Science Vol. 318. no. 5854, pp. 1247 - 1248 http://dx.doi.org/10.1126/science.1148089 © 2007 Science AAAS

Managing Evolving Fish Stocks

Christian Jørgensen,^{1*} Katja Enberg,^{1,2} Erin S. Dunlop,^{2,1} Robert Arlinghaus,^{3,4} David S. Boukal,^{2,1} Keith Brander,⁵ Bruno Ernande,^{6,7} Anna GŒrdmark,⁸ Fiona Johnston,^{7,3} Shuichi Matsumura,^{7,3}Heidi Pardoe,^{9,10} Kristina Raab,^{11,10} Alexandra Silva,¹² Anssi Vainikka,⁸ Ulf Dieckmann,⁷ Mikko Heino,^{2,1,7} Adriaan D. Rijnsdorp¹³

¹Department of Biology, University of Bergen, N-5020 Bergen.

²Institute of Marine Research, Bergen, Norway.

³Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin.

⁴Humboldt-University of Berlin, Institute of Animal Sciences, Berlin, Germany.

⁵International Council for the Exploration of the Sea (ICES), Copenhagen, Denmark.

⁶Laboratoire Ressources Halieutiques, Institut Fran ais de Recherche pour l'Exploitation de la Mer (IFREMER), Port-en-Bessin, France.

⁷Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg,

Austria. ⁸Institute of Coastal Research. Swedish Board of Fisheries. Öregrund. Sweden.

⁹Marine Research Institute, Reykjavik;

¹⁰University of Iceland, Institute of Biology, Sturlugata 7, Reykjavik.

¹¹Hólaskóli, Saudarkrókur, Iceland.

¹²INRB-IPIMAR National Institute for Agriculture and Fisheries, Lisboa, Portugal.

¹³Wageningen Institute for Marine Resources and Ecosystem Studies (IMARES), Ijmuiden, the Netherlands.

^{*}Author for correspondence. E-mail: christian.jorgensen@bio.uib.no

Abstract:

Evolutionary impact assessment is introduced as a framework for quantifying the effects of 29 harvest-induced evolution on the utility generated by fish stocks.

32 Darwinian evolution is the driving process of innovation and adaptation across the world's 33 biota. Acting on top of natural selection, human-induced selection pressures can cause rapid 34 evolution of our living environment. Sometimes such evolution has undesirable 35 consequences for human societies, as is demonstrated by the quickly spreading resistance to 36 antibiotics and pesticides, which incurs billion-dollar losses annually (1). Another 37 anthropogenic selection pressure of comparable magnitude originates from fishing, which 38 has become the major source of mortality in many fish stocks around the world, exceeding 39 natural mortality by as much as 400% in heavily exploited populations (2). The notion that 40 fishing mortality can induce adaptive evolution in exploited fish populations has, however, 41 largely been ignored (3), even though studies based on fisheries data and controlled 42 experiments have provided strong empirical evidence for fisheries-induced evolution over a 43 range of species and regions (4). Moreover, these evolutionary changes unfold on decadal 44 time scales – much faster than previously thought – and the resultant needs for mitigating 45 actions have thus become compelling. 46 Life-history theory predicts that increased mortality generally favors earlier sexual 47 maturation at smaller size, as well as elevated reproductive effort (5). Fishing that is 48 selective with respect to size, maturity status, behavior, or morphology causes further 49 evolutionary pressures (6). Evidence that harvesting can bring about genetic changes comes 50 from breeding programs in aquaculture, which have demonstrated heritable genetic 51 variation in numerous traits (7), and from experiments that have shown significant harvest-52 induced evolution in just a few generations (8-12). Furthermore, using time series of 53 fisheries data spanning a few decades, new statistical methods have detected wide-spread 54 changes in maturity schedules that are unlikely to be explained by environmental influences alone (13-17). While alternative causal hypotheses can be difficult to rule out, fisheriesinduced evolution consistently arises as the most parsimonious explanation of the trends left unexplained after accounting for environmental factors. Fisheries-induced evolution is thus largely inevitable: the question is not whether it will occur, but how fast a given fishing practice brings about evolutionary change, and what the consequences of such a change will be.

