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Abstract:  
 
Argo is a global array of profiling floats that provides temperature (T) and salinity (S) profiles from 
2000 m to the surface every ten days with a nominal spatial resolution of 3°. Here we present 
idealized experiments where the adjoint method is used to synthesize simulated sets of Argo profiles 
with a general circulation model, over a one-year period, in the North Atlantic. Using a number of 
drifting profilers consistent with Argo deployment objectives, the simulated array permits one to identify 
large-scale anomalies in the hydrography and circulation, despite the presence of a simulated eddy 
noise of large amplitude. Model dynamics provide an objective means to distinguish eddy noise from 
large-scale oceanic variability, and to infer the absolute velocity field (including abyssal velocities and 
sea surface height) from sets of Argo profiles of T and S. In particular, our idealized experiments 
suggest that volume and heat transports can be efficiently constrained by sets of Argo profiles. 
Increasing the number of Argo floats seems to be an adequate strategy to further reduce errors in 
circulation estimates.  
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1 Introduction

Argo is a global array of profiling floats, which provides temperature (T) and salinity (S)

profiles from 2000 m to the surface every ten days, with a nominal spatial resolution of

3◦. This subsurface observing system was designed to complement satellite observations

(e.g. of sea surface height) in order to monitor the large-scale and low-frequency oceanic

variability (see Roemmich et al., 1999).

One way to investigate the adequacy of Argo as a large-scale observing system is to test

whether it permits one to estimate large-scale T and S signals. Argo does not fully resolve

the high frequency and small-scale oceanic variability (e.g. meso-scale eddies or internal

waves), which thus might be aliased. This suggests the use of state estimation methods

that are able to distinguish between large-scale signals of interest and small-scale noise.

Guinehut et al. (2002), for example, show that the eddy noise can be efficiently filtered

out to estimate monthly T and S anomalies in 6◦× 6◦ squares, using objective analysis

(Bretherton et al., 1976). The adequacy of Argo as a large-scale observing system can also

be investigated with respect to large-scale circulation fields besides T and S. As each pair

of profiles can be interpreted as a direct measurement of the geostrophic shear, Argo can be

expected to significantly improve our knowledge of the large-scale circulation through the

use of inverse methods. Unlike previous studies, the adequacy of Argo is here investigated

in terms of both the hydrography (i.e. T and S) and the circulation, with an emphasis on

the latter.

The estimation method employed here, known as the ”adjoint method” or the ”4DVAR

assimilation” (see e.g. Wunsch, 1996, and Bennett, 2002), consists of searching for the solu-

tion of a general circulation model (GCM) that best fits the observations in a least-squares

sense, over a time interval. In this context, a GCM can be interpreted as a covariance op-

erator, which accounts for a variety of length scales (from the model grid-scale, up to

the model domain size), for a variety of time scales (from the model time-step, up to the

simulated time interval), for the dynamical relationships between the different physical

quantities, and for the anisotropy associated with oceanic structures. In particular, the

GCM-based interpolation tool can be regarded as a non-linear inverse model in which

the velocity field is estimated along with the tracer fields. The GCM-based interpolation

framework is therefore appropriate to investigate the adequacy of Argo as a large-scale

observing system as a whole, i.e. with respect to both the hydrography and the circulation.
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We want to provide insights into the two following problems: by processing sets of Argo

profiles with GCM-based interpolation, can the large-scale T and S signals be distinguished

from the small-scale noise? To what extent can the large-scale circulation be inverted from

sets of Argo (T and S) profiles?

The complexity of the problem argues for a two-step approach. Indeed, assume that only

real-observation experiments are carried out, and the resulting Argo-GCM estimates (Xe,

for a quantity X) are evaluated based on independent information (Xi). Xe could be a poor

estimate of Xi if the information content of sets of Argo profiles was insufficient: (issue A)

X may be dominated by scales that are too small compared with the Argo sampling; (issue

B) if X is velocity information, it simply may not be possible to determine X uniquely

from sets of T and S profiles. But, in practice, Xe could also be a poor estimate of Xi if the

estimation system had faults: (issue C) the least-squares solution (Xe) may be incorrect

because of improper assumptions on error statistics; (issue D) errors in the GCM dynamics

may prevent the adequate fit to Argo profiles. If Xe was a poor estimate of Xi, it would

then be unlikely that a clear explanation emerges. Now, idealized experiments using GCM

simulated observations permit one to investigate issues A and B alone, leaving issues C

and D as the main concerns when assimilating real observations. A two-step approach

is therefore used: first an idealized context is considered where data noise statistics and

GCM dynamics are assumed perfect (here), and then the case of real-observations is

treated (companion paper, Forget et al., 2007).

Also, idealized experiments provide unique opportunities to investigate issues A and B.

