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INTRODUCTION

Understanding the fluctuations in population abun-
dance is a central question in ecology. For exploited
marine populations, understanding the factors that
control these variations is of particular importance to
management. The search for environmental controls of
recruitment has been an important component of
fisheries research at least since the work of Helland-
Hansen & Nansen (1909) and Hjort (1914), and has led

to many hypotheses still discussed in the fish ecology
literature, i.e. match–mismatch (Cushing 1969, 1990),
stability window (Lasker 1978), member vagrant (Sin-
clair 1988), optimal environmental window (Cury &
Roy 1989), fundamental triad (Bakun 1996) and others.

In most marine systems and for many fish popula-
tions, relationships between environment and recruit-
ment have been proposed, but they have often been
contested or have failed when retested with new and
longer sets of observations (see Myers 1998). Two gen-
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eralisations emerge: (1) environmental control on
recruitment is more obvious and robust at the edge of
the biogeographical limits of a species (Myers 1998);
and (2) when relationships have failed, it has often
been argued that some new controls on recruitment
were at play but were not considered.

Although this issue has been a major area of
research for a century, and despite the number of
available theories and hypotheses proposed to relate
interannual fluctuations in fish recruitment to varia-
tions in environmental conditions, it appears that envi-
ronmental controls on recruitment are likely to exist
but the factors at play are difficult to identify, numer-
ous and their respective importance may change with
time. In most cases only a small subset of environmen-
tal controls (or proxies for the controls) are accessible
to measurement or are actually measured, and these
factors interact in ways that are complex and not
always well understood. The multiplicity and complex-
ity of the environmental controls limit our ability to
adequately understand and model environment–
recruitment relationships.

The issue of multiple interacting factors controlling
biological processes is not new in ecology. During the
first part of the 19th century, agricultural work on the
nutrition of terrestrial plants already recognised the
interaction between several minerals and led to the
definition of the Sprengel-Liebig Law of the Minimum
(van der Ploeg et al. 1999), which states that yield is
proportional to the amount of the most limiting nutri-
ent. By analogy ⎯and despite the fact that the pro-
cesses involved are different ⎯survival of early stages
of fish (eggs and larvae) is influenced by multiple fac-
tors, and it can be assumed that recruitment is ulti-
mately controlled by the most limiting factor, i.e. the
one than generates the greatest mortality (or the low-
est survival), a view that is close to that of the critical
period hypothesis proposed by Hjort (1914).

Recently, an increasing body of literature has been
devoted to regression models known as quantile re-
gression models (see Cade et al. 1999). Such models
can be easily applied to the specific case of limiting
factors in an ecological context and therefore appear
as good candidates for modelling environment–
recruitment relationships.

In the present study, we reanalysed environment–
recruitment relationships that have been described for
4 fish stocks, using quantile regression models. We
adapted the statistical test to the specific case of auto-
correlated time series a common feature of environ-
ment time series in the ocean. We then applied the
model to the 4 case studies for which environment–
recruitment relationships have been described and
compared the results of quantile regression models to
standard linear regression.

METHODS

Background to the quantile regression model. Most
regression models are designed to provide estimates of
the mean value of the distribution (of the biological
response) as a function of known factors (environmen-
tal conditions). The residual variance (i.e. not ex-
plained by the regression model) is generally consid-
ered as white noise (i.e. unstructured) and is often
assumed to follow a normal distribution. Least-squares
regression, which provides an estimation of the mean,
explicitly includes what are thought to be the control-
ling factors but also implicitly incorporates unmea-
sured variables which are contained in the error term.
In the case of environment–recruitment relationships,
numerous environmental factors may control recruit-
ment but one can never be sure that all these factors
are measured and included in the statistical models
developed. In addition, the nature of environmental
factors which can limit recruitment may fluctuate from
year to year.

Standard least-squares regression is commonly used
to model the conditional mean of a response variable
(e.g. recruitment), but alternative regression tech-
niques exist which can be used to model various parts
of the distribution (Mosteller & Tuckey 1977). The
regression technique that is used here is known as
quantile regression and was developed by Koenker &
Basset (1978). It consists of adjusting regressions on
various parts of the distribution which correspond to
various quantiles. The regression method is distribu-
tion independent and regression parameters are
obtained by minimising a function of the absolute devi-
ation between observations y and regression estimates
ŷ weighted by the quantile τ. The function of absolute
deviations to be minimised is expressed as follows:

(1)

where y ’s are individual observations and ŷτ’s are the
corresponding estimations from the regression model
for quantile τ. By modelling the upper quantiles (τ >
0.8) it is possible to describe the recruitment potential
(i.e. maximum) rather than the mean. Although the
upper regression quantiles do not describe the exact
upper limit of the distribution function, they can pro-
vide an approximation which is consistent with the
ecological concept of limiting factor.