61 The biological and economic consequences of fisheries-induced evolution are potentially 62 severe. Life-history traits are among the primary determinants of population dynamics, and 63 their evolution will have repercussions for stock biomass, demography, and economic yield 64 (9, 11, 18-20). Such evolution may also be slow to reverse, or even turn out to be 65 practically irreversible (18, 21), which has implications for recruitment and recovery (22). 66 As a consequence, predator-prey dynamics, competitive interactions, production of 67 offspring, and other ecological relationships will systematically change over time. Current 68 management reference points are thus moving targets: stocks may gradually become less 69 resilient, or be erroneously assessed as being within safe biological limits. In this way, 70 knowledge based on past observations will become inadequate or insufficient for 71 understanding current stock dynamics, with some evolutionary trait changes even having 72 the potential for causing nonlinear ecological transitions and other unexpected outcomes 73 (23, 24). Fisheries-induced evolutionary changes are therefore pertinent not only to single-74 species management but also to the ecosystem approach to fisheries management. 75 These insights call for an evolutionarily enlightened management approach (11, 18, 25). 76 Here we define this as management of fishing activities based on knowledge and 77 consideration of ecological and evolutionary dynamics, aiming at an optimum level of

78 ecological services generated by fish resources. This definition emphasizes that a basic 79 awareness of evolutionary processes and their impacts is fundamental if fisheries 80 management is to achieve its long-term goals of sustainable exploitation and conservation 81 of biodiversity. Although framed here in the context of fish stocks, harvest-induced 82 evolution and its consequences also apply to other animals (26) and plants (27). 83 Environmental impact assessments are commonly employed for evaluating the 84 consequences of human activities for ecosystems and society. Extending this concept to 85 encompass evolution, we propose Evolutionary Impact Assessment (EvoIA) as an integral 86 tool for the management of evolving resources. Conceptually, an EvoIA involves two major 87 steps. The first step relies on biological information, and describes how human actions such 88 as fishing lead to trait changes. A stock's evolutionary susceptibility is high if the 89 evolutionary change in traits is rapid or large in magnitude. The second step addresses how 90 trait changes affect the stock's utility to society. Any definition of utility has to reflect 91 management objectives and needs to be developed in dialogue between fisheries managers, 92 fishing communities, scientists, conservationists, and other stakeholders (Fig. 1). The 93 evolutionary impact is then assessed by how the utility of a stock has changed or will 94 change as a consequence of fisheries-induced evolution. 95 Economically valuable stocks typically have a long history of exploitation (28, 29); for 96 such stocks, a natural starting point is a *retrospective* EvoIA, i.e., an assessment of past 97 evolutionary change. Operational statistical techniques (14, 15, 30) can assess the extent to 98 which evolutionary changes may have occurred, provided sufficient data are available. 99 Where stock-specific data are lacking, inferences can be drawn from species with similar

life histories and exploitation patterns. As a first approach, these simple EvoIAs can
prioritize management efforts by identifying the most susceptible stocks.

102 A more detailed understanding of the evolutionary impact can be obtained by formally 103 comparing management options. This will commonly require a forward-looking or 104 prospective EvoIA. In contrast to retrospective EvoIAs, prospective EvoIAs will typically 105 rely on dynamic models to provide quantitative predictions. This is because future utility 106 projections depend not only on how fishing affects traits, but also on how trait changes 107 might alter ecological relationships, which in turn affect utility (Fig. 2). Empirical and 108 theoretical studies have singled out life-history traits as being particularly prone to rapid 109 harvest-induced evolution. These traits are important because they influence a population's 110 demography and harvestable biomass. However, life-history traits are also shaped by, and 111 have implications for, density dependence, trophic interactions, geographical distribution, 112 migration patterns, behavior, and sexual selection. Furthermore, the risk of adverse 113 ecological consequences intensifies, due to nonlinear effects, as traits evolve further away 114 from their historic distributions. Prospective EvoIAs will thus rely on life-history models 115 that, eventually, should address a broad range of mechanisms and traits influenced by 116 fishing.