Indeed, the time-varying GCM state to be estimated (formally: the truth) is known com-

pletely and perfectly in idealized experiments, in contrast to the case of real oceans when

Xi can be fairly uncertain, incomplete or simply non-existent. For example, idealized ex-

periments allow one to test the possibility of inferring anomalies of volume and tracer

transports from Argo measurements (Section 3). Furthermore, the data set characteristics

are fully adjustable parameters in the idealized framework, and this permits a discussion

of observing system design. For example, one can test whether increasing the number of

Argo floats could significantly improve circulation estimates (Section 4).
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2 Experiment configurations

2.1 Estimation problem

Consider an estimation problem that consists of finding a set of model parameters, x, that

yields a least-squares fit of the model trajectory to noisy data, yo, and to an uncertain prior

estimate of x, xb. The model counterpart to yo, y(x), is a function of x. This problem can

be solved by minimizing a cost function J(x) that, following Ide et al. (1997), is written

as :

J(x) = Jb + Jo = (x − xb)
T B−1(x − xb) + (y(x) − yo)

T R−1(y(x) − yo) (1)

where the weighting matrices B−1 and R−1 are the inverses of error covariance matrices. In

practice, J is minimized iteratively using descent directions computed by the adjoint of the

model (Marotzke et al., 1999), and an optimization algorithm (Gilbert and Lemaréchal,

1989). Below, this process is referred to as assimilation. For this study, x are the model

initial conditions of temperature and salinity, and the optimization starts from x = xb.

The data term Jo measures the distance between the data yo and their model counterparts

y. The data are a set of T and S profiles, which are distributed in space and over a period

that, below, is referred to as the assimilation window. The assimilation window is chosen

as one year, which is an intermediate value for this parameter (e.g. between the value of

six years used by Stammer et al. 2002 and the value of one month used by Weaver et al.

2003).

The assimilation window choice can be expected to have fundamental consequences. Over

one year, with the exception of low latitudes (see Gill and Niiler, 1973), the large-scale

baroclinic circulation is not expected to strongly evolve and is thus mainly controlled by

the initial state. Furthermore, the large-scale circulation is expected to adjust geostroph-

ically to the initial conditions of T and S with a time scale much shorter than one year.

Therefore, for a one-year assimilation window, it is reasonable to focus on the optimization

of the T and S initial conditions.

Also, the information is expected to propagate farther through GCM dynamics (e.g. due

to advection and waves) as the assimilation window increases. The assimilation window
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choice can therefore be regarded as a compromise between propagating the observational

constraint (desirable) and propagating model error (undesirable). The latter is only rele-

vant in the case of real data, since model dynamics are assumed perfect in the idealized

experiments, so further discussion is provided in the companion paper (Forget et al., 2007).

2.2 Model set up

The model is a North Atlantic (from 20◦S to 70◦N) configuration of the MITgcm (Marshall

et al., 1997). It has 23 levels with a refined vertical resolution near the surface, and a

1◦cos(latitude) horizontal resolution. The low model resolution is chosen for computational

practicality. Similar to most large-scale state estimation studies (e.g. Stammer et al., 2002,

and Ferron and Marotzke, 2003), the model does not resolve eddies. The vertical and

horizontal viscosities are 10−3 m2 s−1 and 2 × 104 m2 s−1 respectively. For T and S, the

vertical and horizontal diffusivities are 10−5 m2 s−1 and 103 m2 s−1 respectively. Lateral no-

slip and bottom free-slip boundary conditions are used. A convective adjustment is applied

in statically unstable cases. The adjoint of the MITgcm is automatically generated with

the Tangent linear and Adjoint Model Compiler (TAMC, Giering and Kaminski, 1998).

The model is forced with daily heat, freshwater, and momentum fluxes from the 1979-

1993 ERA15 ECMWF reanalysis. A relaxation of surface temperature and salinity to the

Reynaud et al. (1998) seasonal climatology is added to the forcing, with a time scale

of 30 days. This climatology is also used to define the T and S initial conditions for

the spin-up and to prescribe buffer zones along the artificial walls at 20◦S, 70◦N, and at

14◦E in the Mediterranean Sea. A model spin-up is first performed starting from summer

1979 to summer 1987. Early in the spin-up, the model undergoes a significant drift away

from the climatological initial state. In the later stages of the spin-up, the model exhibits

low-frequency evolutions of smaller amplitude, about a state that is presumably more

consistent with the GCM dynamics than is the Reynaud et al. (1998) climatology.

The model solution for summer 1987-summer 1988 is hereafter referred to as the reference

integration. In our idealized framework, it represents a true oceanic 4D state that has to

be estimated. Starting from an integration with perturbed initial conditions in summer

1987, observations generated from the reference integration are assimilated in an attempt

to estimate the reference integration.
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2.3 Initial condition perturbations

The perturbed initial conditions in summer 1987 (xb) are chosen as some instantaneous T

and S model fields of summer 1989. The other model parameters (e.g. the initial velocity

field, the forcing, etc) are those of the reference integration. Note that the heat and

freshwater surface fluxes can still change through the relaxation terms when the model

trajectory is modified, as a consequence of modifications in the initial conditions. The

model integration from xb in summer 1987 to summer 1988 is the first guess trajectory of

the estimation process.

