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Underwater vehicle navigation using
diffusion-based trajectory observers

Jérôme Jouffroy and Jan Opderbecke

Abstract

This paper addresses the issue of estimating underwater vehicle trajectories using gyro-Doppler (body-fixed
velocities) and acoustic positioning signals (earth-fixedpositions). The approach consists of diffusion-based ob-
servers processing a whole trajectory segment at a time, allowing the consideration of important practical problems
such as different information update rates, outages, and outliers in a very simple framework. Results of contraction
theory are used to prove that the observers are convergent,i.e. stable in the incremental sense. Simulation and
experimental results are presented to illustrate the potential of application of the method.

I. INTRODUCTION

Knowing the horizontal position of an underwater vehicle precisely enough as it moves above the
sea floor is of great importance. This is true not only for precise maneuvering and other control-based
concerns, but also because the accurate knowledge of the vehicle trajectory is often the first step toward
performing other tasks, whether these are computed online (maneuvering, docking, marking interesting
locations, collecting samples, etc.) or offline (cartography, video mosaicking, etc.)[53].
The precision of position sensing is limited and depends on many different factors, like the kind and type
of sensors used (Doppler-gyrocompass, Long BaseLine (LBL)and Ultra-Short BaseLine (USBL) acoustic
positioning systems, Inertial Measurement Unit (IMU), Global Positioning System (GPS), etc.) as well
as the events that are connected with sensors features or underwater environmental conditions like noise,
sensor misalignment, outliers and outages (see [58], [57],[22]).

Indeed, most underwater vehicle navigation systems use long-range acoustic positioning like LBL or
USBL which, roughly speaking, consist of interrogating transponder beacons. This information suffers
from a poor precision due to a low refresh rate, an important noise, as well as a high percentage of data
loss and outliers due to sound reflections, disturbances, etc. Alternatively, another available measurement
is the body-fixed velocities given by a Doppler-effect sensor which, when coupled to a gyrocompass,
gives the velocity of the vehicle in an earth-fixed referenceframe. Though this information is not as
corrupted by noise as the acoustic positioning data, the fact that a time-integration process, necessary to
get a position estimation, can lead to large deviations in the presence of noise or misalignment of the
gyrocompass, is not satisfactory either.

Several studies have addressed the problem of vehicle trajectory estimation by combining the above-
mentioned measurements,i.e. acoustic positions with velocity data [2], [57], [22]. The effect of loss of
information on these methods seems to lead to non-smooth dynamic behavior of the vehicle and hence
might not be suitable for cartography or video-mosaic issues for example.

This paper presents an approach for estimating the trajectory of an underwater vehicle using mainly gyro-
Doppler measurements (speed measurements) and an acousticpositioning system (horizontal position).
The method is based on the use of diffusion-based observers which, contrary to traditional state observers,
are able to process whole segments of the system trajectory at a time. Thus, these will be referred to as
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trajectory observers. As will be seen, one of the main advantages of such an approach is that, unlike other
studies on navigation (see for example [2], [40], [1], [51],[18], [4]), many of the difficulties associated with
the Doppler-gyro / USBL combination (differing information rates, Doppler-gyro drift, outliers, outages
of the acoustic positioning system, etc.) are treated very simply by starting with the same basic equations,
thus leading to a quite unified view of the problem at hand. Another significant advantage of the method is
that the Partial Differential Equation (PDE) framework in which it is embedded allows rigorous practical
and theoretical study as many mathematical tools are available to address important issues such as stability,
robustness, implementation, while the diffusion metaphorused throughout the paper enables to maintain
the algorithmic description in a relatively simple, intuitive and compact form.

The rest of the paper is organized as follows. After this introduction, a few elements of underwater
vehicle navigation in the horizontal plane are given in section II. In section III, we introduce several
diffusion-based trajectory observers, each one of them addressing a different issue,i.e. smooth com-
bined Doppler / acoustic positioning trajectory estimation, acoustic data smoothing, ”rendezvous” time
constraints, gyrocompass bias estimation, and sound velocity profile estimation. These observers being
primarily meant for offline purposes, we also briefly show howthe approach extends to on-line versions
by the addition of a simple term allowing the estimated segments of trajectory to ”slide” in time. Because
stability is one of the key issues in observer design, the finite element approximations that are used to
implement each trajectory observers are proven to be contracting, i.e. stable in the sense ofcontraction
analysis [26], [27], [30], [29], [28], [24] and therefore exhibit an exponential convergence. Computer
simulations are also presented to demonstrate the observers behavior. Experimental results of the combined
Doppler / acoustic positioning trajectory observer from operation of the deep-sea ROV Victor 6000 (see
figure 1) are briefly discussed in section IV. Brief concluding remarks are given in section V, while basic
results of contraction analysis are given in the appendix.

Earlier versions of some parts of this paper appeared in [20], [19].

