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Abstract:  
 
The surface plasmon resonance phenomenon has been studied in a chalcogenide glass-based optical 
system. IR transmission properties of these materials combined to their high refractive indices lead to 
advantageous properties for sensing. In this study, numerical simulations have been carried out to 
investigate the potentialities of sulfide glass from the GeGaSbS system as a coupling prism material. 
Then, an angular modulation SPR biosensor has been set up in the Kretschmann–Raether 
arrangement. Experimental data are consistent with numerical calculation and the detection limit of the 
sensor is 3 × 10−5 RIU. These preliminary results are promising. Further investigations have to be 
carried out to confirm the great potentialities of those materials for SPR-based biosensor.  
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1. Introduction 
 
The surface plasmon resonance (SPR) phenomenon is widely used in the field of optical sensors to 
probe refractive index variations of chemical or biological samples [1-2]. It arises from the interaction 
of the incident light with plasmonic waves propagating at a metal/dielectric interface. Usually, the light 
coupling is carried out through a high-refractive-index substrate in the Kretschmann-Raether 
arrangement [3]. 
Up to now, most of SPR sensors are made from silica-based glass, which restricts SPR sensors to 
operate in the visible light range. Plasmon parameters of excitation in the IR range are very different 
and lead to advantageous properties for sensing [4, 5]. The sensitivity of the SPR-based sensors for 
IR wavelengths is greatly improved: the probe depth of the plasmons is increased to more than the 
micron [6] and reflectivity curves are narrower, leading to a more precise SPR-dip position 
determination [7]. 
SPR excitation with IR light involves the use of advanced materials transmitting in the IR range. Silicon 
prism based systems have demonstrated interesting capabilities [4, 5]. For the first time, we report 
here the development of a SPR sensor taking advantages of chalcogenide glass [8] as coupling 
material.  
The composition selected for this study was Ge20Ga5Sb10S65, called 2S2G [9, 10]. It presents a large 
transparency region from 600 nm in the visible to 11 µm in the mid-IR. It exhibits high refractive index 
and a good fiber drawing capability thanks to its stability against crystallisation [9, 10]. 
Potentialities of 2S2G for SPR-sensing have been investigated by both numerical calculation using 
Fresnel coefficients and experimental studies. 

 

2. Materials and methods 
 
Simulations: 
 
Prior to any experiment, computation studies were carried out to establish the conditions of plasmon 
excitation in the IR range with a 2S2G prism and to optimize the detection limit of an angular 
modulation SPR biosensor in the Kretschmann-Raether configuration. 
The Rouard method [11] was used to figure out the reflectivity of a stack made of 2S2G 
glass/ gold/ biomolecules/ water. For these simulations, the biomolecular layer was assumed to be 
homogeneous and was considered as a dielectric thin film of refractive index n=1.44 and whose 
thickness increased as biomolecules got fixed to the probes.  
Optical properties of gold were taken from data of Ordal et al [12] and those of water from Hale and 
Query [13]. The dispersion relation of 2S2G glass was figured out from the following relation (2) [14]: 
n2S2G(λ)=2.24047+2.693.10-2λ-2+8.08.10-3λ-4 (1) 
with n the 2S2G refractive index and λ the wavelength. 
The optimization of the working wavelength and the gold thickness required the definition of a merit 
function, called intrinsic sensitivity (Si), similarly to [6]. It was defined by the change of the dip angular 
position (θSPR) with regard to the change of the biomolecule layer thickness (e), divided by the dip “full 
width at half minimum” (δθSPR): 
 

minθ=θSPR
i e∂

θ∂
δθ

1=S  (2) 

 
Let δθmin be the smallest measurable dip angular shift and δemin the smallest detectable thickness 
change. δθmin can be approximated by: 
 

min
θ=θ

min eδe∂
θ∂¡Öδθ

min

 (3) 

 
The smallest dip shift that can be measured is of the order of magnitude δθSPR. Assimilating δθmin to 
δθSPR leads to: 

min
i eδ

1=S (4) 
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 Maximising Si then yielded to optimizing the detection limit. 
 

Sulphide-based glass prism 
 
The glass was prepared from elemental high-purity starting products: gallium and antimony, 
germanium and sulfur are 5N products from Cerac, Umicore and Strem, respectively. The elements 
were weighed in a dry glove box, batched into a silica ampoule and pumped under vacuum to 10-4 
Torr for few hours. After sealing, the ampoule was introduced in a rocking furnace and heated to 900 
°C at 1°C min-1 heating rate. The ampoule was maintained at that temperature for 12 hours. Then, the 
melt was quenched to room temperature by immersing the ampoule in water and the glass was 
annealed at the glass transition temperature Tg. 
The 2S2G glass rod of 16-mm diameter was cut and polished to the diameter in order to obtain a 
hemi-cylindrical prism of 10-mm long. Such a shape was chosen to minimise the aberrations of a 
beam converging onto hemi-cylinder axis. 
 