Jb, from Eq. 1, is written as Σi,j,k(x(i, j, k) − xb(i, j, k))2/σ2

b (i, j, k), where (i, j, k) are

grid point indices corresponding to longitude, latitude and depth respectively. Such a

diagonal approximation of the covariance matrix B is common practice (e.g. Stammer

et al., 2002, and Ferron and Marotzke, 2003) as it saves much numerical storage. Here

σb(i, j, k) is further approximated as σb(k), which is computed at each level k as the

root mean squared (RMS) misfit between xb and the initial conditions of the reference

integration. Fig. 1 shows the σb(k) profiles for T and S in the main experiment (hereafter

ARGOlike). Fig. 1 also shows the σo(k) data error profiles discussed in the next section.

Below, unless otherwise specified, we reserve the words signal for the difference between the

first guess and reference integrations, residual for the difference between the optimal (i.e.

after assimilation) and reference integrations, and correction for the difference between

the optimal and first guess integrations. Hence, the correction must be the opposite of the

signal to obtain a perfect estimate with zero residual. These conventions are summarized in

Table 1. By design, the signal mimics oceanic interannual anomalies and is fully consistent

with the GCM dynamics; it is mostly large-scale and low-frequency, as will be illustrated

in Section 3.

2.4 Data set simulation

Synthetic T and S profiles are generated from the reference integration in the area off the

2000 m isobath that can be observed by Argo floats (Fig. 2). For experiment ARGOlike,

the positions of 300 floats are first randomly initialized. This number of floats is consistent

with the Argo array nominal characteristics (see Roemmich et al., 1999). The floats are
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then advected once a day at 850 m and profile simultaneously every ten days from 2450

m up to the surface. Fig. 2 illustrates the drift of the array in ARGOlike.

When assimilating real data, the estimate of data errors must account for at least two error

sources: instrumental errors and representation errors. The latter are the inconsistencies

between the model and the ocean physics that are regarded as unavoidable misfits. As

oceans are highly turbulent (see e.g. Stammer, 1997), the overall errors are expected to

be large for a 1◦ resolution model that does not resolve turbulence (even if measurements

are very accurate) owing to representation error. To make the idealized framework more

relevant to the assimilation of real data, a noise of large amplitude has to be added to the

synthetic data.

The additional noise is Gaussian, uncorrelated both in space and in time, and its ampli-

tude, σo(k), only depends on depth. For such a noise, R(i, j, k) = σ2

o(k) provides an exact

least square formulation for Jo. σo(k) in experiment ARGOlike (Fig. 1) is chosen as the

median value of the 1◦ resolution standard deviation fields associated with the Reynaud

et al. (1998) climatology, which provides an estimate of oceanic small-scale noise. The

noise to signal ratio (N/S) is defined as the average of σo(k)/σsig(k) over k, where σsig(k)

is the RMS monthly mean signal at level k. N/S is a key control parameter of the idealized

estimation problem, as opposed to the numerical values of σo(k) and σb(k) separately. N/S

is 1.45 in ARGOlike, which thus involves a data noise of relatively large amplitude as can

be expected to occur in real-observations assimilation. Section 4 discusses experiments

(see Table 2) with other values of N/S.

Below, jres
o (t) and jsig

o (t) denote the average of Jo at observation time t, after and before

assimilation respectively. Also, jperfect denotes the analog of jo for the perfect observations

(i.e. the ones without the added noise). Let us stress that the perfect observations are never

assimilated, but jperfect is used to discuss the assimilation results. Both jo and jperfect are

normalized mean squared model-data misfits.
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3 Results of the ARGOlike experiment

3.1 Model fit to the data

Consistent with least-squares estimation theory, jres
o is on average close to 1 (Fig. 3,

left), reflecting that the amplitude of model-data misfits after assimilation is close to

the (perfectly known) noise level. Moreover, jres
o does not show any significant temporal

evolution, consistent with the absence of model error accumulation here. The reduction of

jo by the assimilation (Fig. 3, left) could result from a fit to data noise (e.g. see Thacker

and Long, 1988). However, beyond the first two months, jo and jperfect (Fig. 3, right)

are similarly reduced by the assimilation. This contradicts the data noise fit hypothesis,

since signal and data noise are uncorrelated here. Some fit to data noise seems to occur

in the first two months though, when jres
o < jres

perfect + 1. The reduction of jperfect by a

factor of ten demonstrates that the assimilation brings the model significantly closer to

the reference integration.

3.2 Improvements in T and S fields

The mean squared misfits to the reference integration fields are now considered (Fig. 4),

which actually measure the quality of the large-scale estimates. First, the signals (Fig.

