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Abstract:  
 
Coherent nondispersive structures are known to play a crucial role in explaining transport in 
nonautonomous dynamical systems such as ocean flows. These structures are difficult to extract from 
model output as they are Lagrangian by nature and not revealed by the underlying Eulerian velocity 
fields. In the last few years heuristic concepts such as finite-time Lyapunov exponents have been used 
in an attempt to detect barriers to oceanic transport and thus identify regions that trap material such as 
nutrients and phytoplankton. In this Letter we pursue a novel, more direct approach to uncover 
coherent regions in the surface ocean using high-resolution model velocity data. Our method is based 
upon numerically constructing a transfer operator that controls the surface transport of particles over a 
short period. We apply our technique to the polar latitudes of the Southern Ocean.  
  
 
 
 
 

INTRODUCTION  
 
 
The rate and pathways of horizontal dispersion in the ocean are of great importance for many 
problems, including the transport of biomass and pollutants, and the detection of filaments and stirring. 
Coherent structures, such as gyres and eddies, can house low-dispersion regions where biomass can 
be trapped over long periods. These persistent non-dispersive regions are known to play a crucial role 
in oceanic circulation as they act as transport barriers. While persistent features such as gyres and 
eddies may be observed and tracked by satellite altimetry [1], detecting and tracking the regions that 
act as barriers to Lagrangian flow pathways is more ambiguous. This is true even if the surface 
velocity field is perfectly known. For example, mathematical models of the global ocean circulation can 
currently be constructed at a 1/12th degree resolution and satellite data and float velocity 
measurements can be used to estimate flow fields in the real system. However, it is difficult to 
transform these modeled or observed velocity fields into a description of coherent structures or low 
dispersion areas. In order to assess the mathematical models or observations at increasing resolution 
and complexity, it is important to develop efficient numerical methods to describe the predicted 
coherent structures and dispersion. A commonly used approach for this problem is to plot a time-
averaged vector field and eyeball this field to obtain an estimate of where coherent structures lie. A 
drawback to this method is that these structures are often Lagrangian in nature and thus do not show 
up in an (averaged) Eulerian velocity field. Another approach uses finite-time Lyapunov exponents 
(FTLEs), which quantify the local rate of separation of model trajectories. Theory [2–4] suggests that 
peaks of the FTLE field correspond to finite-time invariant man- ifolds: curves or surfaces that are 
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approximately invariant for a short time. These finite-time invariant manifolds represent barriers to 
transport, as trajectories are very unlikely to cross them [4]. The regions enclosed by these objects 
form time-dependent persistent structures that trap seawater, biomass, and nutrients. FTLE and other 
dynamical systems approaches have had success in analysing oceanic flows, see [5] and references 
therein, but they have not addressed the detection of large, min- imally dispersive structures at the 
oceanic scale, nor the quantification of the extent to which mass is trapped by these structures. 
Moreover, these concepts may not even be able to explain all transport mechanisms at work [6]. 
 
The purpose of this note is to describe a new, more direct method of identifying these coherent 
structures in the surface ocean. We will test this approach in the context of the high latitude Southern 
Ocean, a region low in measurements but important for climatic and biological applications. Our 
method is based upon numerically constructing a transfer operator that controls the horizontal ocean 
circulation from a time t to a short time later t + τ. The eigenfunctions of this transfer operator 
corresponding to large positive eigenvalues directly reveal dominant “almost-invariant” structures in 
the surface flow over the time period considered. These structures retain their shape over the period 
[t, t+τ] and thus “trap” most of the water inside them with only minimal leakage. In addition, our 
approach allows us to quantify the mass leakage of the identified regions. 
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FIG. 1: Mean SSH (m) from ORCA025 model av-
eraged over 1 January–29 February. Define regions
AWeddell,SSH = {SSH < −1.75m in Weddell Sea} and
ARoss,SSH = {SSH < −1.6m in Ross Sea}; boundaries are
shown dotted. The upper region is AWeddell,SSH and the
lower region is ARoss,SSH.

