fishers were invited to take part in the discussions and perhaps help to choose the best 
model.  Smith and Punt (1998) report involving fishers in a (Bayesian) assessment of gemfish 
in eastern Australia, leading to better acceptance by the fishing industry of the science and 
management process.   
 
S
North Sea showed that the various indicators of fit may favour different models.  For example, 
the AICc implied that polynomials in year would be beneficial in some of the models even 
though the MSPE was not improved, or only slightly, and none of the models listed in Table 3 
provided neat horizontal bands of residuals over year, year-class, and age as is usually 
considered important for a good fit.  Priority was given to the MSPE criterion here because of 
the importance of prediction for stock assessments and because forward validation is based 
on repeated use of the model with successively lengthening data series, as it would be 
applied in reality from year to year.  The AICc , on the other hand, relates only to the model 
fitted once to the complete set of data.  It is also compromised by dependence of data across 
ages within years and fleets, as well as by possible inadequacy of the constant variance, 
normal distribution model of residual errors.   The conflict among indicators of fit underlines 
the importance of biological considerations and the principle of parsimony of parameters 
when choosing the model to go forward with.  Elaboration of the candidate models with extra 
terms or different functions designed to deal with patterned residuals is always an option but 
could amount to little more than an ad hoc exercise with no lasting explanatory power unless 
there are clear prior justifications based on ‘thoughtful science’. 
 
Y
but, as has been pointed out (Rivard, 1989; Cotter et al., 2004), other methods can only do 
this if the coefficient of natural mortality, M, is accurately known which is not usually the case 
(Vetter, 1988; Hewitt and Hoenig, 2005).  Statistical inferences from year-class curves are 
compromised somewhat by dependence among observed data but so too are other 
assessment methods unless a covariance matrix of errors is an estimated component of the 
method.  The practical relevance of dependence is that  precision is generally over-estimated.  
Analysts are consequently encouraged to add too many terms to models, and to have false 
confidence in the estimated parameters.  This lends further support for preferring 
parsimonious models. 
 
Y
being applied to the stock (Beverton and Holt, 1957, section 14.3).  This could be achieved by 
disaggregating the ageZ  term in the model equations: 
 
 ( ) ageMageEqageMFageZ ..... +′=+=  
 
where F and M are the coefficients of fishing and natural mortality respectively, and  is a q′

ancatchability coefficient.  E is total commercial fishing effort, or an index of it.  Adding an nual 
estimate (multiplied by age) to the predictor matrix for each cpue-at-age could remove the 
need to use polynomials in year to allow Z to vary over time.  Alternatively, if polynomials 
were still found necessary in the model, they would indicate changes in M over time.  
However, note that if effort does not vary much from year to year (as in the North Sea for 
example, Jennings et al., 1999) the two factors ageE and age would be nearly collinear, 
meaning that estimates of q′  and M would be hig rrelated.  Another problem is that a hly co
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reliable index of total fishing effort is often not readily obtainable, particularly when different 
fishing gears are in use commercially and their effort measures cannot be readily added.  For 
these reasons, we did not attempt to include effort in our analyses. 
 

Acknowledgements 

re were developed as a contribution to the FISBOAT project, This paper and the YCC softwa
number 502572, http://www.ifremer.fr/drvecohal/fisboat/ , funded by the European 
Commission.  We are grateful to all referees for beneficial criticism.  The NRC simulation data 
were kindly provided by Dr Terry Quinn.  JC is grateful to Laurie Kell for encouraging 
development of YCC using R.  No statement in this paper should be interpreted as official 
policy of the EC or of the authors’ employers. 
 

References 

arch surveys in relation to management advice 

 the dynamics of exploited fish populations.  