4) slowly decrease with time, as can be expected for a diffusive model when no active

forcing anomalies are introduced. The decrease is stronger in the upper 100 m due to

the surface relaxation terms (Fig. 4), and this explains most of the temporal decrease in

jsig
o and jsig

perfect (Fig. 3). Second, in the observed layers (0-2450 m), the mean squared

residuals are significantly smaller than the mean squared signals (Fig. 4), except in the

first two months (see below). The maximum in residuals at 600m (Fig. 4) does not reflect

a general behavior but is specific to this experiment, as shown in Section 4. Over the last

six months (Table 3) the mean squared residuals are 70% smaller than the mean squared

signals; this is consistent with the range of error variance reduction reported by Guinehut

et al. (2002) (their Tables 1 and 2). Third, in the unobserved layers (below 2450 m)

residuals for T and S are barely smaller than the corresponding signals (Fig. 4). Though

model dynamics may further propagate the upper-ocean information into the deep ocean

for a longer assimilation window, this suggests the need for direct observations to improve
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the model deep hydrography over a year.

Two 2D sections are now considered (Figs. 5 and 6). Those illustrate that the T signals

(panels A) are dominantly large-scale and low-frequency. The same is true for the S

signals and the circulation signals (not shown). To be more quantitative, we compute

largest-scales contributions (defined as the average over 5◦ × 5◦ boxes) and intermediate-

scales contributions (defined as the remainder) to signals and residuals. The mean squared

signal is 90% largest-scales. The improvement in T and S fields due to the assimilation

(Fig. 4, Table 3) is mostly a reduction of large-scale misfits to the reference integration

(Figs. 5B and 6B). For intermediate-scales contributions, the mean squared residual is 50%

smaller than the mean squared signal. The corrections applied to the initial conditions

grow towards large-scales and low-frequencies over the first two months (Fig. 6, C and

D), as a result of the integration of GCM dynamics.

As a conclusion, GCM dynamics provide, by themselves, an efficient means to interpolate

T and S fields from sets of Argo profiles. The use of GCM dynamics permits one to reveal

the large-scale information (present section) and filter out the small-scale, large amplitude,

data noise (previous section).

3.3 Improvements in the circulation

The possibility of inverting large-scale low-frequency circulation anomalies from sets of

Argo profiles, which is our main motivation for using GCM-based interpolation, is now

investigated. The results are discouraging for the first two months of integration: the mean

squared velocity misfits to the reference integration (Fig. 7) are larger after assimilation

than before. During this period, dynamical adjustments to unbalanced initial condition

perturbations take place, and these are associated with an excess of kinetic energy (not

shown). Along with the results for T and S, the solution over the first months is thus found

useless and will not be further analyzed. But after only three months of integration, the

impact of the assimilation on the velocity field becomes positive. The reductions in mean

squared misfits to the reference integration due to the assimilation that are reported below

(incl. numbers from Tables 3 and 4) are computed using monthly means over the last six

months. The mean squared residuals are 65% smaller than the mean squared signals for

velocities (Table 3; also see Fig. 7), and this reduction in velocity misfits reflects that
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large-scale velocity signals have been successfully estimated (Fig. 8). At the sea surface,

the improvements in the velocity field translate, as expected, into improvements in the

dynamic topography (Fig. 9). Using GCM-based interpolation, we thus show that Argo

profile information (no velocity observation is assimilated) is as valuable with respect to

the absolute velocity field as it is with respect to T and S fields (Table 3).

The next question to be addressed is the nature of the improvements in the circulation

associated with the velocity misfit decrease. If we decompose velocity anomalies into

barotropic and baroclinic components (i.e. the vertical average and the rest respectively),

we find that mean squared residuals are about 65% smaller than the mean squared signals

for both components. It is remarkable that the absolute velocity field is significantly

improved even though the deep hydrography is barely improved. The deep hydrography

does not dominate the flow structure here. For the deep velocities themselves, the mean

squared residual is 55% smaller than the mean squared signal (only 30% for the deep

hydrography). Thus, an upper-ocean Argo set of T and S profiles can efficiently constrain

both barotropic and baroclinic components of the velocity field.

Now we turn our attention to volume and heat transports, which are of particular interest

for climate research. Volume transports are analyzed in terms of barotropic streamfunction

(Ψ) and overturning streamfunction (Φ), defined as

Ψ(i0, j0) =
i0∑

1

kmax∑

1

v(i, j0, k) × a(i, j0, k) (2)

Φ(j0, k0) =
imax∑

1

k0∑

1

v(i, j0, k) × a(i, j0, k) (3)

where v is the meridional velocity, and a is the associated model cell surface. For Ψ, the

mean squared residual is 72% smaller than the mean squared signal. This improvement in

Ψ (Fig. 10, upper panels) reflects a basin-scale improvement in the barotropic component

of the velocity. Relationships between barotropic volume transports and hydrography

have been derived in a theoretical framework (e.g. Greatbatch et al., 1991, and Mertz

and Wright, 1992). We simply find that, in practice, sets of Argo profiles can provide

an efficient constraint of the barotropic volume transports. From a methodological point

of view, we show that GCM-based interpolation is a convenient way to diagnose the

barotropic streamfunction from a set of noisy profiles distributed in space and time. The

same conclusions hold for Φ (Fig. 10, lower panels), for which the mean squared residual
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is 77% smaller than the mean squared signal. The overturning streamfunction measures

basin-scale vertical volume transports; its relationship with hydrography in the presence

of complex topography remains unclear. Our result argues for the following relationship:

within GCM dynamics, in the presence of complex topography, a constraint of just the

hydrography implies a constraint of basin-scale vertical volume transports. We show that

Argo can provide the bulk of the information needed to diagnose basin-scale vertical

volume transports.