II. INPUT DATA AND NON-AUTONOMOUS

FLOW MODEL

Our input data is generated by the ORCA025 global
ocean model [7]. In the Southern Ocean, the model grid
follows a Mercator projection. Eddy characteristics of
the model compare favorably with satellite and drifter
observations [7]. The model is spun up for 7 years and
the 8th year is used here. The available model output
consists of 3-D fields of velocity averaged over 5-day in-
tervals. The dataset (1440 points by 350 by 45 levels)
is reduced by averaging the velocities onto a 1/2◦ grid
using the method of Aumont et al. [8] that preserves the
divergence accurately.

Figure 1 shows a 60-day mean sea surface height
(SSH) field from the model. Under a hydrostatic and
geostrophic approximation, surface flow fields follow con-
tours of constant SSH. However, transient eddies and
ageostrophic currents such as Ekman transport are not
detected by a time-mean SSH field, yet they potentially
contribute to particle transport. Thus, we cannot rely
on SSH alone to accurately describe ocean flow pathways
and coherent structures or areas of low dispersion.

We denote the portion of ocean south of 36◦S by X ;
see Figure 1. As we only consider surface flow, we
work on a cylinder with X ⊂ X = S1 × [−76◦,−36◦]
where S1 denotes a circle parameterised from −180◦

to +180◦. We remark that the methods we describe
here work equally well in three dimensions. Consid-
ered as a non-autonomous dynamical system, the ocean
flow may be described by (x, t, τ) 7→ Φ(x, t; τ), where
Φ : X × R × R → X and Φ(x, t; τ) is the terminal point
in X of a trajectory beginning at x ∈ X at time t and

flowing for τ time units. A trajectory x(t) := Φ(x0, t0; t)
is a solution to the non-autonomous ODE dx

dt = f(x(t), t)
with initial condition x(t0) = Φ(x0, t0; 0). The vector
field f : X × R → R

2 is obtained from the output of the
ORCA025 model.

III. ALMOST-INVARIANT SETS, COHERENT

STRUCTURES, AND TRANSFER OPERATORS

We will say that a set A ⊂ X is Φ−invariant over
[t, t+τ ] if A = Φ(A, t+s;−s)) for all 0 ≤ s ≤ τ . Coherent
structures obey an approximate invariance principle over
short periods of time. We shall call a set A ⊂ X almost-

invariant if

ρt,τ (A) :=
µ(A ∩ Φ(A, t + τ ;−τ))

µ(A)
≈ 1, (1)

where µ is the probability measure with density Γ(θ, φ) =
N cosφ and N is a normalization factor so that
∫

X
Γ(θ, φ) dθ dφ = 1. The measure µ has the property

that µ([a, b]× [c, d]) is the area of the region [a, b]× [c, d]
on the curved surface of the Earth, and is a natural ref-
erence measure for quantifying almost-invariance. The
ratio in (1) is the proportion of the set A that remains
in A at time t + τ under the flow from time t to time
t + τ . Clearly, the closer this ratio is to unity, the closer
the set A is to being Φ-invariant over [t, t + τ ]. In order
to discover coherent structures in the flow Φ, we seek to
find dominant almost-invariant sets.

The notion of almost-invariant sets arose as a means
of discovering dominant geometric structures in general
dynamical systems [9] and has been refined and applied
in a variety of settings, e.g. [10–12]. In order to locate
these almost-invariant sets we introduce a transfer op-
erator describing flows for short periods. This transfer
operator approach has been validated in a number of au-
tonomous systems [11, 13] and on the periodically forced
double-gyre flow [4], where we verified that the almost-
invariant sets obtained precisely describe the two gyres
defined by the flow [13].

We define a linear operator Pt,τ : L1(X, m) 	 by

Pt,τg(x) =
g(Φ(x, t + τ ;−τ))

| detDΦ(Φ(x, t + τ ;−τ), t; τ)|
, (2)

where m is normalised Lebesgue measure on X . If there
is a Φ-invariant set A ⊂ X over [t, t + τ ], then Pt,τ (Γ ·
χA) = Γ ·χA. Thus Γ ·χA is an eigenfunction of Pt,τ with
eigenvalue 1. Sets A that are almost-invariant correspond

to eigenfunctions of Pt,τ with real eigenvalues very close

to 1 [9].
To access these eigenfunctions numerically, we con-

struct a finite-dimensional Galerkin approximation of
Pt,τ based on a fine partition {B1, . . . , Bn} of X . This
approach is due to a suggestion of Ulam [14] in the con-
text of discrete time maps of the unit interval. Following



Ulam’s approach we form the transition matrix

Pt,τ ;i,j =
m(Bi ∩ Φ(Bj , t + τ ;−τ))

m(Bi)
. (3)

The matrix Pt,τ is stochastic. The entry Pt,τ ;i,j may
be interpreted as the probability that a point selected
uniformly at random in Bi at time t will be in Bj at
time t + τ .