A natural baseline is the continuation of a business-as-usual scenario with evolutionary and utility projections based on the current fishing regime. This allows the cost of inaction to be quantified for different time horizons. Thereafter, utility can be calculated for and compared between alternative management scenarios that differ in the intensity and selectivity of fishing mortality. In this way, one can determine which management strategies have the least negative, or potentially even positive, effects on utility. The

123	cumulative utility and its net present value will depend on the choice of time horizon and
124	discounting rates (31), both of which will require careful consideration (Fig. 2).
125	A central challenge to all EvoIAs is to define operational management objectives that can
126	be translated into unified utility metrics integrating disparate social values. Although some
127	fish stocks will be managed primarily to maximize sustainable yield, successful
128	management of fisheries-induced evolution will generally benefit from the recognition of a
129	broader range of values and services (32) that are not inherent in the classic yield-
130	maximizing management paradigm (33). In the context of fisheries-induced evolution,
131	utility metrics might include yield and its variability and sustainability, conservation of
132	genetic and phenotypic diversity, the role of a harvested species in ecosystem functioning,
133	and its value for recreational fishing and tourism. The current state of each of these factors
134	may be eroded directly through fisheries-induced evolution or indirectly through the
135	ecosystem-level implications of such evolution (34) (Fig. 1).
136	Fisheries-induced evolution is likely to diminish yield and degrade ecological services
137	within decades, impacting species, ecosystems, and societies. The sudden collapse and slow
138	or absent recovery of many marine stocks (35) carry warnings that consequences can be
139	nonlinear, rapid, and severe. Evolutionary effects come on top of, and may magnify, the
140	ecological challenges that already threaten sustainable harvesting. Therefore,
141	implementation of the international calls for the ecosystem approach to fisheries
142	management (36), for the restoration of maximum sustainable yield by 2015 (37), and for
143	the adoption of a precautionary approach (38) must embrace management of the
144	evolutionary impacts of harvesting.

145 **References and Notes**

- 146 1. S. R. Palumbi, *Science* **293**, 1786 (2001).
- 147 2. G. Mertz, R. A. Myers, Can. J. Fish. Aquat. Sci. 55, 478 (1998).
- 148 3. Fisheries-induced evolution is for example not mentioned as one of the current
- 149 challenges to fisheries management in J. R. Beddington, D. J. Agnew, C. W. Clark,
- 150 *Science* **316**, 1713 (2007).
- 151 4. Field-based and experimental evidence of fisheries-induced evolution of life history
- traits are summarized in Tables S1 and S2 in the online supplementary material.
- 153 5. D. A. Roff, *The evolution of life histories* (Chapman & Hall, New York, 1992).
- 154 6. M. Heino, O. R. Godø, Bull. Mar. Sci. 70, 639 (2002).
- 155 7. R. Law, ICES J. Mar. Sci. 57, 659 (2000).
- 156 8. R. P. Silliman, Fish. Bull. 73, 495 (1975).
- 157 9. M. T. Edley, R. Law, *Biol. J. Linn. Soc.* 34, 309 (1988).
- 158 10. D. A. Reznick, H. Bryga, J. A. Endler, *Nature* **346**, 357 (1990).
- 159 11. D. O. Conover, S. B. Munch, *Science* **297**, 94 (2002).
- 160 12. D. N. Reznick, C. K. Ghalambor, *Can. J. Fish. Aquat. Sci.* 62, 791 (2005).
- 161 13. E. M. Olsen *et al.*, *Nature* **428**, 932 (2004).
- 162 14. M. Heino, U. Dieckmann, O. R. Godø, *Evolution* **56**, 669 (2002).
- 163 15. S. Barot, M. Heino, L. O'Brien, U. Dieckmann, Evol. Ecol. Res. 6, 659 (2004).
- 164 16. U. Dieckmann, M. Heino, Mar. Ecol. Progr. Ser. 335, 253 (2007).
- 165 17. R. E. Grift, M. Heino, A. D. Rijnsdorp, S. B. M. Kraak, U. Dieckmann, Mar. Ecol.
- 166 *Progr. Ser.* **334**, 213 (2007).

