
#061215-051 1

  
Abstract—The aim of this study is to propose a 3-dimension 

reconstruction method of small-scale scenes improved by a new 
image acquisition method for quantitative measurements. A 
stereovision system is used to acquire images in order to obtain 
several shots of an object, at regular intervals according to a 
predefined trajectory. A complete methodology of 3D 
reconstruction is exposed to perform a dense 3D model with 
texture mapping. A first result on natural images collected with 
the stereovision system during sea trials has been obtained. 
 

Index Terms—Underwater imaging; stereovision system; 
visual servoing; dense disparity map; 3D reconstruction. 
 

I. INTRODUCTION 
FTER its revolutionary contribution in many fields such 
as medical practice, 3D imagery finds more and more 

applications in other domains, like video surveillance, due to 
the improvement of acquisition techniques, computer’s 
performance and exploration of new methods of calculation. 

In the field of deep-sea study, the aim of 3D imagery is to 
generate the 3D reconstruction of underwater natural small-
scale scenes and thus complete sample analyzes and 
physicochemical measurements by a 3D visual observation 
that enables quantitative 3D measurements.  

To determine the 3D model of an object for metric 
measures, we have to know camera parameters used to capture 
the image sequence. Moreover, if images can be collected at 
regular intervals, the number of unknown variables in the 3D 
reconstruction procedure is reduced, since extrinsic camera  
parameters (position and orientation) are known. Then the 
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accuracy of the final 3D reconstruction is increased, and the 
processing can be faster. Consequently, the images cannot be 
collected by freely moving a camera around the object. Our 
experimental conditions are very specific; the main constraint 
is that the system used to collect images must be manipulated 
at very important depths, up to 6000 meters by an underwater 
vehicle (ROV) positioned on the sea floor. So, an array of 
cameras cannot be used since the system must be compact to 
be transported in the vehicle basket. Finally, the image 
acquisition is performed with a stereovision system operated 
by a manipulator arm. The image acquisition method that we 
propose enables us to know extrinsic camera parameters by 
following a specific trajectory defined by the geometry of a 
stereo rig. Indeed, the trajectory is generated by the 
displacement of one camera onto the position of the other one 
by visual servoing. With this method, we can register images 
at regular intervals directly linked to the geometry of the 
stereo rig.  
Then, the 3D model of the underwater object is calculated 
with the collected images. Robust interest points are extracted 
and matched allowing to estimate fundamental matrix, which 
is used to rectify images in order to obtain a dense disparity 
map. The final result is a dense 3D reconstruction with texture 
mapping that enables metric measures. 

The first part of this paper focuses on image acquisition 
method and results obtained during see trials with the practical 
implementation of the stereovision system. In the second part, 
a 3D reconstruction methodology are presented and first 
results on stereo images of underwater scene.  

 

II. IMAGE ACQUISITION METHOD 
Image acquisition is of great importance in the process of 

3D reconstruction since the method used to collect images 
affect directly the final results of reconstruction. This is why 
we have developed, implemented and tested a new method to 
collect stereo images.  

In this part we expose two different ways to generate 
specific trajectories with the stereovision system which 
depend on the capabilities offered by the underwater robot 
equipped with a manipulator arm: visual servoing or pre-
programmed trajectories of the robotic arm. Then we will 
present the implementation and the validation of the method, 
and the final test in deep water. 
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A. Trajectories Induced by the Geometry of the Stereo Rig 

 
Fig. 1.  Stereovision principle 

 
The principle of our method is to generate and follow a 

trajectory which allows us to know the different positions of 
the cameras to compute an accurate 3D model of the scene. 
The stereovision system is composed of two cameras hung 
from the tip of an instrumented arm of an underwater robot. 
The trajectory is described by the repetition of the 
displacement of one camera at a start position *  onto the 
start position *C  of the second camera (Fig. 1). We have 
shown in [3], that the trajectory of the controlled camera is 
defined by the geometry of the stereo rig which is unchanged 
during displacement. So, the adjustment of the stereo rig is 
chosen according to the dimensions of the object under study. 
Using a fixed geometry of the stereovision system, the 
trajectories generated by the cameras is inscribed on the 
surface of a cylinder [3]. Fig. 2 shows an example of a circular 
trajectory obtained with a pan angle α on the right camera and 
a distance l between the cameras.  