Heat transports are analyzed in terms of the advective meridional heat transport (Θ, Eq.

4), and of its so-called overturning component (Θov, Eq. 5) and gyre component (Θgy, Eq.

6), defined as

Θ(j0) = ρ0Cp

imax∑

1

kmax∑

1

v(i, j0, k) × T (i, j0, k) × a(i, j0, k) (4)

Θov(j0) = ρ0Cp

imax∑

1

kmax∑

1

v̄(j0, k) × T̄ (j0, k) × a(i, j0, k) (5)

Θgy(j0) = ρ0Cp

imax∑

1

kmax∑

1

(v(i, j0, k) − v̄(j0, k)) × (T (i, j0, k) − T̄ (j0, k)) × a(i, j0, k) (6)

where the overbar denotes a zonal average, ρ0 is 1000 kg m−3, and Cp is 4000 m2 kg s−2.

Note that this decomposition of Θ is not exact, as reflected by Fig. 11 (upper right). The

mean squared residuals are 67%, 60%, and 81% smaller than the mean squared signals

for Θ, Θov, and Θgy respectively. The improvement in Θ (Fig. 11, upper left) here mainly

results from an improvement in Θov (Fig. 11, lower left), since the signal in Θov dominates

the signal in Θ (except at high latitudes). It not necessary that improvements in Θ are

associated with improvements in volume transports, because Θ is a product of velocity

and temperature fields. Improvements in volume transports are crucial in this experiment

though: if we neglect them and only account for the change in temperature fields due to

the assimilation, then improvements in Θ are much smaller (not shown). As a conclusion,

we find that sets of Argo profiles can significantly improve estimates of volume and heat

transports; this result is very promising as the direct observation of such quantities remains

a challenge.

We conclude this section with two comments on the above results. First, the perspective

of our study is not to understand the driving forces of the circulation, but rather to

investigate the possibility of diagnosing it using modern observing systems (here Argo
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profiles). Second, some of the hypotheses of our study may limit the relevance of the

above results, and they should eventually be re-examined. For example: 1) a more general

problem could include active surface forcing perturbations along with initial condition

perturbations; 2) the present model does not resolve turbulence that may play a significant

role for heat transport. In general, the efficiency of the basin-scale circulation constraint

provided by Argo profiles might depend on the particular GCM and estimation method.

4 Sensitivity experiments

The sensitivity of the estimates’ quality to the data set characteristics is discussed here;

the sensitivity experiments’ set-up is summarized in Table 2. Exp. moreNOISE addresses

an even noisier ocean. Exp. lessNOISE addresses an ocean with relatively little data noise.

In exp. EULERIAN, instruments’ position remain constant, to simulate a moored array.

In exp. RANDOM, instruments’ position are chosen randomly every ten days, to test

whether an underestimation in floats dispersion in ARGOlike (a likely case as the GCM

circulation used to advect floats does not include turbulence) may affect the results. In

experiments signal1, signal2 and signal3, we use three different perturbations of initial

conditions, which result in three different realizations of the signal. In these three exper-

iments, the sampling is the same as in ARGOlike, and N/S ranges between ARGOlike’s

values and moreNOISE’s values (Table 2). Each of the sensitivity experiments consists of

20 optimization iterations, bringing jres
o close to unity, consistent with ARGOlike.

As expected, estimates of T and S improve when the number of floats increases or the data

noise decreases (Table 3), as it does when using objective analysis (Guinehut et al., 2002,

their Tables 1 and 2). In the most noisy ocean (exp. moreNOISE), mean squared signals

only represent 16% (= 100/(N2/S2)) of the noise variance, but mean squared residuals are

still 63% smaller than mean squared signals. This confirms that the GCM-interpolation

tool efficiently distinguishes between large-scale signal and small-scale noise. If only 100

floats are used (exp. fewerFLOATS), patches of residual are found in the wide areas that

are deprived of observations (Fig. 5C). If 900 profilers are used (exp. moreFLOATS),

the residuals’ amplitude is fairly homogeneous in space (Fig. 5 D), the exception being

shallow regions that remain deprived of observations and show patches of residual. In this

experiment, mean squared residuals are 75% smaller than mean squared signals for the

intermediate-scales (defined in Section 3.2). Estimates’ quality is very similar in ARGOlike
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and EULERIAN (Table 3), showing that the slow drift of the array due to the low-

resolution model circulation has little impact over one year. The simulated increase in

floats dispersion (from exp. ARGOlike to exp. RANDOM) has a more significant impact:

it improves the estimates’ quality nearly as much as dividing the data noise level by 5

(exp. lessNOISE) or multiplying the number of floats by 3 (exp. moreFLOATS). Our

interpretation of this result is that sampling randomly maximizes the independence of

observations. If turbulence did increase both data noise level and floats dispersion, this

result suggests that the two effects might compete in terms of large-scale estimates’ quality.