- 167 18. R. Law, D. R. Grey, *Evol. Ecol.* **3**, 343 (1989).
- 168 19. M. Heino, Can. J. Fish. Aquat. Sci. 55, 1971 (1998).
- 169 20. B. Ernande, U. Dieckmann, M. Heino, *Proc. R. Soc. Lond. B* 271, 415 (2004).
- 170 21. A. M. de Roos, D. S. Boukal, L. Persson, *Proc. R. Soc. B* 273, 1873 (2006).
- 171 22. M. R. Walsh, S. B. Munch, S. Chiba, D. O. Conover, *Ecol. Lett.* 9, 142 (2006).
- 172 23. B. Taborsky, U. Dieckmann, M. Heino, Proc. R. Soc. Lond. B 270, 713 (2003).
- 173 24. M. Scheffer, S. Carpenter, B. de Young, *Trends Ecol. Evol.* 20, 579 (2005).
- 174 25. M. V. Ashley et al., Biol. Conserv. 111, 115 (2003).
- 175 26. D. W. Coltman *et al.*, *Nature* **426**, 655 (2003).
- 176 27. W. Law, J. Salick, Proc. Natl. Acad. Sci. USA 102, 10218 (2005).
- 177 28. A. D. Rijnsdorp, R. S. Millner, *ICES J. Mar. Sci.* 53, 1170 (1996).
- 178 29. G. A. Rose, Can. J. Fish. Aquat. Sci. 61, 1553 (2004).
- 179 30. M. Heino, U. Dieckmann, O. R. Godø, *ICES J. Mar. Sci.* 59, 562 (2002).
- 180 31. C. W. Clark, *The worldwide crisis in fisheries* (Cambridge University Press,
- 181 Cambridge, UK, 2006).
- 182 32. E. K. Pikitch *et al.*, *Science* **305**, 346 (2004).
- 183 33. S. M. Garcia, K. L. Cochrane, *ICES J. Mar. Sci.* 62, 311 (2005).
- 184 34. A. Gårdmark, U. Dieckmann, P. Lundberg, *Evol. Ecol. Res.* 5, 239 (2003).
- 185 35. J. A. Hutchings, *Nature* **406**, 882 (2000).
- 186 36. The ecosystem approach strives "to balance diverse societal objectives, by taking into
- 187 account the knowledge and uncertainties about biotic, abiotic, and human components
- 188 of ecosystems and their interactions and applying an integrated approach to fisheries
- 189 within ecologically meaningful boundaries." UN Food and Agriculture Organization

190	(2003). Fisheries Management. 2: The ecosystem approach to fisheries. FAO Technical
191	Guidelines for Responsible Fisheries No. 4, Supplement 2.
192	37. The United Nations 2002 World Summit on Sustainable Development in Johannesburg,
193	South Africa, declared that, as a universal goal, fish stocks shall be maintained or
194	restored to levels that can produce the maximum sustainable yield (MSY) by 2015.
195	38. A precautionary approach "exercises prudent foresight to avoid unacceptable or
196	undesirable situations, taking into account that changes in fisheries systems are only
197	slowly reversible, difficult to control, not well understood, and subject to change in the
198	environment and human values" UN Food and Agriculture Organization (1996).
199	Precautionary approach to capture fisheries and species introductions. FAO Technical
200	Guidelines for Responsible Fisheries No. 2.
201	39. C. M. Holmlund, M. Hammer, Ecol. Econ. 29, 253 (1999).
202	40. Millennium Ecosystem Assessment, Ecosystems and human well-being (Island Press,
203	Washington, D.C., 2003).
204	41. S. R. Carpenter, C. Folke, Trends Ecol. Evol. 21, 309 (2006).
205	42. The authors are members of the Study Group on Fisheries-induced Adaptive Change
206	(SGFIAC) of the International Council for the Exploration of the Sea (ICES), and this
207	article arose from work during the group's first meeting in Lisbon in February 2007.
208	For more information on the group or on how to participate, please visit

- 209 http://www.ices.dk/iceswork/wgdetailacfm.asp?wg=SGFIAC or contact one of the
- 210 study group chairs: Ulf Dieckmann, Mikko Heino, or Adriaan Rijnsdorp.