Model Selection and Multimodel Inference.  

ration of North Sea International Bottom Trawl Surveys by 

J. R., and Buckland, S. T. 2004.  Using the EM algorithm to weight data sets of 

X.  2004.  

ows/DOS) 

.R. 1985.  Catch-age analysis with auxiliary information.  

population size.  Canadian 

ble-based techniques in fish 

 distribution of the eggs, larvae and various age-

 

e North 

Beare, D., et al. 2002.  Evaluation of rese
(EVARES).  Final report.  DGXIV Fisheries, European Commission, Brussels.  FISH/2001/02 
- Lot 1. Available from john.cotter@cefas.co.uk. 
 

everton, R. J. H., and Holt, S. J. 1957.  OnB
Fishery Investigations, Series II, 19: 1-533. 
 

urnham, K. P., and Anderson, D. R. 2002.  B
Springer, New York. 488pp. 
 

otter, A. J. R. 2001.  IntercalibC
fitting year-class curves.  ICES Journal of Marine Science, 58: 622-632 [Erratum, Ibid. 
58:1340]. 
 

otter, A. C
unknown precision when modeling fish stocks.  Mathematical Biosciences, 190: 1-7. 
 

otter, A. J. R., Burt, L., Paxton, C.G.M., Fernandez, C., Buckland, S.T., and Pan, J-C
Are stock assessment methods too complicated?  Fish and Fisheries, 5: 235-254. 
 

arby, C. D., and Flatman, S. 1994.  Virtual population analysis: version 3.1 (windD
user guide.  CEFAS, Lowestoft, UK.   
 

eriso, R. B., Quinn, T.J., and Neal, PD
Canadian Journal of Fisheries & Aquatic Sciences, 42: 815-824. 
 

avaris, S. 1988.  An adaptive framework for the estimation of G
Atlantic Fisheries Scientific Advisory Committee.  88/29. 12 pp.  
 

rønnevik, R., and Evensen, G. 2001.  Application of ensemG
stock assessment.  Sarsia, 86: 517-526. 
 

eincke, F. R. 1905.  The occurrence andH
groups of the food-fishes in the North Sea.  Rapports et Proces- verbaux des Reunions, 
Conseil Permanent International pour L'Exploration de la Mer, 3, Appendix E: 39pp. 
 

ewitt, D. A., and Hoenig, J. M. 2005.  Comparison of two approaches for estimating naturalH
mortality based on longevity.  Fisheries Bulletin, 103: 433-437. 
 
CES 2005.  Report on the assessment of demersal stocks in thI

 12

http://www.ifremer.fr/drvecohal/fisboat/


Sea and Skagerrak.  International Council for the Exploration of the Sea. Copenhagen. ICES 
CM 2005/ACFM:07. 772 pp. 
http://www.ices.dk/iceswork/wgdetailacfm.asp?wg=WGNSSK 

 
Jennings, S., Alsvaag, J., Cotter, A.J.R., Ehrich, S., Greenstreet, S.P.R., Jarre-Teichmann, 
A., Mergardt, N., Rijnsdorp, A.D., and Smedstad, O. 1999.  Fishing effects in northeast 
Atlantic shelf seas: patterns in fishing effort, diversity and community structure.  III.  
International trawling effort in the North Sea: an analysis of spatial and temporal trends.  
Fisheries Research, 40: 125-134. 
 
Jensen, A. J. C. 1939.  On the laws of decrease in fish stocks.  Rapports et Proces- verbaux 
des Reunions, Conseil Permanent International pour L'Exploration de la Mer, 110: 85-96. 
 
Jensen, A. L. 1985.  Comparison of catch-curve methods for estimation of mortality.  
Transactions of the American Fisheries Society, 114: 743-747. 
 
Megrey, B. A. 1989.  Review and comparison of age-structured stock assessment models 
from theoretical and applied points of view.  American Fisheries Sociey Symposium, 6: 8-48. 
 
Metcalfe, J. D., Hunter, E., and Buckley, A.A. 2006.  The migratory behaviour of North Sea 
plaice: currents, clocks and clues.  Marine and Freshwater Behaviour and Physiology, 39: 25-
36. 
 
National Research Council 1998.  Improving fish stock assessments.  National Academy of 
Sciences. Washington D.C.  178 pp. http://books.nap.edu/catalog/5951.html 
 
Piet, G. 2004.  Development of a central database for European trawl survey data (DATRAS).  
Final report.  DGXIV, European Commission, Brussels.  EC project QLRT-2001-00025. 
http://www.ices.dk/datacentre/datras/Final%20report%20to%20EU.pdf 
 
Quinn, T. J., and Deriso, R. B. 1999.  Quantitative fish dynamics.  Oxford University Press, 
542 pp. 
 
Ricker, W. E. 1975.  Computation and interpretation of biological statistics of fish populations.  
Bulletin of the Fisheries Research Board of Canada, 191: 382. 
 