IV. NUMERICAL IMPLEMENTATION

A. Oceanic domain and discretization

Our domain X is defined by X = {x ∈ X :
‖f(x, t0)‖2 > 10−6 m/s} where t0 denotes January 1. We
think of X as X with the continents and islands removed.
We create an approximate partition {B1, . . . , Bn} of X
via a uniform grid of n = 24534 boxes in longitude-
latitude coordinates. Each box has side lengths 0.7◦ de-
grees longitude and 0.7◦ latitude.

To calculate Pt,τ in practice, each partition element
Bi, i = 1, . . . , n is filled with N uniformly distributed
test points yi,ℓ ∈ Bi, ℓ = 1, . . . , N . In the experiments
reported here, N = 400. Experiments with N = 100
showed no appreciable difference in results. For each
i = 1, . . . , n we calculate Φ(yi,ℓ, t; τ), ℓ = 1, . . . , N by
numerical integration and set

Pt,τ ;i,j ≈
#{ℓ : yi,ℓ ∈ Bi, Φ(yi,ℓ, t; τ) ∈ Bj}

N
(4)

The box-discretization of X and the construction of Pt,τ

is carried out efficiently using the software package GAIO
[15].

B. Trajectory integration

Calculation of Φ(yi,ℓ, t; τ) is carried out using a stan-
dard Runge-Kutta approach with stepsize of 1 day. Ve-
locity field values for x lying between grid points are
affinely interpolated independently in the longitude and
latitude directions. The velocity field f(x, t) for t be-
tween 5-day grid points is produced by linear interpola-
tion. We have chosen a stepsize of 1 day as in one integra-
tion step the vast bulk of trajectories will flow only to a
neighbouring grid set in the 1/2◦ degree grid upon which
the velocity field is defined. Since f(x, t) is affine be-
tween grid points, the numerical integration error should
be small.

We wish to capture a snapshot of the coherent struc-
tures at an initial time t0. For this reason, τ should be
small, however, τ should be large enough that the La-
grangian dynamics play a role. The box discretisation
has the effect of a finite-range diffusion with range of
the order of the box edge lengths. We wish to make τ
large enough so that the advective transport dominates

any discretisation-induced diffusive transport. Thus, τ
should be large enough so that most trajectories leave
their initial box. In the calculations reported here we
choose τ = 60 days; on average trajectories flow 5.8o

of longitude and 1.5o of latitude over this period. An
analysis of seasonal differences can be carried out by per-
forming a second calculation with t0 six months later.
Seasonal to annual circulation analyses could be carried
out by increasing τ . We limit our analysis here to the
summertime months of January and February.

C. Eigenvalue and eigenfunction calculation

Define

pi =
Area of Bi

Area of B
, (5)

where B :=
⋃n

i=1 Bi. Let A =
⋃

i∈I Bi with I ⊂
{1, . . . , n}. Then it is straightforward to show [11]

ρt,τ (A) ≈

∑

i,j∈I piPt,τ ;i,j
∑

i∈I pi
; (6)

compare with equation (1). The expression (6) is very
close to equality and in the limit as n → ∞ and the di-
ameter of the boxes {Bi}

n
i=1 approaches zero, one obtains

equality.
The vector p would be an approximate fixed left eigen-

vector of P if the measure µ from Section III were in-

variant under Φ (formally, for each A ⊂ X and τ ≥ 0,
µ(Φ(A, t;−τ)) = µ(A)). However, µ is not strictly invari-
ant under Φ because of (i) upwelling and downwelling, (ii)
convective overturning, although the mass flux associated
with convection is zero in hydrostatic models such as that
used here, and (iii) the existence of trajectories that be-
gin in X , but leave X via the northern boundary after
2 months. We therefore perform some preprocessing[17]
on P to ensure that P is stochastic and has p as an exact
fixed left eigenvector; that is pPt,τ = p for all t, τ . We
now transform the matrix Pt,τ into a “time symmetric”
matrix Rt,τ via