211 **Figure captions:**

212 Figure 1. Examples of utility components potentially affected by fisheries-induced 213 evolution. Aquatic ecosystems produce four categories of ecological services of direct and 214 indirect utility to society (39-41). Using these definitions as a basic framework will 215 facilitate discussions among stakeholders with different backgrounds, and assist in the 216 prioritization of objectives and actions. Potential effects are shown for the two most 217 ubiquitous effects of fisheries-induced evolution: i) reduction in body size, often due to 218 earlier maturation, and *ii*) erosion of natural genotypic and phenotypic diversity. 219 Figure 2. Sketch of a prospective Evolutionary Impact Assessment (EvoIA) comparing 220 two management scenarios. Using appropriate models, the consequences of fishing can be 221 quantified using a utility function. In this hypothetical scenario of an EvoIA, the red solid 222 lines refer to business-as-usual: moderate overfishing causes continued evolution at a 223 constant rate (A), steadily declining regulating services (B), and reduced catches (C). In 224 comparison (red dotted lines), a sufficiently strong reduction in harvest rate will in this 225 example slowly reverse trends in trait evolution and improve regulating services, while also 226 causing a significant short-term loss of yield. When evaluating management strategies, the 227 difference in combined utility (D) depends on the time horizon considered. The cost of 228 inaction (vertical arrow) is defined as the loss of utility, relative to its present value, if 229 current fishing practices are continued. In this example, reduced fishing leads to a 230 temporary loss of combined utility that is compensated for by a long-term gain, as indicated 231 by the areas marked *Cost* and *Benefit* in (D).

232

233 Figure 1

236	Supporting	online	material
-----	------------	--------	----------

237

238	1.	Table S1. Studies suggesting evolutionary changes in life-history traits caused by
239		fisheries in wild populations.
240	2.	Table S2. Experimental studies where harvestings has caused evolutionary trait
241		changes in aquatic animals.
242	3.	References cited in tables S1 and S2.

Table S1. Empirical studies suggesting evolutionary changes in life-history traits caused by fisheries in wild fish populations.

Species	cies Population or stock		Reference				
Trend towards maturation at earlier age and/or smaller size							
American plaice	Labrador and NE Newfoundland	1973 – 1999	Barot et al. 2005				
Hippoglossoides platessoides	Grand Bank	1969 – 2000					
	St. Pierre Bank	1972 – 1999					
Atlantic cod	Northeast Arctic	1932 – 1998	Heino et al. 2002				
Gadus morhua	Georges Bank	1970 – 1998	Barot et al. 2004				
	Gulf of Maine	1970 – 1998					
	Northern	(1977 –)1981 – 2002	Olsen et al. 2004				
	Southern Grand Bank	1971 – 2002	Olsen et al. 2005				
	St. Pierre Bank	1972 – 2002					
	Baltic	1984 – 1997 1989 – 2003	Cardinale & Modin 1999 Vainikka et al. 2006				
	North Sea and West of Scotland	1969 – 1970, 2002 – 2003	Yoneda & Wright 2004				
Atlantic herring <i>Clupea harengus</i> ¹	Norwegian spring-spawning	1935 – 2000	Engelhard & Heino 2004				
Atlantic salmon Salmo salar	Goodbout River, Quebec	1859 – 1983	Bielak & Power 1986				
Brook trout Salvelinus fontinalis	17 Canadian lakes	1984, 1999, comparative	Magnan et al. 2005				
Chinook salmon Oncorhynchus tschawytscha	British Columbia	1951 – 1975	Ricker 1981				

¹ Weak trend.

Species	Population or stock	Data period	Reference
Grayling Thymallus thymallus	Several lakes in Oppland, Norway	1903 – 2000 (ca. 15 years)	Haugen & Vøllestad 2001
Plaice Pleuronectes platessa	North Sea	1957 – 2001	Grift et al. 2003, 2007 Rijnsdorp 1993a, b
Sole <i>Solea solea</i>	Southern North Sea	1958 – 2000	Mollet et al. In press
Red porgy <i>Pagrus pagrus</i>	South Atlantic Bight	1972 – 1994	Harris & McGovern 1997
Trends toward increased f	ecundity/reproductive investme	nt	
Atlantic cod Gadus morhua	North Sea and West of Scotland	1969 – 1970, 2002 – 2003	Yoneda & Wright 2004
Haddock Melanogrammus aeglefinus	North Sea	1976 – 1978, 1995 – 1996	Wright 2005
Plaice <i>Pleuronectes platessa</i> ²	North Sea	1900 – 1910, 1947 – 1949, 1977 – 1985	Rijnsdorp 1991 Rijnsdorp et al. 2005
Trends towards decreased	size at age		
Atlantic cod Gadus morhua	Southern Gulf of St Lawrence	1971 – 2001	Swain et al. 2007
Atlantic salmon Salmo salar	Goodbout River, Quebec	1859 – 1983	Bielak & Power 1986
Pink salmon Oncorhynchus gorbuscha ³	British Columbia	1951 – 1975	Ricker 1981

² Only for females with smaller body size. ³ Only size at maturation decreased, not age.