Rijnsdorp, A. D., Daan, N., and Dekker, W. 2006.  Partial fishing mortality per fishing trip: a 
useful indicator of effective fishing effort in mixed demersal fisheries.  ICES Journal of Marine 
Science, 63: 556-566. 
 
Rivard, D. 1989.  Overview of the systematic, structural, and sampling errors in cohort 
analysis.  American Fisheries Sociey Symposium, 6: 49-65. 
 
Sette, O. E. 1943.  Biology of the Atlantic mackerel (Scomber scombrus) of North America.  
Part I: Early life history, including the growth, drift, and mortality of the egg and larval 
populations.  Fishery Bulletin of the Fish and Wildlife Service, 50: 149-237. 
 
Shepherd, J. G. 1999.  Extended survivors analysis: an improved method for the analysis of 
catch-at-age data and abundance indices.  ICES Journal of Marine Science, 56: 584-591. 
 
Shepherd, J. G., and Nicholson, M. D. 1991.  Multiplicative modelling of catch-at-age data, 
and its application to catch forecasts.  Journal du Conseil International pour Exploration de la 
Mer, 47: 284-294. 
 
Silliman, R. P. 1943.  Studies on the Pacific pilchard or sardine (Sardinops caerulea).  5. A 
method of computing mortalities and replacements.  United States Department of the Interior, 
Fish and Wildlife Service.  No. 24. 10 pp.  
 
Smith, A. D. M., and Punt, A. E. 1998.  Stock assessment of gemfish (Rexea solandri) in 
Eastern Australia using maximum likelihood and Bayesian methods.  In  Fisheries stock 

 13

http://www.ices.dk/iceswork/wgdetailacfm.asp?wg=WGNSSK
http://books.nap.edu/catalog/5951.html
http://www.ices.dk/datacentre/datras/Final%20report%20to%20EU.pdf


assessment models, pp. 245-286.   Ed. by Quinn, T. J., Funk, F., Heifetz, J., Ianelli, J. N., 
Powers, J. E., Schweigert, J. F., Sullivan, P. J., and Zhang, C.-I.  Alaska Sea Grant College 
Program, AK-SG-98-01,  University of Alaska, Fairbanks. 
 
Vetter, E. F. 1988.  Estimation of natural mortality in fish stocks: a review.  U.S. Fishery 
Bulletin, 86: 25-43. 
 
Xiao, Y. 2006.  Catch equations: calculating the instantaneous rate of fishing mortality from 
catch and back.  Ecololgical Modelling, 193: 225-252. 
 

 

 14



Annex: Prediction using a Taylor series 

Taylor’s theorem states that a function of x may be predicted at a point ( )hx +  with 

 ( ) ( ) ( ) ( ) ( ) ( ) K+′′′′+′′′+′′+′+=+ xfhxfhxfhxfhxfhxf
!4!3!2

432

 

The primes indicate successive differential coefficients.  Denote the date of the final 
observation of any forward validation step as Y0, and let a small fraction of a year be δ .  Let 

δ−= 01 YY , δ202 −= YY , etc..  Backward differences are used so as to keep estimation 
within the fitted domain, and so that the differential coefficients are estimated as close as 
possible to the value to be predicted for forward validation.  Then the coefficients are 
approximated by  
 
( ) ( ) ( )( ) δ100 YfYfYf −=′ , ( ) ( ) ( )( ) δ211 YfYfYf −=′ , etc. 

( ) ( ) ( )( ) δ100 YfYfYf ′−′=′′ ,  etc. 

( ) ( ) ( )( ) δ100 YfYfYf ′′−′′=′′′ , etc. 

( ) ( ) ( )( ) δ100 YfYfYf ′′′−′′′=′′′′ . 
 
δ  is set to a value, say 0.01, which is not too large for estimating the differentials accurately, 
and not so small as to cause significant rounding errors in the calculations.  Finally, the Taylor 
series is evaluated with , and 0Yx = 1=h  year.  
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Table 1.  Summary of the principal varying features of 5 stock simulations used to test the 
YCC method.  Based on table 5.1 of NRC (1998). 
 