II. UNDERWATER VEHICLE NAVIGATION

In the following, we consider trajectory estimation of vehicles evolving on the horizontal plane, whose
kinematics will be written as follows [12]

(

ẋ
ẏ

)

=

(

cosψ − sinψ
sinψ cosψ

) (

u
v

)

(1)

where the vector(x, y)T stands for the position of the vehicle in an earth-fixed frame, (u, v)T is the vector
of body-fixed velocities, whileψ is the heading of the vehicle that is used to compute the time-varying
rotation from the body-fixed or vehicle frame to the earth-fixed one.
By using a complex setting and definingX , x+ iy andV , u+ iv, wherei is the imaginary number,
equation (1) is reduced to

Ẋ = eiψV (2)

This complex notation will be used in the rest of the paper. A position given by the acoustic positioning
system (USBL or LBL) is denoted asXac. As mentioned earlier on, the measurements are typically
corrupted by noise and suffers from a high percentage of outages and outliers, while the update rate of
the positioning information lies between0.1 and1Hz, depending on the system in use.

The body-fixed velocities are provided by a bottom-lock Doppler sonar, consisting of four downward-
looking beam transducers that measure the velocity relative to the seafloor. These velocities, that we denote
hereVdop are then transformed into the earth-fixed coordinates usingthe standard rotation

Vgeo = eiψVdop (3)
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Fig. 1. IFREMER ROV Victor 6000

where the headingψ is measured by a gyrocompass, andVgeo is the speed vector in the earth-fixed frame.
Vdop andVgeo are typically less noisy than the acoustic positioning measurementsXac while their update
rate are higher (5Hz for the Victor 6000 for example). When the heading is measured by an optical
gyrocompass, the precision and update rates ofψ are generally excellent. A dead-reckoning process,i.e. a
time integration of the velocities might thus seem to be appropriate due to the good sensor performances.
However, these are counterbalanced by other factors such asa misalignment of the gyrocompass, the
problem of the initial position determination in the dead-reckoning, and accumulation of small noise due
to the time-integration process that could lead to significant deviations of the estimated trajectory with
respect to the real path of the vehicle [57].

III. D IFFUSION-BASED TRAJECTORY OBSERVERS

In order to differentiate trajectory observers from a usualstate observer, also called Luenberger observer
[34], let us recall that the state of a system represented by equation (2) and more generally by the nonlinear
Ẋ = f(X) can be seen as amoving particlein the state-space, whose path is referred to as atrajectory.
Using this interpretation, a state observer is nothing but atracking system whose corresponding particle,
usually denoted aŝX, follows X based on the signals that are available for measurement. Ideally, and in
the absence of noise, the particlêX will use the time evolution to converge towardsX.

Such a point-of-view, the one of state observers, is of course especially suited to online purposes
related with control architectures. However, it is not appropriate for offline tasks related for example to
videomosaicking because of the uncertainty due to an error in the initial guess,i.e. the initial condition of
the state observer is concentrated in the beginning of the trajectory, thus leading to possibly large errors
in the mosaicking process. Also, when it comes to underwaternavigation, the presence or the absence of
an acoustic position has an important impact on the estimator design issue. Indeed, if it is required that
a vehicle goes back to a position it has been to before, it might be of interest to re-estimate this position
to be certain to find it, hence to re-estimate the past based onthe present available information. This is
especially the case in the context of acoustic positioning and of data interruption.
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Hence, the common thread to these different issues being theestimation of the path of the vehicle,
define the trajectory estimatêX(s, t). This estimate is a function of thetrajectory times, i.e. the temporal
position of the vehicle along its path, withs ∈ [sb, se] in seconds. Additionally, the estimation process
being also iterative (i.e. it improves with iterations),X̂ depends ont ∈ R

+, where t represents the
continuous counterpart of iterations, that will be referred to as theimprovement time. Note that in the
traditional state observer context,s andt are combined into one single variable, usually christenedt, since
the observer uses the evolution of the trajectory time in theiterative process to converge to the particle
of the system under observation.

In the following, we show how a trajectory observer is constructed and present a few trajectory
observers used to deal with offline underwater navigation-related problems first, and then sketch how
online extensions of these can be done.

A. Combined acoustic positioning / Doppler trajectory estimation

When combining acoustic positioning measurements with Doppler velocity estimates, the most suitable
trajectory estimation should take into account the different features of these data,i.e. this estimation should
reproduce the measured vehicle motion while respecting global position references given by the acoustic
positioning system.

Hence, introduce the following integral criterion that balances the match of̂X with the acoustic
positioning signalXac(s) and its derivative with respect tos with Vgeo(s)

∫ se

sb

(∇X̂ − Vgeo)
2 + kX(s)(X̂ −Xac)

2ds (4)

where∇X̂ , ∂X̂/∂s. kX(s) is a tuning function allowing to weigh the significance of theacoustic
positioning measurements over the final trajectory estimation. It also allows to take into account in an
explicit way the discrete-in-time feature ofXac by writing kX as

kX(s) = K
ns

∑

i=1

δ(s− si) (5)

whereK is a strictly positive constant accounting for the weighting of Xac, δ(·) stands for the Dirac
delta function, andsi ∈ [sb, se] are thens trajectory times for which the acoustic positioning signalis
available. Note that such a framework allows to deal with a non-periodic acoustic positioning signal which
appears when many outages perturb the signal. Also, the outliers are treated as outages as they are simply
discarded whenever detected.