The results of quantile regression for the full range of
quantiles [0,1] allows for the identification of potential
interactions between measured and unmeasured
factors (Cade & Noon 2003). Two different response
distributions can be observed: (1) the homogeneous
response, in which measured and unmeasured factors
are simply additive and therefore not interacting (in

I y y y yy y y yτ τ ττ τ
τ τ
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this case, the slopes of the regressions for different
quantiles are parallel to each other); (2) the hetero-
geneous response, in which interaction between mea-
sured and unmeasured factors is effective (Cade et al.
2005), as is the case in the Sprengel-Liebig Law of the
Minimum (the slopes of the regressions vary between
quantiles and are generally steeper for higher quan-
tiles). A controlling factor can be identified as limiting
when the slope tends to be steeper for upper quantiles
and when it is significantly different from zero for high
quantiles.

We used linear quantile regressions for quantiles
ranging from 0.10 to 0.90. All quantile fits were per-
formed using quantreg, a library available for quantile
regression in R (Ihaka & Gentleman 1996, R Develop-
ment Core Team 2004, Koenker 2005).

Testing the significance of quantile regression for
autocorrelated time series. Comparison of time series
using correlation analysis is often biased by autocorre-
lation in the data. Serial autocorrelation arises when
there is a degree of persistence in the data series so
that observations that are close in time are more simi-
lar than observations that are further apart. This
results in the assumption of independence between
data being violated, which in turn artificially inflates
the apparent number of degrees of freedom. Correla-
tion tests performed without accounting for positive
autocorrelation (either temporal or spatial) are less
conservative than they should be and tend to be biased
towards higher rates of rejection of the null hypothesis
(i.e. declare the correlation to be significant) (Legendre
& Legendre 1998). A number of solutions have been
proposed to correct for the effects of autocorrelation.
These often consist of 2 main types of strategies:
(1) adjustment of the degrees of freedom in the statisti-
cal tests to compensate for the autocorrelation, or
(2) removal of the autocorrelation by prewhitening of
the data series prior to statistical testing (Thompson &
Page 1989, Pyper & Peterman 1998).

Although these solutions can be well suited for cor-
relation analysis, they are not always transferable
when testing the significance of regression coefficients
for which the theoretical distribution under the null
hypothesis are unknown. This is also true within a
quantile regression context. The approach chosen here
is a procedure which is used to construct the empirical
distributions of regression coefficients under the null
hypothesis (H0). The statistical significance of the
regression can then be calculated by comparing the
observed regression coefficient to the empirical distri-
bution under H0.

A central issue is the definition of H0 and H1 (the
alternative hypothesis) and the ability to construct the
empirical distribution of the regression coefficient
under H0. The hypotheses are defined here as follows:

(H0) the observed relationship between recruitment
and the environment is not different from the relation-
ship between recruitment and a randomly generated
environmental time series which would have similar
properties  (identical number of observations, identical
statistical distribution and identical temporal structure)
as the observed one; (H1) the observed relationship
between recruitment and environment is different
from the relationship between recruitment and a ran-
domly generated environmental time series which
would have similar properties as the observed one.
Any such series is called a surrogate time series. The
statistical test is performed by calculating the empirical
distribution of the regression coefficient between
recruitment and environment under H0 and then test-
ing whether the observed regression belongs to this
empirical distribution (H0 not rejected) or not (H0

rejected) at a given probability level. The empirical
distribution of the regression coefficient under H0 is
obtained by regressing the recruitment time series
against a large number of surrogates of the environ-
mental time series (here 10 000).

The surrogate model corresponds to the generation
of ‘reddened noise’ in which linear properties of the
time series are fully described by its autocorrelation
function or equivalently by its power spectrum. Surro-
gate data are constructed by adding random phases in
[0,2π] to the components of the Fourier transform of
the observed time series, and then computing its
inverse Fourier transform. This procedure is known as
phase randomization (Theiler et al. 1992, Schreiber &
Schmitz 2000). The resulting surrogates are Gaussian
and have the same mean, variance and power spec-
trum as the original data. An example of surrogate
time series for the sea surface temperature measured
at San Diego is presented in Fig. 1. An application of
surrogate time-series analysis in marine ecology can
be found in Royer & Fromentin (2006).