 

 
Fig. 2.  Circular trajectory induced by the geometry of the stereo rig 

 

B. Visual Servoing Invariant to Camera Intrinsic 
Parameters 
The aim of visual servoing is to control robotic system 

movements by exploiting image sensor information [4]. A 
typical task consists in moving a camera fixed to the end-
effector of a manipulator arm on a reference position 
according to an object. To perform this task two approaches 
can be used:  model-based visual servoing if the 3D model of 
the observed scene is known, or model-free visual servoing 
which requires a preliminary learning step of the reference 
image at a reference position. In our case the 3D model being 
unknown, the second technique is more appropriate and 

teaching by showing approach can be used. Generally this 
technique is  “camera-dependent”, i.e. the same camera must 
be used to acquire reference image and to perform visual 
servoing. However, with different intrinsic camera parameters 
and without calibration, the current image can converge 
towards the reference image, though the camera positions do 
not coincide.  

Owing to technical constraints and systems available on the 
shelf, our stereovision system called IRIS [1] is composed of 
two different cameras (one of them is mounted on pan and 
tilt). Moreover, the intrinsic parameters are influenced by 
temperature, salinity, pressure or wavelength in aquatic 
environment. Consequently, a visual servoing method 
independent to intrinsic parameters would be more 
appropriate, because it calculates an error function in a space 
invariant to camera intrinsic parameters [10]. This method is 
applied to our system and is described in [3]. 

C. Pre-Planned Trajectories 
The same trajectory performed by visual servoing can be 

generated by “robot programs”, which consist in programming 
positions of arm’s rotation axes. So, the robot carries out 
position servoing thanks to information provided by its 
sensors, the servovalves. Thus this method does not require 
image information. The biggest inconvenient of this method is 
that there are as many “robot programs” as arm positions. 
However, using visual servoing method, only the initial 
position of the arm to begin the trajectory is required. 
Nevertheless, the advantage of pre-planned trajectories relies 
on the robustness of the method since the accuracy of the 
trajectory depends only on precision and adjustment of the 
manipulator arm, and not on camera images. Therefore, this 
method could be carried out in some specific cases and in 
order to compare 3D reconstruction results with the two image 
acquisition methods. 

D. System Validation 
The first experiments carried out in air under laboratory 

conditions, shown in [3], allowed us to validate the results 
obtained by simulation, to test pre-planned trajectories and 
visual servoing loop.  

Our stereovision system IRIS integrates two underwater 
color cameras which are 6000 meter water depth-rated. One is 
a standard underwater camera; the other one includes a pan 
and tilt mechanism to adjust the angle between the two 
cameras. The distance between the camera is adjustable. 

Stereo system IRIS was tested during the MoMARETO 
cruise, which was held from August 6 to September 6, 2006 
on the French RV Pourquoi Pas? with the victor6000 ROV. 
The main objective of the cruise [13] was to study the spatial 
and temporal dynamics of hydrothermal communities 
colonizing the MoMAR area located on the Azores Triple 
Junction. The first trials were conducted on the 850m deep 
Menez Gwen area and the second experiments were carried 
out on the Lucky Strike hydrothermal vent field, at a depth of 
1750m. 

The vehicle was positioned on the seafloor at a fixed and 
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stable attitude in front of a small scene of interest 
(approximately 1 m3) that had to be reconstructed in 3D. Then, 
the stereovision system IRIS was hung from the tip of the arm 
manipulator (Fig. 3). 
 

 
Fig. 3.  Stereovision system IRIS hung from the tip of the instrumented 

arm of the victor6000 ROV 
 

A trajectory was generated around the object that had to be 
reconstructed using the whole arm workspace, so that the 
images were collected at regular spatial intervals (Fig. 4). 
During the second trials, the vehicle was deployed in two 
positions to collect more images of the scene. 