Rt,τ ;i,j =

(

Pt,τ ;i,j +
pjPt,τ,j,i

pi

)

/2, (7)

The matrix R is stochastic, has p as a fixed left eigen-
vector, and satisfies important maximization properties
related to almost-invariance [12]. Denote by λ2 the sec-
ond largest eigenvalue of R. For A as above, we are
guaranteed [12] that

1 −
√

2(1 − λ2) ≤ max
0≤m(A)≤1/2

ρt,τ (A) ≤
1 + λ2

2
(8)

As in [12] we use the right eigenvectors v(k) of R to
detect almost-invariant sets, extracting almost-invariant
sets from boxes with extreme values of v(k). That is,
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FIG. 2: The ninth eigenvector v
(9) calculated from a 60 day

flow. Coherent surface structures are highlighted in the Wed-
dell and Ross Seas. Define regions AWeddell := {v(9)

> 0.01}

and ARoss := {v(9)
< −0.01}, with boundaries shown dotted.

The upper region is AWeddell and the lower region is ARoss.

A =
⋃

v
(k)
i

>c
Bi or A =

⋃

v
(k)
i

<c
Bi for some c ∈ R, k =

1, . . . , K.
The matrix Rt,τ ;i,j is typically very sparse. We are

interested only in the large spectral values near to 1. The
computation of the K ≪ n largest eigenvalues and their
corresponding eigenvectors is fast using Lanczos iteration
methods.

V. RESULTS

We demonstrate that our method detects persistent
structures in the Southern Ocean surface flow in the Wed-
dell and Ross Seas. We computed the 20 largest eigen-
values of R (ranging from λ2 = 0.928 to λ20 = 0.888) and
the corresponding right eigenvectors. The ninth eigenvec-
tor v(9) (corresponding to λ9 = 0.905) identifies two co-
herent structures in the Weddell and Ross Seas; see Fig-
ure 2. These surface structures are not precisely aligned
with the locations of the Weddell and Ross Gyres as de-
fined by the SSH calculations shown in Figure 1. Indeed,
there is a significant difference in the Ross Sea, confirm-
ing that our method picks up different structures to those
defined simply by the SSH field of Figure 1. The eigen-
vectors v(2) − v(8) determine other coherent structures in
the surface flow that are not directly related to the Wed-
dell and Ross Gyres. Larger coherent structures corre-
spond to more highly ranked eigenfunctions as a larger
proportion of the domain is coherent. As the total area
occupied by the gyres represents a relatively small coher-
ent structure, it is the eigenvector v(9) that detects the
gyres.

We investigate the quality of the coherence and non-
dispersiveness of the structures shown in Figures 1 and

FIG. 3: Estimation of the finite-time Lyapunov exponent field
from 1 January–29 February. Dark colors indicate regions
of high stretching. The field was constructed using 100,213
boxes and 40 points per box; see [16].

2 via equation (1). Applying (6) yields ρt0,τ (AWeddell) =
0.91 versus ρt0,τ (AWeddell,SSH) = 0.80 and ρt0,τ (ARoss) =
0.85 versus ρt0,τ (ARoss,SSH) = 0.75. The calculation
ρt0,τ (AWeddell) = 0.91 (for example), states that 91%
of the surface mass in AWeddell remains (is trapped) in
AWeddell at time t0 + τ . Thus the above calculations
demonstrate that the regions detected by the transfer
operator approach are more coherent over the 60 day
period considered than those determined by sea surface
height. Such information is very useful for surface larval
drift and biomass transport models which might other-
wise have been assumed to be governed by gyres in posi-
tions defined by the SSH via a geostrophic assumption.

To compare our new method with finite-time Lyapunov
exponents, we approximated the FTLE field for the same
60 day period; see Figure 3. As peaks in the FTLE field
are associated with barriers to transport [4], we may ex-
pect that non-dispersive regions show up as pale regions
surrounded by dark regions in Figure 3. There is some
evidence of this in the Weddell and Ross Seas, but these
regions are not identified nearly as clearly as in Figure 2.
Further work will extend the transfer operator analysis to
the coherent structures of global-scale three-dimensional
ocean flow.
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