RANDOM should be regarded as an extreme dispersion case though, and it is not clear

whether turbulent dispersion can have a significant impact in reality.

Estimates of U and V get improved or degraded along with estimates of T and S (Table

3) – improving observational constraints for the hydrography has a direct impact on

the circulation estimate’s quality. In general, such a behavior requires that hydrography

contains the bulk of the information on the absolute velocity field. We find that multiplying

the number of Argo floats by a factor of 3 (exp. moreFLOATS) compared with the array

nominal density (exp. ARGOlike) can reduce mean squared errors in the velocity field by

a factor of 2 (Table 3). The same conclusions hold for volume and heat transports as well;

mean squared residuals are 85%, 85%, and 90% smaller than mean squared signals for

Φ, Ψ and Θ (Fig. 11) respectively in moreFLOATS (77%, 72% and 67% in ARGOlike).

Increasing the number of Argo floats thus seems to be an adequate observational strategy

as far as improving circulation estimates is concerned.

Improvements in the hydrography and in the velocity field in exp. signal1, signal2, signal3,

ARGOlike, and moreNOISE are fairly similar to one another (Table 4). The above results

thus do not seem to correspond to an abnormally unfavorable or abnormally favorable

realization of the signal. The N/S ratio varies only slightly among the experiments of Table

4, and performances scattering among those experiments partly reflects that observations

and strong signals can be collocated or otherwise. For example, the maximum in residuals

at 600m for T and S in ARGOlike (Fig. 4) does not occur in signal1, signal2 and signal3

(not shown). This maximum in ARGOlike results from unobserved large signals in shallow

regions. Also, we have slightly modified the assimilation problem set-up in signal1, signal2

and signal3 compared with the other experiments: a) initial conditions of velocity are

perturbed along with the T and S initial conditions, whereas x is still restricted to T

and S; b) the forcing is augmented with the fluxes due to the relaxation terms that were
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computed during the reference integration, and the relaxation terms are then turned off

during the assimilation process. As expected, these details of the set-up do not have major

effects on the results (Table 4).

5 Summary and discussion

A series of idealized assimilation experiments have been conducted, over a one year pe-

riod, in the North Atlantic. Large-scale anomalies that reflect the GCM low-frequency

variability are estimated from sets of noisy synthetic profiles of T and S mimicking Argo

observations. The number of simulated drifting floats is consistent with Argo objectives.

The data noise amplitude is chosen as large as the amplitude of the large-scale anomalies,

which is relevant to the case of real observations where eddy signals can induce large

representation errors. The results suggest that the design of Argo is consistent with large-

scale state estimation objective as it permits one to identify large-scale anomalies of the

hydrography and of the circulation despite large-amplitude small-scale noise.

The set of pointwise and noisy profile constraints yields a reduction by 70% of the mean

squared misfits to the true T and S fields in the upper-ocean observed layers (except in

the first months). This is in good agreement with the results of Guinehut et al. (2002)

who used objective analysis – with respect to the hydrography, the most novel aspect

of this study is the use of GCM-based interpolation. It is shown that integrating GCM

dynamics over a year, by itself, permits one to distinguish between large-scale signals and

small-scale noise, and allows the projection of the pointwise information onto large-scales.

Over the one-year integration period considered, information from the upper-ocean Argo

profile constraints do not propagate deep enough to significantly improve the hydrography

below the observed layers.

Beyond the estimation of the hydrography, the primary novelty of this study is that we

have shown the Argo program to be very useful to monitor low-frequency variations in

the circulation. Indeed, with the exception of the first months, the upper-ocean profile

constraints yield a reduction of mean squared velocity errors by 65% in the upper-ocean

(55% in the deep unobserved layers). Noteworthy, this impact is on the absolute velocities,

including both baroclinic and barotropic components. Of particular interest for climate

research, we find that Argo can provide an efficient constraint on volume and heat trans-
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ports. Thanks to the upper-ocean profile constraints, the mean squared errors in over-

turning streamfunction, in barotropic streamfunction, and in meridional heat transport

are reduced by 77%, 72% and 67% respectively. From a methodological standpoint, the

results illustrate that GCM-based interpolation provides an efficient tool to interpret a set

of noisy pointwise Argo profiles in terms of the large-scale circulation (incl. the basin-scale

circulation), at least for simulated observations.

This appealing behavior of the GCM estimation system requires a long enough time

of integration: in the first months, while the model trajectory correction grows towards

large-scales, T and S fields are almost unimproved by the assimilation, the velocity field

is even degraded by the assimilation, and some fit to data noise occurs. In the companion

paper (Forget et al., 2007), this leads us to not use first months solutions. A more elegant

strategy, which is beyond the scope of our study, would be useful to save computational

cost. It is remarkable, however, that only three months of integration are necessary for

circulation estimates to become useful - not years. It is also noticeable that T and S

estimates can become useful even faster than circulation estimates.