Species	Population or stock		Data period	Reference
Red porgy	South Atlantic Bight		1972 – 1994	Harris & McGovern 1997
Pagrus pagrus				
Whitefish	Lesser Slave Lake	9	1941 – 1975	Handford et al. 1977
Coregonus clupeaformis				
Whitefish	Lake Constance		1947 – 1997	Thomas & Eckmann 2007
Coregonus lavaretus				
Loss of genetic diversity				
Atlantic cod	North Sea		1954, 1970, 1998	Hutchinson et al. 2003
Gadus morhua				
Brook trout	9 Canadian lake-	stream	1996 and 1997	Jones et al. 2001
Salvelinus fontinalis	population pairs		(comparative)	
Orange roughy	New Zealand		1982 – 83 and 1988	Smith et al. 1991
Hoplostethus atlanticus				
Snapper	Tasman Bay, New Zealand		1950 – 2000	Hauser et al. 2002
Pagrus auratus (– Chrysophrys auratus)				
	Dopulation		Evolutionom	
Species	or Stock	Data period	response	Reference
Other life history trends			•	
Atlantic cod	Newfoundland	1977 – 2002	Maturation at lower	Baulier et al. 2006
Gadus morhua	and Labrador		condition	
Altantic salmon	Rivers Asón,	1988 – 2000	Later smolting, lower sea-	Consuegra et al. 2005
Salmo salar	Pas, Nansa, and Deva, Spain		age, smaller body size	
Bluegill	Lakes in	1989 – 1995	Slower growth, earlier	Drake et al. 1997
Lepomis macrochirus	Minnesota	(Comparative)	maturation, more cuckolders	

Species	Population or	stock	Data period	Reference
Common carp <i>Cyprinus carpio carpio</i>	Aquaculture races from China and Europe	Comparative between regions	Seine harvesting (China) selected for viability, lean body, escapement, early maturation.	Wohlfarth et al. 1975
Sockeye salmon Onchorhynchus nerka	Bristol Bay, USA	1969 – 2003	Earlier run timing	Quinn et al. 2007
Whitefish Coregonus clupeaformis	Lesser Slave Lake	1941 – 1975	Decreased condition	Handford et al. 1977

Table S2. Experimental studies demonstrating evolutionary changes in life-history traits caused by harvesting in aquatic animals.

Species	Time frame	Trait changes	Reference
Atlantic silverside	4 generations	Decreased growth rate	Conover & Munch 2002
Menidia menidia⁴	(4 years)	Decreased fecundity, egg volume, larval size at hatching, larval growth rate, larval survival, food consumption, growth efficiency, food conversion efficiency, willingness to forage under threat of predation, and number of vertebrae	Walsh et al. 2006
Water flea Daphnia magna⁴	37 generations (148 days)	Decreased growth rate and delayed maturation	Edley & Law 1988
Guppy <i>Poecilia reticulata</i> ⁵	11 years (30 – 60 generations)	Smaller size and age at maturation, higher number of offspring, smaller offspring size, higher reproductive allocation, shorter time interval between successive litters	Reznick & Ghalambor 2005 Reznick et al. 1990
Largemouth bass Micropterus salmoides ⁶	4 generations	Reduced parental care, reduced resting metabolic rate, poorer swimming performance	Cooke et al. In press
Tilapia mossambica	75 months	Decreased growth rate	Silliman 1975

 ⁴ Effects are for lines where large individuals had been harvested.
 ⁵ Compares fish from high and low mortality environments (high and low predation pressure, respectively), effects are for fish experiencing high mortality rates.

⁶ Effects are when fish vulnerable to harvesting are removed from the population.