Minimizing the integral in (4) in an iterative way is performed easily by computing the gradient descent
of the Euler-Lagrange equation of (4)[25], which can be obtained using the following PDE

∂X̂

∂t
= ∇(∇X̂ − Vgeo(s)) + kX(s)(Xac(s) − X̂) (6)

This equation can be interpreted as a diffusion-reaction process whose diffusion behavior, usually merely
∇2X̂, is here guided by the velocity measurements. The role of thereaction/source termkX(Xac− X̂) is
to ensure that the final estimatêX will be close to the acoustic positions through a feedback driven by
Xac.

One way to obtain a finite element implementation of (6) is to first consider the discrete approximation
of the heat equation

∂X̂

∂t
(s, t) = ∇2X̂(s, t) (7)
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where the Laplace operator∇2X̂ = ∆X̂ can be approximated as

∇2X̂ =
(n+ 1)2

S2
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wheren is the number of discrete elements of the trajectory segmentand the dimension of the finite state
vector X̂ andS is the segment length in seconds.X̂b and X̂e are Dirichlet boundary conditions which,
from a trajectory observer perspective, mean that the extremum conditions, represented by the start and
end points of the vehicle path, are known.
In the case where only velocity measurements are known at theboundaries, we have∇X̂b and ∇X̂e

instead ofX̂b and X̂e. This leads to the finite state-space representation for theapproximation of (7)

˙̂
X = LDX̂ + BD (8)

where the matrixLD stands for the discrete approximation of the Laplacian operator with two homo-
geneous Dirichlet boundary conditions, andBD is the vector of boundary conditions. In the case where
these are Neumann instead of Dirichlet boundary conditions, replaceLD andBD by LN andBN which
are easily obtained by writing the discrete Laplace operator as

∇2X̂ =
(n + 1)2

S2
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(9)

Note that we can also have the two kinds of boundary conditions in one equation,i.e. for example a
Neumann one forsb and a Dirichlet one forse. Thus, we can obtain the finite element implementation of
(6) by the same kind of reasoning and vector/matrix representation, leading to the finite state-space form

˙̂
X = LNX̂ − Wgeo + KX(Xac − X̂) (10)

whereWgeo represents the approximation of∇Vgeo(s) together with the Neumann boundary conditions.
In the following, we will check the convergence of such finite-difference approximation schemes of

diffusion-based observers as exemplified by (6). Note that it is also possible to study existence and
uniqueness properties of observer (6) itself, that can offer useful insights on the behavior of the observer.
While addressing these issues is, for the sake of simplicity, out of the scope of this paper, we refer to
[38], [56] for interesting examples in this matter.

Once the discrete approximation of the trajectory observer(6) is defined, we can check that this
implementation is incrementally stable,i.e. that the final estimate is independent of the initial guess or
initial conditions. To check this stability property, we will usecontraction analysis[27] on the state-space
representations (8) and (10). Roughly speaking, contraction analsysis consists of analyzing the Jacobian
of a differential equation to conclude exponential convergence of two different trajectories of the same
differential equation, making it independent from the initial conditions. In the example of the discrete
heat equation (8), the system is said to becontractingbecause the matrix can easily be proven, as in [30],
to be uniformly negative definite (u.n.d.). Hence we have

∥

∥

∥
X̂(X̂10, t) − X̂(X̂20, t)

∥

∥

∥
≤

∥

∥

∥
X̂10−X̂20

∥

∥

∥
e−β(t−t0) (11)
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which is valid for any couple of initial conditions,̂X10 and X̂20, of X̂, where−β (β > 0) is a constant
upper bound onLD.

Proving that the trajectory observer (6)-(10) is contracting is only slightly more involved. Indeed, noting
that in (10),Wgeo andXac are just inputs to the system, computing the Jacobian of (10)means we can
restrict the study to the Jacobian of the Laplace operator (with Neumann boundary conditions) (9) with
the Dirac-based observer gain (5). Thus, in order to show that LN − KX is uniformly negative definite,
one has just to ensure that, in the case where only one acoustic positioning measurement is available, the
following matrix is uniformly positive definite.
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(12)

Using Sylvester’s lemma and computing the principal minorsof (12), it can be seen that∆i = 1 for all
i until i = k the index of the available acoustic positioning measurement for which ∆k = 1 + K. For
i > k, ∆i = 1 + (i− k + 1)K. The last principal minor∆n, i.e. the determinant of (12) is then equal to
K. Thus, all minors∆i are positive, hence (12) is uniformly positive definite, meaning that the discrete
version of∇2X̂−kX(s)X̂ is contracting, as well as the implementation of observer (6) with one acoustic
positioning measurement.
Using the fact that the sum of two or more contracting systemsis also contracting (see the Appendix,
Lemma 1), contraction is then proven for the observer for anyfinite number of acoustic positioning
measurements.