 
Fig. 4.  Representation of the different camera positions that define the 

trajectory around the object 
 

During MoMARETO cruise, trajectories were generated by 
visual servoing, and using pre-planned trajectories detailed in 
the previous section. Although, the second method is heavier 
to put into operation, the exploitation of the image sequences 
for the 3D reconstruction is the same for both methods. The 
only difference could concern the 3D reconstruction accuracy, 
but this comparison is beyond the scope of the paper. 

Additional images were registered to calibrate the 
stereovision system in order to make a metric reconstruction. 
These images must be collected in situ since the intrinsic 
parameters of the cameras can change according to the deep 
sea environment. A calibration pattern was deployed on the 
sea floor by the arm of the underwater vehicle, and then a 
series of image pairs was collected from different viewpoints 
with the stereovision cameras. 

In the following section, a 3D reconstruction method and 
the first result obtained on natural underwater images 
collected during the MoMARETO cruise are presented. 

 

III. 3D RECONSTRUCTION 
This part addresses the problem of reconstructing a 3D 

model, with texture, from a sequence of images of an 
underwater object registered with stereo cameras during the 
MoMARETO cruise. The 3D reconstruction is performed off-
line since the whole process is very time-consuming. Each 
step that we will develop hereafter to obtain the 3D model are 
summarized in Fig. 5.  
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Fig. 5.  3D reconstruction overview 
 
The first results of the method presented in this paper have 

been obtained using only one stereo image pair (Fig. 6). The 
future extension of this method to an image sequence  is 
explained in the last part.  
 

  
Fig. 6.  Stereo image pair (positions 4 and 5 represented in Fig. 4) 
 

A. Relating Images 
A preliminary step in 3D reconstruction consists in 

extracting and matching some features in the stereo images in 
order to recover the accurate geometry linking these views. 
The SIFT method (Scale Invariant Feature Transform) [9] is 
very suitable in our case because the interest points are 
invariant to image scaling and rotation, and partially invariant 
to changes in illumination and 3D camera viewpoints. For 
every keypoint a descriptor is defined, which is a vector with 
128 dimensions based on local image gradient directions in the 
keypoint neighborhood. Thus, the descriptors allow us to 
compare the points by using the RANSAC algorithm [5].  

Few false matches remain after matching but can be 
removed thanks to additional constraints linked to the epipolar 
geometry. It corresponds to the intrinsic projective geometry 
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between two views and is represented by the fundamental 
matrix. Using (1), the fundamental matrix is calculated:  
 0′ =Tp Fp  (1) 

where points p and ′p  are a pair of matching points in the 
two images. Thus, the search of a corresponding pixel in the 
second image can be restricted to a single line. The 
fundamental matrix will also be used later to rectify images in 
order to perform a dense matching. The fundamental matrix is 
estimated with the normalized 8-point algorithm shown in [6], 
combined with a RANSAC algorithm which is a very robust 
estimator capable to cope with a large proportion of outliers, 
using  only a set of input point matches.  

B. Camera Calibration 
The camera parameters are calculated off-line from the 

image pairs representing the planar checkerboard using the 
camera calibration toolbox developed by Jean-Yves Bouguet 
[2]. First, the intrinsic parameters are estimated for each 
camera, and then the external parameters are estimated to 
determine the  geometry of the stereo rig, in order to know the 
theoretical spatial distribution of the images around the object.  

C. Structure and Motion Recovery 
A basic triangulation of point pairs is worked out to obtain 

an estimation of the 3D structure, using the geometry of the 
stereo rig and the internal camera parameters. Although this 
triangulation is quite rough, it provides a first estimate which 
is used as an initialization of the 3D structure in the next 
section. 

In case of visual servoing, some uncertainties are induced 
by noise in the input images, and can introduce a shift between 
the real and the theoretical camera positions. On the other 
hand, in case of pre-planned the arm trajectory, the accuracy 
depends on the precision and the adjustment of the 
manipulator arm. So, a basic triangulation of the projected 
point matches is not sufficient to improve the final 
reconstruction result quality. Therefore, we use an algorithm 
of minimization, such as a sparse bundle adjustment algorithm 
[15], which works out the best possible fit and corrects the 
relative camera pose of all views and the corresponding 3D 
features. This algorithm requires the theoretical camera 
positions, the camera intrinsic parameters, and the 3D 
structure estimated by triangulation.  