References cited in the tables

- Barot S, Heino M, Morgan MJ, Dieckmann U (2005) Maturation of the Newfoundland American plaice (*Hippoglossoides platessoides*): Long-term trends in maturation reaction norms despite low fishing mortality? *ICES Journal of Marine Science* **62**: 56-64.
- Barot S, Heino M, O'Brien L, Dieckmann U (2004) Long-term trend in the maturation reaction norm of two cod stocks. *Ecological Applications* **14**: 1257-1271.
- Baulier L, Heino M, Lilly GR, Dieckmann U (2006) Body condition and evolution of maturation of Atlantic cod in Newfoundland. *ICES CM* **2006/H**:19
- Bielak AT, Power G (1986) Changes in mean weight, sea-age composition, and catch-per-unit-effort of Atlantic salmon (*Salmo salar*) angled in the Godbout River, Quebec, 1859-1983. *Canadian Journal of Fisheries and Aquatic Sciences* **43**: 281-287.
- Cardinale M, Modin J (1999) Changes in size-at-maturity of Baltic cod (*Gadus morhua*) during a period of large variations in stock size and environmental conditions. *Fisheries Research* **41**: 285-295.
- Conover DO, Munch SB (2002) Sustaining fisheries yields over evolutionary time scales. *Science* 297: 94-96.
- Consuegra S, García de Leániz C, Serdio A, Verspoor E (2005) Selective exploitation of early running fish may induce genetic and phenotypic changes in Atlantic salmon. *Journal of Fish Biology* **67**(Suppl. A): 129-145.
- Cooke SJ, Suski CD, Ostrand KG, Wahl DH, Philipp DP (In press) Physiological and behavioral consequences of long-term artificial selection for vulnerability to recreational angling in a teleost fish. *Physiological and Biochemical Zoology*, in press.
- Drake MT, Claussen JE, Philipp DP, Pereira DL (1997) A comparison of bluegill reproductive strategies and growth among lakes with different fishing intensities. *North American Journal of Fisheries Management* **17**: 496-507.
- Edley MT, Law R (1988) Evolution of life histories and yields in experimental populations of *Daphnia magna*. *Biological Journal of the Linnean Society* **34**: 309-326.
- Engelhard GH, Heino M (2004) Maturity changes in Norwegian spring-spawning herring before, during, and after a major population collapse. *Fisheries Research* **66**: 299-310.
- Grift RE, Heino M, Rijnsdorp AD, Kraak SBM, and Dieckmann U (2007) Three-dimensional maturation reaction norms for North Sea plaice. *Marine Ecology Progress Series* **334**: 213-224.
- Grift RE, Rijnsdorp AD, Barot S, Heino M, Dieckmann U (2003) Fisheries-induced trends in reaction norms for maturation in North Sea plaice. *Marine Ecology Progress Series* **257**: 247-257.
- Handford P, Bell G, Reimchen T (1977) A gillnet fishery considered as an experiment in artificial selection. *Journal of the Fisheries Research Board of Canada* **34**: 954-961.

- Harris PJ, McGovern JC (1997) Changes in the life history of red porgy, Pagrus pagrus, from the southeastern United States, 1972-1994. *Fishery Bulletin* **95**: 732-747.
- Haugen TO , Vøllestad, LA (2001) A century of life-history evolution in grayling. Genetica, 112-113: 475-491.
- Hauser L, Adcock GJ, Smith PJ, Ramirez JHB, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (*Pagrus auratus*). *Proceedings of the National Academy of Sciences of USA*, **99**: 11742-11747.
- Heino M, Dieckmann U, Godø OR (2002) Reaction norm analysis of fisheries-induced adaptive change and the case of the Northeast Arctic cod. *ICES CM* **2002/Y**: 14.
- Hutchinson WF, van Oosterhout C, Rogers I, Carvalho GR (2003) Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (*Gadus morhua*). *Proceedings of the Royal Society B: Biological Sciences* **270**: 2125-2132.
- Jones MW, McParland TL, Hutchings JA, Danzmann RG (2001) Low genetic variability in lake populations of brook trout (*Salvelinus fontinalis*): A consequence of exploitation? *Conservation Genetics* **2**: 245-256.
- Magnan P, Proulx R, Plante M (2005) Integrating the effects of fish exploitation and interspecific competition into current life history theories: an example with lacustrin brook trout (Salvelinus fontinalis) populations. *Canadian Journal of Fisheries and Aquatic Sciences* **62**: 747-757.
- Mollet FM, Kraak SBM, Rijnsdorp AD (In press) Fisheries-induced evolutionary changes in maturation reaction norms in North Sea sole (*Solea solea*). *Marine Ecology Progress Series*.
- Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J, Ernande B, Dieckmann U (2004) Maturation trends indicative of rapid evolution preceded the collapse of northern cod. *Nature* **428**: 932-935.
- Olsen EM, Lilly GR, Heino M, Morgan MJ, Brattey J, Dieckmann U (2005) Assessing changes in age and size at maturation in collapsing populations of Atlantic cod (*Gadus morhua*). *Canadian Journal of Fisheries and Aquatic Sciences* **62**: 811-823.
- Quinn TP, Hodgson S, Flynn L, Hilborn R, Rogers, DE (2007) Directional selection by fisheries and the timing of sockeye salmon (Oncorhynchus nerka) migrations. *Ecological Applications* **17**: 731-739.
- Reznick DA, Bryga H, Endler JA (1990) Experimentally induced life-history evolution in a natural population. *Nature* **346**: 357-359.
- Reznick DN, Ghalambor CK (2005) Can commercial fishing cause evolution? Answers from guppies (*Poecilia reticulata*). *Canadian Journal of Fisheries and Aquatic Sciences* **62**: 791-801.
- Ricker WE (1981) Changes in the average size and average age of Pacific salmon. *Canadian Journal of Fisheries and Aquatic Sciences* **38**: 1636-1656.