Additionally, note that the above observer, and similarly for the other observers described in this paper,
can be easily modified using a nonlinear diffusion term as follows

∂X̂

∂t
= ∇f(∇X̂ − Vgeo) + kX(Xac − X̂) (13)

with only minor modification in the proof of convergence. Indeed, contraction can still be concluded for
(13) provided one assumes some mild condition of linear bounded growth onf (see [29]). Indeed, one
has

∇f(∇X̂ − Vgeo) =
∂f

∂(∇X̂ − Vgeo)
∇(∇X̂ − Vgeo)

Such a nonlinear version of the diffusion term could be of interest, for example, in cases where the noise
is not Gaussian [14] or to explicitely incorporate outliersinto the filtering process (a first attempt has
been done in this direction with a nonlinear version of the reaction termkX(Xac − X̂) in [52]).

Also, one can introduce a more complex gain functionkX(s) by replacing (5) with

kX(s) =

ns
∑

i=1

Kiδ(s− si)

where theKi are constants that can be tuned independently from each other, thus allowing for more
degrees of freedom for the observer.

The reader familiar with image processing techniques has certainly noticed that observers presented
in this paper can be seen as being inspired by diffusion-based algorithms that are now well-known and
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pervasive in the literature of the image processing community [43], [55], [21], [14], [38], [48], [28], [53].
Indeed, the vehicle trajectory is in this interpretation just a one-dimensional signal. Though the image
signals have generally features that are different from acoustic positioning and doppler signal ones, this
perspective definitely gives the advantage of being able to adapt or re-use many interesting methods of
diffusion filtering for image processing that lead to significant results.

Observer (13) can also be regarded as a simple continuous realization process. Indeed, using the
continuous realization theory terminology [8], [6], [5], this observer is a (gradient) flow, or a deducible
procedure used to solve a particular problem, in our case minimizing energy-like integrals such as
(4) for instance. As argued by researchers of the continuousrealization field, this kind of perspective
brings some nice features such as the fact that thealgorithm leading to the solution of the problem is
contained in one continuous-time problem through the gradient flow (13), but also because its formulation
is independent from the chosenmethod of implementation. Hence, many different implementation methods
can be considered.

B. Adding “rendezvous” time constraints

Some missions of underwater vehicles consist of surveying asea floor area for cartography and video-
mosaicking purposes [53]. During these surveys, the path profiles are such that the vehicle happens to go
over the same spot at two different times, thus creating loops (see figure 2(a)). When these events are
detected for example by cameras, meaning the actual position of the spot is not known, it is of interest to
compensate the deviations due to noise on the Doppler sensorby using these “rendezvous” time constraints
in the case that only the extremum positions of the considered trajectory are known [11], [10] (see [4]).

The corresponding trajectory observer for a single-loop trajectory can be written as follows.

∂X̂

∂t
= ∇(∇X̂ − Vgeo)

+ kL(X̂(s2, t) − X̂(s1, t))δ(s− s1)

+ kL(X̂(s1, t) − X̂(s2, t))δ(s− s2) (14)

in which Dirichlet boundary conditions are assumed.kL is a strictly positive constant, ands1 ands2 are
the two trajectory times for which the positions are the same.

The intuition behind osbserver (14) is quite simple. While the diffusion term is present to give the
estimated trajectory the right relative shape, the feedback term favors estimates for which the estimate at
time s2, X̂(s2, t), resembles the estimate at times1, X̂(s1, t), andvice-versa. The same reasoning applies
to trajectories with several loops. Note the relative simplicity of the method compared to the probabilistic-
based approach used in [4].
As for observer (6), checking the contraction property is not difficult if one uses the fact that observer
(14) is contracting if the sum of the following matrices is u.n.d.
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(15)

where the first matrix corresponds to the Jacobian approximation of the Laplace operator with Dirichlet
conditions, and the second one, which contains the terms induced by the observer feedback, stands for
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(a) Unbiased and biased trajectory (b) The biased trajectory and its diffusion-based correction

Fig. 2. Simulation of the rendez-vous points problem for a three-loop trajectory

the rendezvous time constraints.
It is straightforward to show that the latter matrix is uniformly negative semi-definite, and that this
subsystem is therefore semi-contracting, while the formermatrix is u.n.d according to [30]. The contraction
property of (14) directly follows from the fact that the sum of a contracting system with a semi-contracting
one is contracting (see Appendix, Lemma 1).

Figure 2(a) shows the simulation of a real trajectory (unbiased trajectory) of a vehicle and a Doppler-
based version of it, in which the Doppler sensor was highly corrupted by a low-frequency noise (biased
trajectory). The dots indicate the “rendezvous” trajectory times as detected by a camera. It can be seen from
the so-called biased trajectory that the error induced by the slow noise affects the rendezvous constraints
as each meeting point is quite distant from its counterpart (see the rendezvous points pointed by the
arrows). This problem is significantly corrected using a three-loop version of the above observer as shown
in figure 2(b) where the rendezvous constraints are recovered in the estimated trajectory.