RESULTS

Analysis of individual stocks

For each stock, we analysed the relationship between
an environmental index (temperature, upwelling or
river runoff) and recruitment. First, we computed a
simple linear regression and tested for the significance
of the relationship without accounting for serial auto-
correlation. Second, we tested the significance of the
relationship with accounting for autocorrelation in the
environmental data series by surrogate testing. Third,
we performed linear quantile regression from τ = 0.10
to 0.90 and tested the significance of each quantile
model while accounting for serial autocorrelation.
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Northeast Arctic cod

From 1945 to present, the spawning biomass of
Northeast Arctic cod Gadus morhua has fluctuated
between 100 000 and 1 200 000 t, mostly as a result of
variations in recruitment levels. The influence of tem-
perature on the recruitment of Northeast Arctic cod
has been largely described. Recent work by Ottersen
et al. (2006, p. 230) summarises the current state of
knowledge as follows: ‘sea temperature became
established as an important influence on recruitment,
at least in the sense that cold years never provide a
strong year class […]. The explanatory mechanisms
involve inflow of warmer, prey-rich Atlantic water
masses from the south-west […]. During the later
decades a clear, positive temperature–recruitment
correlation has evolved, a link that earlier was weak
or non-existent […]’. This description typically falls in
a ‘limiting factor’ type model, with low temperature
limiting year-class strength of cod, and is therefore an
appropriate case study for application of the quantile
regression model.

Year-class strength of Northeast Arctic cod for the
years 1943 to 2002 was estimated by the number of
recruits to the stock at age 3 for the years 1946 to 2005
(ICES 2006, Table 3.27). Temperature data were taken
from Ottersen et al. (2006) and correspond to tempera-
ture measurements at the Kola section in the Barents
Sea from December through to March (Fig. 2) as in
Tereshchenko (1996). We consider temperature in the
year of birth of each annual cohort of cod.

The standard linear regression of recruitment
against temperature indicate a positive relationship
(slope = 252 × 106 ind. degree–1). When no correction is
applied for autocorrelation, the relationship appears
significant (p = 0.017). When autocorrelation is
accounted for by surrogate testing, the regression
slope remains significant (p = 0.032).

The slope of quantile regressions are positive and
similar throughout the range of quantile explored (min:
123 × 106 ind. degree–1; max: 318 × 106 ind. degree–1;
Fig. 2d). This suggests that unexplained variability in
recruitment may be due additional factors but that
these factors are not in interaction with temperature

216

Te
m

p
er

at
ur

e 
(°

C
)

1940 1960 1980 2000

15.5

16.5

17.5

18.5

15.5

16.5

17.5

18.5

15.5

16.5

17.5

18.5

1940 1960 1980 2000

Year

1940 1960 1980 2000

Fig. 1. Fourier transform surrogate time series of sea temperature data from Scripps Pier at San Diego (California). Grey panel
shows the original time series. The remaining 8 panels show examples of surrogates in which the mean, variance and 

autocorrelation function of the original time series have been preserved



Planque & Buffaz: Quantile regression for fish recruitment

(homogeneous rather than heterogeneous model,
sensu Cade & Noon 2003). However, it is noticeable
that high recruitment has never been observed at low
temperature levels (Fig. 2c), a feature that has been
described by Ottersen et al. (2006) but which is not
well captured by the upper quantile regression slopes.
The application of the regression models indicates that
the relationship between cod recruitment and temper-
ature is rather weak, whether it is analysed using con-
ventional least-squares regression (p = 0.032) or quan-
tile regression (not significant for upper quantiles), and
that most of the variability in recruitment is explained
by factors other than temperature recorded at the Kola
section.

Atlanto-Scandian herring

During the past century, the spawning biomass of
Atlanto-Scandian herring Clupea harengus has fluctu-
ated between nearly 0 and 16 million t. Long-term fluc-
tuations in herring biomass have resulted from
variations in recruitment levels, and it has been
hypothesised that survival of herring larvae is highly
dependent upon the inflow of Atlantic water masses

into the northeast Atlantic region (Toresen & Østvedt
2000). This inflow is reflected in the temperature
measurements realised at the Kola meridian (Barents
Sea) during the winter months. The close relationship
between interannual variations in temperature mea-
sured at the Kola section and year-class strength of
Atlanto-Scandian herring has been reported by Tore-
sen & Østvedt (2000) and reanalysed by Megrey et al.
(2005). As for Northeast Arctic cod, the recruitment of
Atlanto-Scandian herring seems to be limited by low
temperatures and therefore constitute a good case
study for quantile regression analysis.