The large-scale information provided by Argo depending on the array characteristics has

been further investigated through a series of sensitivity experiments. As expected (for T

and S at least), estimates improve when the number of floats increases or the data noise

decreases. If the number of floats is significantly smaller than Argo objectives, large-scale

error patches appear in areas that are deprived of observations. Mean squared errors are

reduced 63% by the profile constraints even when mean squared signals only represent

16% of the noise variance. It is suggested that turbulent dispersion of Argo floats can

be helpful to large-scale state estimation by increasing independence of observations. In

general, the circulation estimate’s quality varies along with estimates’ quality for T and

S. Errors in circulation estimates get reduced by a factor of 2 when we multiply the Argo

nominal number of floats by 3; we thus conclude that increasing the number of Argo

floats seems an adequate observational strategy as far as improving circulation estimates

is concerned.

These results are encouraging in the perspective of real observations: the present idealized

experiments may be viewed as an attempt to prove Argo inadequate as a large-scale low-

frequency observing system, and this attempt has failed. Extrapolating the results to the

case of real observations requires caution though. Crucially, the simulated observations
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are perfectly consistent with the GCM dynamics in this study, and this is no longer true

for sets of real Argo profiles. In the worst case scenario, errors in the GCM dynamics may

preclude any useful skill of the GCM interpolation/inversion tool for real Argo profiles.

This demands an investigation that will be specific to the GCM used, and the companion

paper (Forget et al., 2007) is such a study for the present GCM configuration.

Other possible perspectives of the present study include a baseline for further idealized

experiments. For example: non-diagonal multivariate covariance matrices (e.g. see Weaver

and Courtier, 2001) could be used to try to improve the estimation system behavior in the

first months; a more realistic representation of turbulent effects (on data noise, on floats’

advection, and on the estimation problem size) could be considered; details of the floats

behavior (maximum observation depth, drift depth, drift during surface emission, etc.)

could be refined, and may deserve discussion on a regionial basis (e.g. see Schiller et al.

2004 for the Indian Ocean); the results could be put in the perspective of other observing

systems (altimeters in particular); more emphasis could be put on the seasonal cycle, and,

more generally, on intra-annual variations, by including forcing errors in the estimation

problem. In eddy resolving ocean state estimation, our results suggest that Argo would

efficiently constrain the large-scale circulation, but this still has to be assessed in practice.
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List of Figure captions

Figure 1 : Error profiles associated with the data (solid lines; σo(k)) and the initial con-

ditions (dashed lines; σb(k)) in ARGOlike.

Figure 2 : Model coast line (black), model 2000 m isobath (grey), and simulated profile

positions (crosses) over the whole year in ARGOlike.

Figure 3 : Distance to observations (jo and jperfect, as defined in Section 2.1) as a function

of time, in ARGOlike. Left: average of jres
o (solid lines), and jsig

o (dashed lines); for T

(thick lines), and S (thin lines). Right: same but for jperfect instead of jo.

Figure 4 : Mean squared signal (upper panels) and residual (lower panels), for T (left)

and S (right), as a function of time and depth in ARGOlike. Values at one model level are

normalized by the time averaged mean squared signal at this level. Signal and residual are

errors before and after assimilation respectively (see Section 2.3). The vertical coordinate

is stretched to emphasize the upper 500 m.

Figure 5 : Signal (A) and residual (B) at 847.5 m, for T (in ◦C), averaged over the last 6

months, in ARGOlike. Lower panels: residual in fewerFLOATS (C) and moreFLOATS (D).

Lower left panel only: profile positions (crosses) over the whole year, in fewerFLOATS.

Figure 6 : Signal (A) and residual (B) at 40.3◦W and 160 m, for T (in ◦C), as a function

of time and latitude, in ARGOlike. Lower panels: opposite of the correction resulting from

the assimilation, for T (C) and S (D).

Figure 7 : Same as Figure 4 but for the zonal velocity (U; left) and for the meridional

velocity (V; right).

Figure 8 : Signal (A) and residual (B) for the velocity field at 847.5 m, averaged over the

last 6 months, in ARGOlike. Velocity anomalies weaker than 0.5 cm s−1 are masked; those

larger than 2 cm s−1 have thicker arrows.

Figure 9 : Signal (left) and residual (right) for the sea surface height, averaged over the

last 6 months, in ARGOlike. Contour interval: 0.04 m. Negative and positive values are

shown as grey and black contours respectively.

Figure 10 : Signal (left) and residual (right) for the barotropic streamfunction (upper; Eq.

2) and the overturning streamfunction (lower; Eq. 3), averaged over the last 6 months, in

ARGOlike. Contour intervals: 4 Sv and 1 Sv respectively (1 Sv = 106 m3 s−1).