At this point, one can also draw some interesting connections between our approach and the field of
SLAM –Simultaneous Localization And Mapping in which robots use perceptions to build representations
of their environment to navigate. Indeed, as in the seminal paper by Lu and Milios [33] –with however
different framework/purposes, our approach uses a collection of positions at different time instants, in our
case a continuum, to account for the history of the system. Note, interestingly, that in the same work, it
is considered that the first position is assumed constant andknown, thus playing the role of a Dirichlet
boundary condition in a diffusion-based framework. See also the interesting [9], [10] for works on SLAM
in an underwater navigation context.

C. Acoustic data smoothing

In the case when Doppler measurements are not available, andthe objective is to obtain a smooth
interpolationXs of the acoustic positioning data, one can use regularization techniques such as Tikhonov
regularization [49], [3], [16] which consists, roughly speaking, of requiring that the final estimate as well
as its derivatives up to the orderp are continuous.
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Fig. 3. Simulation of the acoustic data smoothing problem

This constraint can be imposed by using a functional such as the Sobolev norm

||v(Xs)||
2
p =

∫ se

sb

p
∑

r=0

qr(s) (∇rXs)
2 ds (16)

where qr(s) is a pre-specified, non-negative, and continuous weightingfunction the derivative of each
order [48], [49, p. 70].

Hence, restricting the interpolation process to the secondorder (i.e. p = 2), the integral criterion (16)
is now replaced by

J(Xs) =

∫ se

sb

||v(Xs)||
2
2 + kX(s)||Xac −Xs||

2ds =

∫ se

sb

D(∇Xs)
2 +Ds(∇

2Xs)
2 + kX(s)(Xs −Xac)

2ds

whereD andDs are two positive constants. The gradient flow correspondingto this criterion, obtained
with the Euler-Lagrange equations, is now

∂Xs

∂t
= D∇2Xs −Ds∇

4Xs + kX(s)(Xac −Xs) (17)

where the conditions at the boundaries areX̂(sb, t) = Xb, X̂(se, t) = Xe and∇2X̂(sb, t) = ∇2X̂(se, t) =
0. Contracting behavior of the discrete-space approximation of this PDE can still be concluded by following
reasoning similar to that used one in section III-A.

We illustrate this by the simulation of (17) in figure 3, wherethe effect of the second-order term can
be seen through the interpolating effect it creates.

D. Sensor misalignment and trajectory estimation

In the case where there is a misalignment in the way the gyrocompass is mounted on the vehicle, there
is an undesirable constant bias in the heading measurement (see [22], [23], [35] on the misalignment
problem) and the rotation (3) becomes

Vd = eiψmVdop (18)
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whereψm , ψ + ψb is the angle actually measured because of the constant biasψb induced by the
misalignment. Combining now (3) with (18), we have the relation between the bias-free velocity vector
Vgeo and the ”disturbed” vectorVd

Vgeo = bVd (19)

where b , e−iψb is the constant unknown imaginary number standing for the rotation due to the gyro
misalignment. We would like to have an estimate of this unknown parameter in combination with the
diffusion-based estimation process of the previous section.

Introduce the following adaptive-like observer

∂X̂

∂t
= ∇(∇X̂ − b̂Vd) +K(Xs − X̂) (20)

with the adaptation law
˙̂
b = −

∫ se

sb

∇Vd(Xs − X̂)ds (21)

whereb̂(t) is the bias estimate, andXs(s) is a smoothed version of the acoustic positioning signalXac(s).
An ODE or space approximation of (20)-(21) is

˙̂
X = LX̂ −Wdb̂+K(X − X̂) (22)
˙̂
b = −WT

d (X − X̂) (23)

whereX̂ ∈ R
n

is the finite dimensional state approximation ofX̂(s, t), L a Laplacian matrix andWd the
approximation of∇Vd(s).

In order to ensure stable behavior of observer (22)-(23), itis required that in the absence of noise and
uncertainties,̂X and b̂ converge to the true trajectory and gyro bias

∂X

∂t
= ∇(∇X − bVd)

ḃ = 0

whose approximation is

Ẋ = LX − Wdb (24)

ḃ = 0 (25)

Then, combining (22)-(23) with (24)-(25), we have the following error dynamics

d

dt

(

X̃

b̃

)

=

(

L +KI −Wd

WT
d 0

) (

X̃

b̃

)

(26)

(whereX̃ = X̂ − X and b̃ = b̂− b) which is often encountered in adaptive control [37], [15],[46].
Using the results of Loria and Panteley [31], [32], and underappropriate assumptions on the matrixWd

which are reminiscent of the persistency of excitation condition, one can conclude exponential convergence
of (26) and hence of̂X and b̂ towardsX and b.