The analysis was performed using biological and
environmental data as in Megrey et al. (2005). Time
series of recruitment at age 3 from 1908 to 1998 were
taken from Toresen & Østvedt (2000) and the tempera-
ture recorded at the Kola section were averaged over
the months January to April, from 1905 to 1995
(Tereshchenko 1996) (Fig. 3).

Our analysis confirms the positive relationship
between Kola temperature and recruitment (slope =
90 × 109 ind. degree–1). When no correction for autocor-
relation is applied, the relationship is highly significant
(p = 1.44 × 10–5). This remains true when autocorrela-
tion is accounted for (p = 4 × 10–4).
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Contrary to the Northeast Arctic cod example, there
are great variations in the slope of the quantile regres-
sion as quantiles increase (Fig. 3c). Slope values for
lower quantiles are close to zero and increase steadily
towards their highest values for the upper quantiles
(150 × 109 ind. degree–1 for τ = 0.90). Despite an
increase in the dispersion of slope values under the
null hypothesis as τ increases, the relationship be-
tween temperature and herring recruitment is always
positive and remains significant (p < 0.05) for all τ >
0.30. These results suggest that temperature is acting
as a limiting factor and that the underlying model is a
heterogeneous model (i.e. other factors interact with
temperature).

Bay of Biscay anchovy

The population of anchovy Engraulis encrasicolus in
the Bay of Biscay is known to fluctuate greatly as a
result of interannual variations in year-class strength,
leading to harvest fluctuating historically between
80 000 and <3000 t. Individual fish recruit at age 1 and
it is believed that interannual variations in recruitment
levels are driven by environmental factors. Predicting
recruitment of the Bay of Biscay anchovy has been a
major concern since the fisheries mainly catch 1 yr old

individuals (which dominate the population in number
and biomass) before they can be assessed by scientific
surveys. Upwelling intensity in spring and wind-
induced stratification breakdown have been identified
as the major predictors for year-class strength (Borja et
al. 1998, Allain et al. 2001). Other possible factors
related to the Gironde river plume extent, down-
welling and stratification have been explored, but pre-
viously published results did not identify these factors
as significant controls of recruitment variability. 

In the present study, we used quantile regressions to
reanalyse the relationship between anchovy recruit-
ment and upwelling intensity and retest the relation-
ship between recruitment and the runoff from the
Gironde estuary, since interannual variations in the
dynamics of hydrological structures over the Bay of
Biscay in spring are greatly influenced by the river
runoff during the preceding months (Planque et al.
2004).

The population abundance and biomass has been
regularly assessed since 1986 and anchovy recruit-
ment data for the period 1987 to 2005 are taken from
the assessment working group report (ICES 2005). We
used the upwelling index which is currently provided
to the assessment working group as an indication of
environmental conditions for recruitment. The index
was developed by Allain et al. (2001) and is calculated
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as the sum of the weekly positive vertical transport
velocity (in m s–1) along the coast of Les Landes
(from the coast to a depth of 50 m), simulated by a 3D
hydrodynamic model (Lazure & Jégou 1998). Weekly
means were summed from March to July to obtain an
annual index (Fig. 4a). The Gironde river index
(Fig. 5a) is calculated as total runoff (in m3 s–1) over the
months February to April, as this period precedes the
spawning season (Motos et al. 1996, Planque et al.
2006).

As expected on the basis of previously published
results, there is a positive relationship between
upwelling intensity and anchovy recruitment (slope =
165 × 106 ind. unit–1). However, when uptated from
previously published results, the regression is no
longer significant (p = 0.097). When autocorrelation is
accounted for the relationship is significant at p =
0.0361.

In the quantile regression models, the slope varies
with τ but is significant neither at low nor high τ
(Fig. 4d) so that upwelling cannot be seen as a limiting
factor to recruitment but simply as a weakly correlated
factor. The relationship seems to be driven only by
years 1991 and 1997 which showed simultaneously
high upwelling and high recruitment.

The linear regression between Gironde runoff and
recruitment is negative (slope = –5.840 × 106 ind.
unit–1) but is not significant (p = 0.195 if autocorrelation
is not accounted for and p = 0.144 if it is).

In the quantile regression models, the slope is almost
always negative and decreases with increasing quan-
tiles (Fig. 5d). For high quantiles the slope is steepest
and significant (p < 0.05). These variations in slope
value as a function of τ suggest that river runoff is a
limiting factor of Bay of Biscay anchovy recruitment
with high runoff never associated with high recruit-
ment. This factor is interacting with additional unmea-
sured factor(s) (heterogeneous model).