Gold thin film deposition 
 
The sensing surface is a critical zone for the sensing system. The metal must have conduction band 
electrons able to be excited by the incoming light. Among metal candidates, gold is one of the more 
convenient because of its small dielectric constant, which results in a sharp and intense SPR signal. 
Chemical durability and resistance to oxidation are well-known qualities of this noble metal, sufficiently 
reactive to allow biological or chemical binding. 
A 50 nm-gold layer supporting the SPR effect was deposited on the sulphide glass shaped in hemi-
cylindrical prism by d.c. sputtering from a metallic gold target. This deposition method has been 
chosen because it is well adapted to metal deposition. Moreover this method is expected to favour 
deposit adhesion thanks to the kinetic energy of the sputtered species that is higher than the one of 
species emitted in standard evaporation, which is also routinely used for metallic deposition. 
Nevertheless, a preliminary study was required in order to determine the influence of deposition 
parameters, in particular applied voltage, argon pressure and target-substrate distance in order to 
precisely control the deposition rate. Indeed, optical properties of the sensor system needed to deposit 
a very thin metal layer. The optimization of deposition conditions was performed on standard oxide 
glass plates, before to deposit on 2S2G planar substrates and finally on 2S2G prisms. Then gold thin 
films were deposited at room temperature, under an argon pressure of 7 .10-2 mbar, with an applied 
voltage of -1.2 kV keeping the target-substrate distance at 25 mm. In these conditions, deposition rate 
was 4 nm/min. The optimized conditions of deposition have finally been successfully adapted to the 
hemi cylindrical prism, using a mask, in order to deposit the gold layer on the planar face of the prism 
only. In contrast with silica-based glasses, such as BK7 or SF11, no adhesion sub-layer, like 
chromium layer for instance, was required on 2S2G substrates. The better adherence of gold on 2S2G 
is likely due to the creation of Au-S bonds between sulphur atoms of the 2S2G sulphide glass and 
gold. The microstructure and thickness of the gold layer were checked by scanning electron 
microscopy. 
 
Experimental set-up 
 
A SPR system has been set up in the Kretschmann-Raether arrangement (Fig. 1 and 2). The 
configuration is based on angular interrogation by a convergent beam. The gold-coated 2S2G prism is 
attached to a PEEK flow cell and placed on a rotary stage (Newport M-RS65) to adjust the angular 
prism position. The wavelength of the incident light is selected by passing an incoherent white light 
tungsten-halogen (Lot Oriel LSB 117) through a 1-meter-focal-length-monochromator (Jobin Yvon, 
HR1000). Then the monochromatic light is collimated and passed through a NIR polariser (Thorlabs) 
to select linear p-polarisation. A long-pass filter (Melles Griot) is used to avoid order superposition. The 
reflected light (from 750 nm to 2.2 µm) is visualised on a NIR vidicon camera (Hamamatsu C2741) 
connected to a 12-bit frame grabber (Imasys, PCvision+). A sharp decrease or dip of intensity on the 
reflected light beam can be observed for specific incident angles, highlighting the SPR phenomenon 
(Fig. 3). 
The reflectivity is deduced by averaging the image rows. The correspondence between the pixel 
number and the angular position was figured out by calibrating the rotary stage with the dip shift on the 
camera. 
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3. Results and discussion 
 
Simulations: 
 
Typical calculated resonance curves in a three-layer system (2S2G prism/ gold/ water) for two different 
wavelengths are shown on figure 3. The dip full width at half-minimum (fwhm) is 1° at 0.7 µm while at 
1.5 µm the fwhm is 0.074°. Increasing wavelengths leads to narrower reflectivity curves. 
As shown in figure 3, the resonance phenomenon is achieved at different angles for different 
wavelengths. Calculated values of angular dip position θSPR for air, water and ethanol media depend 
on the wavelength. They respectively vary from 26.4° to 26.5°, 36.5° to 37.4° and 37.4° to 38.5° with a 
stabilisation of these values for increasing wavelengths.  
The angular dip position θSPR is also quite different according to the refractive index of the prism 
materials, np. Figure 4 presents calculated angular reflectivity curves at 0.9 µm in a three-layer system 
(prism/ gold/ water) for two different prism materials, 2S2G (n2S2G= 2.286 at λ = 0.9 µm) and BK7 
(nBK7= 1.509 at λ= 0.9 µm) glasses. θSPR is 36.7° for 2S2G glass while θSPR is 64.9° for BK7 at 0.9 µm 
in pure water, traducing a decrease of θSPR with an increase of np. High-refractive index materials lead 
to low-incidence angles, which reduce the image aberration and hence increase spatial resolution [6]. 
Moreover, the large refractive index of the 2S2G glass enhances the narrowness of the reflectivity 
curve. The width of the resonance curve (fwhm) is 0.95° for the BK7 glass while the reflectivity curve 
for the 2S2G glass is sharper with a fwhm of 0.32°. 
Figure 5 shows wavelength dependence of the calculated intrinsic sensibility with a gold thin film 
thickness of 45 nm, 50 nm and 55 nm. First, it should be noticed that the intrinsic sensitivity increases 
with the gold thickness. However, the dip contrast then decreases. 50 nm seems to be a good 
compromise. Figure 5 also shows that the system exhibits a maximum intrinsic sensitivity in the NIR. 
In fact, the longer the wavelength, the less mobile but the sharper the dip is. Taking into account the 
strong absorption of water between 2 µm and 3 µm, the optimum working wavelength is about 1.5 µm.  
 