In figure 4(a), we took a trajectoryX(s), computed its derivative and created an artificial and exaggerated
gyro misalignment of5 degrees, which, after time integration, gives the rotated trajectoryXd(s). The blue
line representinĝX shows the behavior of observer (20)-(21) which estimatesX(s) properly, while figure
4(b) represents the evolution ofb̂ reaching the bias value.
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(a) Biased and unbiased trajectories (b) Bias estimate

Fig. 4. Simulation of the sensor misalignment problem

E. Sound velocity profile estimation

Other problems induced by error in the parameters might occur in the trajectory estimation process
(see for example the early work [45] on different error sources in acoustic transponders). Consider for
example the simple case depicted in figure 5 where a vehicle moves towards a single transponder that it
uses to estimate its longitudinal position knowing the position of the transponder on the sea floor.

In this case, the distance of the vehicle with respect to the transponder, here denoted asρ, is obtained
by the relation

ρ = vsound
Ttof
2

(27)

wherevsound is the sound velocity andTtof is the time-of-flight of acoustic pulses measured by the vehicle
interrogating the transponder.

It is clear from relation (27) that the distanceρ can be quite inaccurate if the sound velocity at the
location of operation is different from the nominal sound velocity parameter on board the vehicle. Indeed,
consider that such a difference is expressed by the following expression

ρd =
vsound
a

Ttof
2

where the positive ”multiplicative” scalar terma accounts for the mismatch between the real velocity
profile vsound along the trajectory, andvsound/a that the vehicle uses to compute its position fromTtof .

Assuming that we have at our disposal the derivative of the distance,i.e. ∇ρgeo, obtained thanks to a
Doppler sensor, an observer estimating both the distanceρ and the parametera, would take the form

∂ρ̂

∂t
= ∇(∇ρ̂−∇ρgeo) + kρ(ρdâ− ρ̂) (28)

˙̂a = ka

(
∫ se

sb

ρ̂ds/

∫ se

sb

ρdds− â

)

(29)

whereka is a scalar gain for the parameter estimator (29).



12

Alternatively, if we now consider that parametera may vary along the trajectory by lettinga = a(s),
i.e. that we now have a sound velocityprofile (see [7] for an interesting study), replace observer (28)-(29)
with

∂ρ̂

∂t
= ∇(∇ρ̂−∇ρgeo) + kρ(s)(ρdâ(s) − ρ̂) (30)

∂â

∂t
= ∇2â+ ka(s)

(

ρ̂

ρd
− â

)

(31)

whose ODE version is

˙̂ρ = Lρρ̂− Wρ + Kρ (diag(ρd)â− ρ̂) (32)
˙̂a = Laâ −Wa + Ka

(

diag−1(ρd)ρ̂− â
)

(33)

where Lρ and La are Laplacian matrices,Wρ is a matrix including the boundary conditions and the
approximation of∇2ρgeo, while Wa contains only the boundary conditions ofâ. Then, exponential
convergence of (32)-(33) can be guaranteed using the contracting version of the small-gain theorem
(see Appendix, Lemma 2) by writing the differential gains of, respectively (32) and (33)

γρ =
‖Kρ‖

βρ
max(ρd)

where the strictly positive constantβρ is such thatLρ − Kρ ≤ −βρI, and

γa =
‖Ka‖

βa

1

min(ρd)

whereLa − Ka ≤ −βaI, thus leading to the condition

‖Kρ‖

βρ

‖Ka‖

βa
<

min(ρd)

max(ρd)

that the feedback gainsKρ andKa have to verify.
Note that observer (30)-(31) can also include in some sense the scalar parameter estimation of observer

(28)-(29). To illustrate this, consider the simulation result shown in figure 6 in which we have artificially
induced a multiplicative terma = 0.9 in the velocity profile. Note that the final estimateρ̂ corresponds
to the ”true” ρ, meaning that̂a(s) has properly estimated the value of the constant parametera along the
trajectory.

F. Online version and further extensions

The trajectory observers that were previously depicted canbe simply extended. For example, if instead
of an offline/batch-like trajectory observer (like the one in (6)), a real-time version of a trajectory observer
would be

∂X̂

∂t
= Vgeo(s, t) + ∇(∇X̂ − Vgeo(s, t)) + kX(Xac − X̂) (34)

where the termVgeo(s, t) accounts for the fact that for the real trajectoryX(s, t), we have∂X
∂t

= Vgeo(s, t),
which is the trajectory version oḟX = Vgeo, and represents the speed at which the trajectory segment to
be estimated is moving in time along the whole trajectory (see also [19] for more details).
This observer is still contracting since the additional term Vgeo(s, t) is nothing but a time-varying input
to the observer.
In figure 7(a) the simulation of such an observer for a one-dimensional trajectory is shown, for which the
observer was not initialized on the exact location of the real trajectory. As in a usual Luenberger observer,
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Fig. 5. Underwater vehicle and acoustic rangemeter

the diffusion-based observer recovers the actual trajectory after a transient. The 3D view of figure 7(b)
illustrates the sliding trajectory segment aspect of the same simulation.