This algorithm allows us to find the 3D points i?  and the 
parameters of the camera view kP  such that the mean squared 
distances between the observed image points kim  and the 
reprojected image points ( )k iP ?  are minimized. The camera 
projection model we use takes also radial distortion into 
account. For m  views and n  points the following criterion 
should be minimized: 

 2

, 1 1

min ( , ( ))
m n

ki k i
k i k i

D
= =
∑∑P

m P
? 

?  (2) 

where ˆ( , )D m m  represents the Euclidean image distance. 
Fig. 7 shows the results of the bundle adjustment on a pair of 
images, but the algorithm can easily be applied on the 21 

images of the sequence. This sparse object gives the outlines 
of the object shape, even if there are no sufficient surface 
details for a good visual reconstruction.  

 

 
Fig. 7.  Structure recovery 
 

D. Dense Surface Estimation 
The 3D structure obtained in the previous section contains 

only a sparse set of 3D points. In order to obtain a highly 
realistic 3D reconstruction, the 3D structure must be improved 
by a dense depth estimation. This step is composed of two 
main parts which are explained hereafter. 

First, in order to simplify the dense matching procedure, the 
stereo images are rectified. It consists in transforming both 
images in a standard geometry so that both image planes are 
coplanar and the epipolar lines are projected to infinity: all the 
epipolar lines are parallel and horizontal. To rectify images, 
the general rectification method presented in [11] is used. It 
requires only two stereo images, the fundamental matrix 
previously estimated and the set of SIFT point matches used to 
calculate the fundamental matrix. The compatible homography 
that minimizes inter image distortion due to perspective 
effects is selected and applied to one image in order to make 
all matching epipolar lines coincide.  

Given the fundamental matrix F , the set of homographies 
which are consistent with the geometry of a particular image 
pair is: 
 [ ]×

′ ′= − TH e F e v  (3) 
where v  is an arbitrary vector such that det 0≠H . 
Assuming the point matches follow a Gaussian distributed 

error, a compatible homography is estimated by minimizing 
the following least-square criterion for n  points: 

 [ ]2

1

min ( , ( ) )
n

i i
i

D
×

=

′ ′ ′−∑ T

H
m e F e v m  (4) 

where the compatible homography is parameterized as in (3). 
Afterwards, both images are parameterized with polar 

coordinates centered on the epipole to make epipolar lines 
parallel to an image axis. Thus, given a point in an image, its 
corresponding point in the second image will be searched on 
the horizontal epipolar line [7] (Fig. 8). 

In this paper, only two images are used for 3D 
reconstruction. They are chosen among all images collected 
during the cruise and can be chosen vertically or horizontally. 
Stereo images must be rectified before working out dense 
matching only if images are aligned horizontally (because 
there is an angle between the two cameras) (see Fig. 4). 
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Fig. 8.  Stereo images rectified 
 
The second step is to perform dense matching on the 

rectified images. A large number of stereo matching 
algorithms exist and they can be classified in two main 
categories: local and global methods, according to the 
principle they are based upon. Other methods called 
cooperative algorithms use local and global approach at the 
same time. The difficulty is to choose an algorithm to perform 
a dense 3D reconstruction taking into account rendering, 
metrologic quality, computing speed and complexity of the 
scene. The taxonomy of [14] provides information about the 
overall performance of the principal algorithms (textureless 
regions, depth discontinuity regions, occluded regions). 
Finally, the graph-cut method gives excellent results, 
performing better in textureless areas and near discontinuities, 
and outperforming the other optimization methods. The major 
downsides are the relatively high computation time, and the 
need for precisely tuned parameters, whose values are often 
image-dependent. This algorithm remains however a very 
interesting choice for our application, since the quality of the 
rendering process is a higher priority compared to execution 
time.  