 

 
NRC set # 
 

 
Population trend 
 

 
Age at 50% 
selectivity 

 
Survey 
catchability (q) 

 
Mean 
Yield/Biomass 

1 Depletion 
 

Lower later Constant 0.19 

2 Depletion 
 

Lower later Constant 0.12 

3 Depletion 
 

Lower later Higher from year 
16 

0.12 

4 Depletion 
 

Constant Constant 0.21 

5 Recovery 
 

Constant Constant 0.07 
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Table 2.  Brief details of YCC models preferred for fitting the 5 stock simulations prepared by 
NRC (1998).  10 years of forward validation were used for all sets except #3 which used 25 
years.  Abbreviations: MPB = mean prediction bias factor; MSPE = mean square (log) 
prediction error; FPE = forward prediction errors;  Z = estimated total mortality for age range 
in subscripts and for years (yr) shown; ‘/’ in model terms means ‘having nested within it’.  
Parameters corresponding to (=) model terms: fleet =   for all f; yclass =  for all c; 

age = Z or 
fV cU ,0log

Z ′ ; selectivity = S;  fleet/age =  for all f;  fleet/yclass =  for all c, f;  

fleet/selectivity =  for all f; age*year = 1st degree polynomial in year, etc. 
fZ fcU ,,0log

fS
 
 
NRC 
set # 
 

 
Model terms and  
ages used in fit 
 

 
N 
para-
meters 

 
MPB/ 
age 
class 

 
Trend in Z 

 
Reasons for preference and 
reservations 

1 selectivity + yclass 
+ age + age.year + 
age*year2 
 
Ages: 2 – 10 
 

43 0.982 Z5-10 :  
yr1:   0.48 
yr30: 0.95 

• 2nd lowest MSPE/age 
class, lowest AICc 

• FPE plots show fewest 
trends and shapes 

 
 

2 yclass + age + 
age*year 
 
Ages: 3 - 14  
 

46 0.932 Z6-14:  
yr1:   0.27 
yr30: 0.66 

• Lowest MSPE/age class; 
parsimonious; AICc second  
lowest 

• Trends seen in residuals 
and FPE on age but not 
worse than for other 
models 

 
3 yclass + 

fleet/selectivity + 
age + age*year + 
age*year2 
 
Ages: 1 – 14 

49 .972 Z6-14 :   
yr1:   0.31 
yr11: 0.23  
yr30: 0.69 

• Low MSPE , low AICc.   
• FPE and residuals evenly 

banded  
• fV  estimated more 

precisely than from models 
with more parameters 
nested within fleet 

 
4 selectivity+ yclass + 

age + age*year  
 
Ages: 1 – 14 
 

46 1.084 Z6-14 :  
yr1:   0.37 
yr30: 0.77 

• MSPE lowest, AICc low but 
not lowest; parsimonious  

• FPE convex upwards on 
age but not worse than for 
other models   

• Residuals evenly banded 
 

5 selectivity+ yclass + 
age  
 
Ages: 1 – 14 

43 1.123 
 

Z6-14 :  
yr1:   0.28 
yr30: 0.31 

• Lowest MSPE; low but not 
lowest AICc; parsimonious 

• Residuals evenly banded 
but FPE trend down on 
yclass.   
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Table 3.  Plaice in the North Sea.  Preliminary, subjective assessment of candidate models for 
fitting year-class curves to cpue data from 3 beam trawl surveys carried out by IMARES.  See 
Table 2 for explanation of model terms.  
 
 
Model 
# 
 

 
Model terms 

 
Biological meaning 
(B.M.) of model 

 
Comments (C.) 

 
Credibility 
of model 

1 fleet + yclass + 
age 

• Z is the same for all 
fleets 
• Catchability is the 
same for all years and 
ages 
• No age-related 
migrations 

• Ignores variation of 
trawl selectivity with 
age 
• Ignores possible 
offshore migrations 

LOW 

2 yclass + fleet/age • B.M. as for #1 
except 
• Z varies among 
fleets 
  

• C. as for #1 except  
• Varying Z  by fleet 
allows for  age-related 
migrations 
 

MED 

3 fleet/(yclass + 
age) 

• B.M. as for #2 plus 
• Year-class signal 
varies by fleet 
 

• C. as for #2 and 
• Year-class signal 
unlikely to differ among 
fleets 
 

LOW 

4 yclass+ fleet/(age 
+ selectivity) 

• B.M as for #2 plus 
• Selectivity varies by 
fleet 

• Slope varies with 
fleet and age 
• Estimates of fZ ′  

and fS  likely to be 
highly correlated 
implying too many 
parameters. 
 