Note that observers after eq. (6) can also be implemented as such, i.e. in a more batch-like version
where for example the flow (6) can be solved for each instant oftime, where the initial condition is chosen
as, for example, the estimation of the previous instant, or ashifted version. This point-of-view can also
be related to the moving-horizon observer concept (see for example [36]) in the Model Predictive Control
literature.

Other simple extensions can also be considered. Indeed, in the case where there are also outages on
the Doppler signal, which can happen, for example when the vehicle surveys a zone with a cliff or fault,
observer (6) can be augmented and rewritten as

∂X̂

∂t
= ∇(∇X̂ − V̂ ) + kX(Xac − X̂) (35)

∂V̂

∂t
= ∇2V̂ + kV (Vgeo − V̂ ) (36)

where equation (36) takes care of the outages ofVgeo in the same way as it is done in (35) forXac.
The overall contracting behavior of observer (35)-(36) is then easily concluded by using the combination
result of contracting systems in cascade form (see Appendix, Lemma 3).

Finally, if some acceleration measurements are added to theavailable information (as provided by an
Inertial Measurement Unit for example), equation (36) can be in turn changed into

∂V̂

∂t
= ∇(∇V̂ −Ains) + kV (Vgeo − V̂ )

which has the same structure as (6) or (35), and for which contracting behavior is concluded identically.

IV. EXPERIMENTAL RESULTS

Full-scale test trials have been performed at sea during thejoint IFREMER-AWI (Alfred Wegener
Institut) “Victor in the North” scientific cruise in the Atlantic ocean. IFREMER ROV Victor 6000 was
equipped with an Octans II Gyrocompass [39] and an RDI Doppler Velocity Log [54]. Acoustic positioning
of the vehicle was performed with the Posidonia long-range USBL system [44], a data being received every
14 seconds. Note that the errors of such a system, if used alone, can be quite significant (see Opderbecke
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Fig. 6. Sound velocity profile estimation

[42] for a quantitative assessment of the global error of thePosidonia system), and is dependent upon many
different factors, hence the process is neither Gaussian nor stationary (see also an interesting discussion
on noise in LBL data in [41]).

In figures 8, 9, 10 and 11 a result of the combination of the USBLacoustic positioning system data of
Victor 6000 with its gyro-Doppler measurements for a four hour long trajectory is shown, its global view
can be seen in figure 8. Figures 9 and 10 zoom in on some specific parts of the trajectory, specifically the
top part and the bottom part of figure 8, with different characteristics. Figure 11 shows a one-dimensional
profile to show the behavior of one coordinate with respect tothe trajectory times.

The red dots are the acoustic positions delivered by the USBL. As the ROV moves with respect to
the vessel, varying noise characteristics affect acousticpositioning. Note the large outliers in the different
figures. The starting point of the trajectory (see top of figure 8) defines the initial value to obtain the
dead-reckoning trajectory (in green) obtained after integration of gyro-Doppler data. The reader will
certainly notice the differences between these two curves.The acoustic positioning-based one has a good
global position which, however, is noisy and not smooth, while the gyro-Doppler trajectory behaves nicely
regarding the dynamical aspects but is “bent” by error on theintegration process.

The blue line in the figures is the result of the estimation process performed by the diffusion-based
trajectory observer (6) which was initialized with a crude first-order interpolation of the acoustic posi-
tioning data (thin red line). In this experiment, the constant K associated to the feedback gainkX(s) (eq.
(5)) is set to10−4. Note the good behavior of the observer as it advantageouslycombines the smooth
speed feature of the gyro-Doppler measurements with the absolute positioning of the USBL system. The
observer was implemented in Matlab code on a standard PC. Since the gyro-Doppler measurements are
obtained at regular sampling intervals, it is quite naturalto use finite difference schemes to spatially
approximate the PDEs, a consideration which also motivatedthe difference-scheme based perspective
for the stability analysis (see Eq. (9) and onward). For time-discretization, experience has shown that
trivial implementation such as the Euler method and higher-order methods could be used, even though
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(a) Simulation of observer (34) for a one-dimensional trajectory (b) 3D representation of the simulation of observer (34)

Fig. 7. On-line diffusion-based trajectory observer

the sampling period should be small to guarantee good results, a fact that is well-known for diffusion-
based equations. To increase performance, we used semi-implicit schemes based on LU decomposition
as presented in [56].

On the practical point-of-view, note that these two trajectories are the main information that are available
to the operational team and pilots of Victor 6000 to estimatethe horizontal location and trajectory of the
vehicle. In order to reduce the mismatch between the two trajectories, the initial value of the Doppler-
based trajectory is manually re-initialized every now and then, which creates steps in the trajectory that do
not correspond to realistic underwater vehicle dynamics and can therefore be unsuitable for cartography
purposes.