- Rijnsdorp AD (1991) Changes in fecundity of female North Sea plaice (*Pleuronectes platessa* L.) between three periods since 1900. *ICES Journal of Marine Science* **48**: 253-280.
- Rijnsdorp AD (1993a) Fisheries as a large-scale experiment on life-history evolution: disentangling phenotypic and genetic effects in changes in maturation and reproduction of North Sea plaice, *Pleuronectes platessa* L. *Oecologia* **96**: 391-401.
- Rijnsdorp AD (1993b) Selection differentials in male and female North Sea plaice and changes in maturation and fecundity. In The exploitation of evolving resources. *Lecture Notes in Biomathematics* Vol. 99. Edited by T.K. Stokes, J.M. McGlade, and R. Law. Springer-Verlag, Berlin. Pp. 19-36.
- Rijnsdorp AD, Grift RE, Kraak SBM (2005) Fisheries-induced adaptive change in reproductive investment in North Sea plaice (Pleuronectes platessa)? *Canadian Journal of Fisheries and Aquatic Sciences*, 62: 833-843.
- Silliman RP (1975) Selective and unselective exploitation of experimental populations of *Tilapia mossambica*. *Fishery Bulletin* **73**: 495-507.
- Smith PJ, Francis RICC, McVeagh M (1991) Loss of genetic diversity due to fishing pressure. *Fisheries Research* **10**: 309-316.
- Swain DP, Sinclair AF, Hanson JM (2007) Evolutionary response to size-selective mortality in an exploited fish population. *Proceedings of the Royal Society B: Biological Sciences* **274**: 1015-1022.
- Thomas G, Eckmann R (2007) The influence of eutrophication and population biomass on common whitefish (*Coregonus lavaretus*) growth the Lake Constance example revisited *Canadian Journal of Fisheries and Aquatic Sciences* **64**: 402-410.
- Vainikka A, Gårdmark A, Bland B, Hjelm J (2006) Fishing-induced early reproduction at the cost of growth in the Baltic cod *Gadus morhua? ICES CM* **2006/H**:09
- Walsh MR, Munch SB, Chiba S, Conover DO (2006) Maladaptive changes in multiple traits caused by fishing: impediments to population recovery. *Ecology Letters* **9**: 142-148.
- Wohlfarth G, Moav R, Hulata G. (1975) Genetic differences between the Chinese and European races of the common carp.
 II. Multi-character variation a response to the diverse methods of fish cultivation in Europe and China. *Heredity*, 34: 341-350.
- Wright PJ (2005) Temporal and spatial variation in reproductive investment of haddock in the North Sea. *ICES CM* **2005/Q**: 07.
- Yoneda M, Wright PJ (2004) Temporal and spatial variation in reproductive investment of Atlantic cod *Gadus morhua* in the northern North Sea and Scottish west coast. *Marine Ecology Progress Series* **276**: 237-248.