MED 

10 yclass + age + 
fleet/selectivity 

• B.M. as for #1 plus 
• Selectivity varies by 
fleet 
 

• Slope varies with 
fleet; young fish 
probably most affected 
• Fleets likely to 
show different 
selectivities 
 

HIGH 

14 fleet/(yclass + age 
+ selectivity) 

• All parameters vary 
by fleet 

• Global model 
• Difficult to see why 
overlapping surveys 
should have no stock 
parameters in common 

LOW 
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Table 4.  Plaice in the North Sea.  Selected results from fitting the preferred pair of models, #4 
and #10, see table 3, to cpue data from 3 beam trawl surveys (BTS Isis, BTS Tridens, SNS) 
carried out by IMARES.  Some comments refer to results not presented.  See Table 2 for 
explanation of abbreviations and model terms 
 
 
 
Model 
# 

 
Model terms 

 
N 
para-
meters 

 
Small 
sample 
AICc 

 
Fleet 

 
log 
MSPE/ 
age 
class 

 
MPB/ 
age 
class 

 
Fleet 
weights 
 

 
Reasons for 
preference + 
reservations 

4 yclass+ 
fleet/(age + 
selectivity) 

36 556 Isis: 
Tridens: 
SNS: 

0.571 
0.330 
0.870 

1.184 
0.824 
1.497

0.247 
0.490 
0.263 

• Good AICc; 
good 
MSPE/Age 
class but 

• all fleet 
residuals 
show trends 
on year, and 
waves on 
age.   

• SNS year-
class curves 
fit poorly  

 
10 yclass + age + 

fleet/selectivity 
34 555 Isis: 

Tridens: 
SNS: 

0.588 
0.286 
0.794 

1.187 
0.806 
1.386

0.249 
0.497 
0.254 

• Best AICc 
among non-
polynomial 
models; 
good 
MSPE/Age 
class but  

• Tridens 
residuals 
slope on 
year; Isis 
and Tridens 
resids wavy 
on age 
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Table 5.  Plaice in the North Sea:  Coefficients of total mortality, Z, as estimated numerically 
at the ages shown for models #4 and 10 fitted to cpue data from 3 beam trawl surveys (BTS 
Isis, BTS Tridens, SNS) carried out by IMARES;  see also Tables 3 and 4, and Table 2 for an 
explanation of model terms. 
 
 
Model # 
 

 
Model terms 

 
Fleet 

 
Z  
year-1 

 
at Age 

4 yclass + fleet/(age + 
selectivity) 

Isis: 
Tridens: 
SNS: 

-0.88 
-0.62 
-1.84 

9 
9 
3 
 

10 yclass + age +  
fleet/selectivity 

Isis: 
Tridens: 
SNS: 

-0.91 
-0.57 
-1.34 

9 
9 
3 
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Table 6.  Plaice in the North Sea:  D-table for model # 10, i.e. relative contributions of 
information on a 0 to 1 scale by each of 3 IMARES survey fleets to estimates of each 
parameter based on the numbers of observations (N) and the estimated fleet weightings ( ).  
3 iterative re-weightings.  1st column: ‘1976 Yclass’ =  , etc.  D.o.f.=degrees of 
freedom.  Right 2 columns: log-transformed parameter estimates and corresponding standard 
errors. 

ŵ
)log( 1976,0U

 
 Survey fleet    
  
Parameter 
 

 
Isis 
N=167 

49.2ˆ =w
  

 
Tridens 
N=63 

0.5ˆ =w  

 
SNS 
N=61 

52.2ˆ =w
 

 
D.o.f. 

 
Log estimate 

 
St.err. 