Experimental: 
 
Figure 6 presents experimental reflectivity graphs in the 2S2G prism/ gold/ ethanol configuration for 
different wavelengths. For increasing wavelengths, a shift of the angular position is observed, about 
0.2° for a wavelength shift of 580 nm. This observation was predicted by numerical simulations and is 
close to the theoretical value (0.15°). At 1.2 µm, the fwhm is 0.32° and decreases to 0.19° at 1.78 µm. 
Calculated fwhm values are smaller, for instance 0.12° at 1.2 µm. However, the decrease of the fwhm 
is consistent with numerical simulations and with data obtained by Patskovsky et al in silicon and in 
BK7 [5]. It reveals a higher field enhancement close to the surface for higher wavelengths [4] and a 
larger probe depth, which can be used for remote sensing [5]. 
The SPR phenomenon is achieved experimentally at different angles of incidence for air, water and 
ethanol, respectively 22.8°, 34.4° and 35.4° at 680 nm. These results are slightly smaller than those 
obtained by numerical simulations. Theoretical SPR angles of 26.5°, 37.7° and 38.9° at 680 nm for air, 
water and ethanol respectively are obtained. The graph on figure 7 represents theoretical and 
experimental reflectivity with regard to the incident angle for λ=680nm and water as sensing medium. 
The discrepancy between these two sets of data can be explained by real non-ideal conditions such 
as gold surface roughness and nonuniformity or image aberration. 
Aqueous solutions of ethanol have been used to quantify the sensor resolution. From reflectivity 
curves, angular dip positions have been measured for various ethanol dilutions in distilled water, from 
0% to 96 % ethanol. The graph on figure 8 shows the dip shift with regard to the concentration of 
ethanol. For concentration less than about 40%, it linearly increases. Then it reaches a maximum and 
finally slightly decreases for high concentrations. That behaviour is consistent with the change of 
refractive index of ethanol solution with the concentration [15,16]. 
During the experiment, ethanol was detected in pure water at a concentration as low as 0.05%. At 
λ=589 nm, the refractive index difference between pure water and a 5% ethanol solution is about 
3x10-3 RIU [16]. Sarov et al [17] demonstrated that the dispersion of ethanol and pure water are similar 
in the near infrared range. Then, the detection limit of our system can be estimated to 3x10-5 RIU, 
which is comparable to those obtained with other systems [18, 19]. 
The detection limit of the sensor could be improved by the use of a more powerful source. In fact, as it 
can be noticed on figure 2, the further the camera from the lens, the larger but the dimmer the image 
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is. A more powerful source would enable us to work with a larger and more contrasted image. It would 
then be possible to detect smaller dip shift. 

 

4. Conclusion 
 
A new SPR sensor has been developed using a chalcogenide glass as a coupling prism material in 
the Kretschmann-Raether arrangement. It has been demonstrated that IR transmission properties of 
chalcogenide glass combined to their high refractive indices led to narrower reflectivity curves and a 
more precise SPR-dip position determination. Experimental data are consistent with theoretical 
calculations and a sensor detection limit of 3x10-5 RIU was demonstrated. Chalcogenide glasses could 
then be great candidates for the development of SPR sensor in infrared light thanks to their optical 
properties and to their large type of coupling configuration possibilities, like prism, fibre and planar 
waveguide coupling, allowing the development of miniaturised SPR-sensors. 
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Figure 1:  
Schematic illustration of surface plasmon resonance in Kreschtmann-Raether arrangement 
(prism/ gold/ biomolecular layer/ sensing medium). 
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Figure 2:   
(a) Experimental set-up, on the left 
(b) Dip of intensity on the reflected p-polarised light beam, imaged on the near-IR camera, on the right. 
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Figure 3:  
Calculated reflectivity curves for two wavelengths, 0.7 µm and 1.5 µm, in the case of a three-layer 
system (2S2G prism/ gold/ water). 
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Figure 4:  
Calculated reflectivity curves in a three-layer system (prism/ gold/ water) for two different prism 
materials, 2S2G and BK7 glass, at 0.9µm.  
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Figure 5: 
Wavelength dependence of intrinsic sensibility in a four-layer system (2S2G 
glass/ gold/ protein layer/ water). 
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Figure 6:  
Experimental reflectivity curves in the 2S2G prism/ gold/ ethanol configuration for different 
wavelengths. 
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Figure 7:  
Experimental and theoretical reflectivity curves in the 2S2G prism/ gold/ water configuration at 680 nm. 
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Figure 8: 
Dip shift with regard to ethanol concentration, at 1.6 µm. 
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