Figure 11 : Signal (solid lines) and residual (solid lines with circles) for the advective

heat flux (Θ; Eq. 4), its overturning component (Θov; Eq. 5), and its gyre component

(Θgy; Eq. 6), averaged over the last 6 months, in ARGOlike. Also shown: residual in exp.

moreFLOATS (dashed lines). Unit: PW (1 PW = 1015 W).
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Table 1

Reserved terms throughout the discussion of experiments.

Signal = first guess - reference

Residual = optimal - reference

Correction = optimal - first guess

Table 2

Summary of the observing systems’ characteristics. N/S is a noise to signal ratio, defined in

Section 2.4. All experiments marked with (*) start from the same model solution.

Experiment number of profilers array type N/S for T N/S for S

ARGOlike (*) 300 drifting 1.4 1.5

moreNOISE (*) 300 drifting 2.5 2.5

lessNOISE (*) 300 drifting 0.25 0.25

moreFLOATS (*) 900 drifting 1.4 1.5

fewerFLOATS (*) 100 drifting 1.4 1.5

RANDOM (*) 300 (see Section 4) 1.4 1.5

EULERIAN (*) 300 moored 1.4 1.5

signal1 300 drifting 1.7 1.8

signal2 300 drifting 1.5 1.6

signal3 300 drifting 1.9 2.0
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Table 3

Mean squared residual (errors after assimilation) expressed as a percentage of mean squared

signal (errors before assimilation), for the last 6 months, for the observed model levels (between

0 and 2450 m). Mean squared residual and signal are first computed at each vertical level and

for each month. Next, they are averaged over the set of months. Then the ratio of mean squared

residual to mean squared signal is computed. Finally, the result is averaged over the set of model

levels.

Experiment T S U V

ARGOlike 26 35 30 36

moreNOISE 33 42 38 42

lessNOISE 13 21 14 20

moreFLOATS 10 15 13 16

fewerFLOATS 42 56 47 51

RANDOM 13 17 18 18

EULERIAN 22 31 27 30

Table 4

Same as Table 3 but for different realizations of the signal.

Experiment T S U V

ARGOlike 26 35 30 36

moreNOISE 33 42 38 42

signal1 34 39 35 39

signal2 20 30 30 38

signal3 32 33 35 45

22



Fig. 1. Error profiles associated with the data (solid lines; σo(k)) and the initial conditions

(dashed lines; σb(k)) in ARGOlike.
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Fig. 2. Model coast line (black), model 2000 m isobath (grey), and simulated profile positions

(crosses) over the whole year in ARGOlike.
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Fig. 3. Distance to observations (jo and jperfect, as defined in Section 2.1) as a function of time,

in ARGOlike. Left: average of jres
o (solid lines), and jsig

o (dashed lines); for T (thick lines), and

S (thin lines). Right: same but for jperfect instead of jo.
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Fig. 4. Mean squared signal (upper panels) and residual (lower panels), for T (left) and S (right),

as a function of time and depth in ARGOlike. Values at one model level are normalized by the

time averaged mean squared signal at this level. Signal and residual are errors before and after

assimilation respectively (see Section 2.3). The vertical coordinate is stretched to emphasize the

upper 500 m.
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Fig. 5. Signal (A) and residual (B) at 847.5 m, for T (in ◦C), averaged over the last 6 months,

in ARGOlike. Lower panels: residual in fewerFLOATS (C) and moreFLOATS (D). Lower left

panel only: profile positions (crosses) over the whole year, in fewerFLOATS.
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Fig. 6. Signal (A) and residual (B) at 40.3◦W and 160 m, for T (in ◦C), as a function of time and

latitude, in ARGOlike. Lower panels: opposite of the correction resulting from the assimilation,

for T (C) and S (D).
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Fig. 7. Same as Figure 4 but for the zonal velocity (U; left) and for the meridional velocity (V;

right).
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Fig. 8. Signal (A) and residual (B) for the velocity field at 847.5 m, averaged over the last 6

months, in ARGOlike. Velocity anomalies weaker than 0.5 cm s−1 are masked; those larger than

2 cm s−1 have thicker arrows.
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Fig. 9. Signal (left) and residual (right) for the sea surface height, averaged over the last 6

months, in ARGOlike. Contour interval: 0.04 m. Negative and positive values are shown as grey

and black contours respectively.
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Fig. 10. Signal (left) and residual (right) for the barotropic streamfunction (upper; Eq. 2) and

the overturning streamfunction (lower; Eq. 3), averaged over the last 6 months, in ARGOlike.

Contour intervals: 4 Sv and 1 Sv respectively (1 Sv = 106 m3 s−1).
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Fig. 11. Signal (solid lines) and residual (solid lines with circles) for the advective heat flux (Θ;

Eq. 4), its overturning component (Θov; Eq. 5), and its gyre component (Θgy; Eq. 6), averaged

over the last 6 months, in ARGOlike. Also shown: residual in exp. moreFLOATS (dashed lines).

Unit: PW (1 PW = 1015 W).
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