Roy and I. J. Cox [12] were the first ones to use this 
algorithm in the context of multi-camera stereovision. In order 
to explain the graph-cut method, we will concentrate on the 
case of graphs with only two terminals.  

 

 
Fig. 15.  Graph-cut example 
 
Fig. 15 shows a simple example of a two terminal graph, 

which can be used to minimize an energy function on a 3×3 
image with two labels. The two terminals are usually called 
source s, and sink t. They correspond to the set of labels 
(different depths) that can be assigned to pixels. The different 
nodes represent pixels of the image. In the general case of 
graph-cut theory, the goal is to find a cut that has a minimum 
cost among all cuts, by minimizing an energy function. 

Let function f  be the disparity function associated to each 

pixel of an image. We search labelling f  that minimizes the 
energy. To define this energy function for f , a cost function 
is introduced, based on a photoconsistence criterion (similarity 
between intensities  of a pixel p  in the first image an the pixel 
( )pf+p  in the second image) called data term. A second 

term, called smoothness term, penalizes discontinuities 
between neighbourhood pixels. Thus, the energy can be 
written as: 
 { , }

{ , }

( ) ( ) ( , )p p p q p q
p p q

E f D f V f f
∈ ∈

= +∑ ∑
7 5

 (5) 

where term pD  is the data term and { , }p qV  is the  
smoothness term penalty between adjacent pixels. 

In [8], the energy minimization considers the input images 
symmetrically, handles visibility properly, and imposes spatial 
smoothness while preserving discontinuities. Fig. 9 shows the 
dense disparity map obtained with the implementation of the 
graph-cut method presented in [8]. 

 

 
Fig. 9.  Dense disparity map estimation with graph-cut method on 

MoMARETO images 
 
The disparity map gives us a dense correspondence map 

between the stereo images. Thus, the depth map is computed 
by triangulation with matched point pairs and camera 
parameters. But each 3D point is considered independently. 
Therefore smoothing the surface is important to obtain a 
spatial coherence. In this paper, a spatial coherence is 
achieved by filtering the depth map, but in the future, a better 
choice would be to interpolate the depth map with a 
parametric surface model [7]. 

E. Visual Scene Representation 
The dense map is converted to triangular surface meshes 

using the Delaunay triangulation algorithm. Thus, a texture 
mapping can be applied with relative easy and efficiency to 
the object. The triangular mesh makes possible to reduce the 
geometric complexity of a 3D surface representation. The 
resulting surface model obtained from the dense depth map is 
presented in Fig. 10.  

The 3D representation is then visualized in a more realistic 
appearance by providing the wire-frame model with texture 
mapping. First, a reference image is chosen as the texture map 
in the image sequence, and then, each basic triangle primitive 
is easily mapped with texture, since the exact position of the 
reference image and of the 3D structure are known. 
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Fig. 10. Triangular  mesh on a smooth dense depth map 
 

 
Fig. 11.  3D model with texture  
 
Fig. 11 shows the final reconstruction with texture mapping 

which can be used for 3D quantitative imaging. The dense 
depth map with texture mapping gives a 3D model with a 
good visual impression. The 3D model is stored in VRML 
format for easy visualization and exchange of information. 
 

IV. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a complete reconstruction 

method of small-scale natural underwater objects to 
supervised exploration of ocean floors. The first step concerns 
the acquisition of images, with the stereovision system IRIS 
which enables us to collect images, at regular spatial intervals 
that depend on the stereovision rig geometry. This constraint 
is used as a priori knowledge to optimize and improve the 
final 3D reconstruction which is carried out in a post-
processing stage. The first results of 3D reconstruction 
obtained with only two natural images collected during the 
MoMARETO cruise turned out to be very efficient and 
promising. However, the accuracy of the reconstruction is 
greatly improved when more views are used. So, the natural 
extension of the current work would be to perform the 3D 
reconstruction from a large set of images. The exploitation of 
all collected images requires data fusion (multiple depth map 
combination and texture fusion) and a modification of the 
matching method to provide a more powerful constraint to 

identify mismatches (estimation of the trifocal tensor). 
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