1976  Yclass 1.00 0.00 0.00 1 10.078 0.783 
1977  Yclass 1.00 0.00 0.00 1 9.411 0.653 
1978  Yclass 1.00 0.00 0.00 1 9.573 0.608 
1979  Yclass 0.73 0.00 0.27 1 9.501 0.569 
1980  Yclass 0.73 0.00 0.27 1 9.040 0.553 
1981  Yclass 0.73 0.00 0.27 1 10.164 0.543 
1982  Yclass 0.73 0.00 0.27 1 9.719 0.539 
1983  Yclass 0.73 0.00 0.27 1 9.633 0.532 
1984  Yclass 0.73 0.00 0.27 1 9.626 0.520 
1985  Yclass 0.73 0.00 0.27 1 11.012 0.520 
1986  Yclass 0.73 0.00 0.27 1 10.215 0.520 
1987  Yclass 0.73 0.35 0.18 1 9.970 0.511 
1988  Yclass 0.73 0.35 0.18 1 9.362 0.511 
1989  Yclass 0.47 0.35 0.18 1 9.329 0.507 
1990  Yclass 0.47 0.35 0.18 1 9.251 0.508 
1991  Yclass 0.47 0.35 0.18 1 9.160 0.510 
1992  Yclass 0.47 0.35 0.18 1 8.905 0.510 
1993  Yclass 0.47 0.35 0.18 1 8.941 0.511 
1994  Yclass 0.47 0.35 0.18 1 9.258 0.505 
1995  Yclass 0.47 0.35 0.18 1 9.091 0.519 
1996  Yclass 0.47 0.35 0.18 1 10.543 0.522 
1997  Yclass 0.47 0.35 0.18 1 9.516 0.516 
1998  Yclass 0.47 0.35 0.18 1 9.203 0.516 
1999  Yclass 0.47 0.35 0.18 1 9.076 0.514 
2000  Yclass 0.47 0.35 0.18 1 8.941 0.515 
2001  Yclass 0.47 0.35 0.18 1 10.005 0.529 
2002  Yclass 1.00 0.00 0.00 1 8.426 0.738 
Fleet factors, 

 fV
0.00 1.00 1.00 2 Tri.:   -6.411 

SNS:   5.230 
0.445 
0.574 

Z ′  0.47 0.35 0.18 1 -0.680 0.090 
Selectivity, 

 fS
1.00 1.00 1.00 3 Isis:   -2.445 

Tri:     1.162 
SNS:   5.230 

0.534 
0.623 
0.482 

Totals 18.36 7.67 6.97 33   
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Table 7.  Plaice in the North Sea: F tests of which of three IMARES beam trawl survey was 
most precise with one model.  See Table 2 for an explanation of model terms. 
 
Model 
# 

Model terms Fleet-specific 
residual 
variances 

Fleet-
specific 
d.o.f. 
 

F statistic Probability 

10 Yclass + Age +  
Fleet/selectivity 

Isis:        0.402 
Tridens:  0.200 
SNS:      0.397 

148 
54 
53 
 

Isis/Tri: 2.01 
SNS/Tri: 1.99 

0.012 
0.032 
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Figure 1.  Comparison between NRC simulations for stocks 1 to 5 (National Research 
Council, 1998) and blind estimates made with preferred models of year-class curves (see 
text).  Ordinates normalised to standard deviations from the mean for each series.  For set 3, 
data were analysed as two surveys changing at year 16.   a) Total biomass estimated for 
ages 2-14.  b) Recruits aged 1. 
a) 

 
 
 
b) 
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Figure 2.  Coverage of three beam trawl surveys carried out by IMARES as used for the YCC 
analysis of cpue abundance indices-at-age for plaice. 
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Figure 3.  Plaice in North Sea: Grey scale representations of correlations of log residual errors 
across ages with model (#10) for 3 beam trawl surveys carried out by IMARES.  a) BTS Isis; 
b) BTS Tridens; c) SNS. 
a) 

 
b) 
 

 
 
 
c) 
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Figure 4.  Plaice in North Sea: Grey scale representations of correlations of parameters 
estimated with model #4 from data for 3 beam trawl surveys carried out by IMARES .  See 
Table 2 for parameters corresponding to model terms;  year-classes  are labelled by birth 
year. 
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Figure 5.  Plaice in North Sea: Year-class curves fitted with the YCC package to log cpue 
obtained from three beam trawl surveys using model #10; see Tables 3 and 4.  a) BTS Isis, 
1985-2003; b) BTS Tridens, 1996-2003; c) SNS, 1982-2002.  Panel labels show year-classes.  
Surveys carried out by IMARES. 
 
a) 
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Figure 5 continued.  Plaice in North Sea: year-class curves. 
b) 
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Figure 5 continued.  Plaice in North Sea: year-class curves. 
c)  
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