V. CONCLUDING REMARKS

In this paper, we proposed a simple approach for estimating underwater vehicle trajectories, consisting
of processing a whole trajectory segment at a time using a diffusion-based observer, with gyro-Doppler
measurements and acoustic positioning signals as inputs. We also presented variations of the same concept
to address several important issues related to underwater navigation. Simulated and experimental results
were presented to demonstrate the potential of the approach.

Current research includes the introduction of a nonlinear diffusion term, directly deduced from the
non-Gaussian, non-stationary nature of the noise of many long-range LBL/USBL positioning systems.
Also, it could be of interest to apply the approach to the range-only measurement problem [47], [13],
[50].

APPENDIX

In this appendix, we briefly recall a few elements of contraction analysis (see [27] for the main reference)
that are used throughout the paper. In the following, consider systems described by the general nonlinear
deterministic differential equation of the form

ẋ = f(x, t) (37)
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Fig. 8. Experimental result of the diffusion-based trajectory observer (6) (global view of a 4-hour trajectory)

wherex is then-dimensional vector corresponding to the state of the system, andf is a nonlinear vector
field. In addition, we make the further assumption that the system is smooth and that any solutionx(x0, t)
of (37) exists and is unique.

Let us start by stating the definition of a contracting system.
Definition 1 (contracting system [27]):The systemẋ = f(x, t) is said to be contracting if its Jacobian

is uniformly negative definite (u.n.d.),i.e. if there exists a strictly positive constantβ, referred to as the
contraction rate, such that

∂f

∂x

ᵀ

+
∂f

∂x
≤ −2βI

for all x ∈ R
n and for all t ≥ 0.

Additionally, the systeṁx = f(x, t) is said to be semi-contracting when its Jacobian is only negative
semi-definite.

The main theorem of contraction analysis can then be stated as follows.



17

Fig. 9. Experimental result of the diffusion-based trajectory observer (6) (top part)

Theorem 1 (exponential convergence of contracting systems[27]): If the systemẋ = f(x, t) is glob-
ally contracting with rateβ, then any couple of trajectoriesx1(t) andx2(t) verifies the following inequality

‖x1(t) − x2(t)‖ ≤ ‖x10 − x20‖ e
−β(t−t0) (38)

for all x10, x20 ∈ R
n and for all t0 ≥ 0, t ≥ t0.

We will now recall some combination properties of contracting systems in the following few lemmas.
For the sake of clarity, we have ordered these lemmas according to the order in which they are used in
the paper.

Lemma 1 (additive property):Assume thaṫx = f(x, t) is contracting and thaṫx = g(x, t) is contracting
or semi-contracting. Then

ẋ = f(x, t) + g(x, t)
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Fig. 10. Experimental result of the velocity-based diffusion-observer (6) (bottom part)

is contracting.
The following definition is quite important for robustness issues and will be of use in the next lemma.
Definition 2 ([17]): Consider the following system

ẋ = f(x,u, t) (39)

whereu is an external time-varying signal. Assume that (39) is contracting with rateβ for all u, and that
there exists a positive constantσ such that∂f

∂u
is uniformly bounded. Then, the differential gain of (39)

is the positive constantγ such that
γ =

σ

β
Lemma 2 (small-gain theorem [17]):Let two systems be interconnected as follows.

{

ẋ1 = f1(x1,x2, t)
ẋ2 = f2(x1,x2, t)

(40)
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Fig. 11. Experimental result of the velocity-based diffusion-observer (6) (zoom on the y-coordinates)

If ẋ1 and ẋ2 are contracting, and that their respective differential gains γ1 andγ2 are such that

γ1γ2 < 1

then the global system (40) is contracting.
Lemma 3 (cascade of two contracting systems[27]):Let two systems be in cascade form as follows.

{

ẋ1 = f1(x1, t)
ẋ2 = f2(x1,x2, t)

(41)

If ẋ1 andẋ2 are contracting, and that∂f2
∂x1

is uniformly bounded, then the global system (41) is contracting.

ACKNOWLEDGMENTS

This work benefited from many interesting discussions with the pilots of Victor 6000. The authors
would also like to thank Thor I. Fossen and Andrew Ross, as well as the anonymous reviewers for their
many useful remarks and suggestions.

REFERENCES

[1] A. Alcocer, P. Oliveira, A. Pascoal, “Study and Implementation of an EKF GIB-based underwater positioning system,”in Proc. of the
IFAC Conference on Control Applications in Marine Systems (CAMS’04), Ancona, Italy, 2004.

[2] P. E. An, A. J. Healey, J. Park, and S. M. Smith, “Asynchronous data fusion for AUV navigation via heuristic fuzzy filtering techniques,”
in Proc. IEEE Oceans’97, 1997, pp. 397–402.

[3] T. Berg, J. Jouffroy and V. Johansen, “A trajectory observer for camera-based underwater motion measurements,” inProc. IEEE
Oceans’04, Kobe, Japan, 2004.



20

[4] M. Borgetto, C. Jauffret, and V. Rigaud, “Auto-localisation d’un véhicule sous-marin exploratoire quadrillant une zone,” inProc.
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