Pacific sardine

The Pacific sardine Sardinops sagax fishery of the
west coast of North America reached historical land-
ings of up to 720 000 t with a biomass estimated at
3.5 million t in 1932. The decline which followed
brought the stock biomass down to less than 10 000 t
and the stock began to recover in the early 1980s
(Jacobson & MacCall 1995). It is currently estimated to

be around 1 million t (Pacific Fishery Management
Council 2006). 

The relationship between temperature and Pacific
sardine has long been established and studied. Tem-
perature is thought to affect egg and larval stage dura-
tion (Butler et al. 1993) or zooplankton availability for
larvae (Murphy 1960). Low temperature may also be a
proxy for increased upwelling intensity, resulting in
advection of sardine larvae offshore where survival is
poor (Murphy 1960). In addition, low temperature has
been thought to shorten and delay sardine spawning
season (Marr 1960). Stock-recruitment models which
include temperature have been proposed and the rela-
tionship seems more evident when production
(expressed as recruitment over spawning stock bio-
mass) is considered, rather than recruitment alone
(Jacobson & MacCall 1995). 

The stock of Pacific sardine is one of the very rare
examples in which an environmental parameter (tem-
perature) is actually used in the assessment procedure
(Pacific Fishery Management Council 2005) to set the
recommended catch levels.

We did not consider recruitment, but recruitment
success as proposed in Jacobson & MacCall (1995).
Recruitment success of Pacific sardine was taken as
the number of age 2 recruits (in millions) over spawn-
ing biomass (in 1000 t) in their year of birth. Tempera-
ture data are averages of temperature recorded at
Scripps Pier (La Jolla, California) during the 3 seasons
preceding recruitment (at age 2), i.e. the period
extending from 1 yr before birth to 1 yr after birth of
the year class studied. The data are taken from Jacob-
son & MacCall (1995) for the period 1935 to 1961 and
from the SAFE reports (Pacific Fishery Management
Council 2005) for the period 1983 to 2002. Two impor-
tant features are noticeable for the eastern Pacific:
(1) the sardine time series was interrupted during the
period 1962 to 1982 when the stock collapsed and
(2) the temperature regime in recent years is warmer
than in the earlier period (Fig. 6a). We used the full
temperature time series (1935 to 2000) for the con-
struction of the environmental surrogates, but only
the periods prior to 1962 and after 1982 were consid-
ered for comparison with sardine recruitment success
data.

The relationship between temperature and recruit-
ment success is positive and significant (p = 0.019).
However, when autocorrelation is accounted for, the
regression is no longer significant (p = 0.407). This is
explained by the very strong autocorrelation in the
temperature series (due to the calculation of tempera-
ture as a moving average over a 3 yr time period) asso-
ciated with a long-term increase in temperature
between the 2 periods considered. When these 2 ef-
fects are accounted for (by surrogate testing), the
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1It may seem counter-intuitive that p could decrease when
autocorrelation is accounted for. However, this result is
expected when the environmental time series is negatively
rather than positively autocorrelated. This appears to be the
case of the upwelling time series considered here
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power of the test dramatically falls resulting in the cor-
relation being no longer significant.

The slopes of quantile regressions vary with greater
slopes for high values of τ. This suggests that tempera-
ture is a limiting factor for sardine recruitment in the
Pacific with high recruitment not being observed when
temperatures are low. However, the slopes are not sig-
nificant at low or high τ so that the validity of this con-
clusion cannot be demonstrated and may simply be an
artifact of strong autocorrelation in the temperature
and recruitment time series.

DISCUSSION AND CONCLUSIONS

The influence of environment on recruitment is an
intrinsically complex problem in which controlling fac-
tors are difficult to identify, may be numerous, and
their relative contribution may vary with time. The use
of quantile regression models therefore appears
attractive since these models can specifically handle
cases where not all controlling factors are measured or
even known. The reanalysis of the relationships be-
tween recruitment and the environment for 4 well-
documented fish stocks provides an opportunity to
assess the benefits and the limitations in applying

quantile regression to environment–recruitment stud-
ies. In the present cases, we specifically concentrated
on the use of quantile regression as a tool to detect
factors which could limit fish recruitment.

Northeast Arctic cod and Atlanto-Scandian herring
provide 2 interesting examples to compare. Both
stocks are located in boreal waters and their recruit-
ment appears to be related to similar, or at least con-
nected, processes, since their respective recruitment is
linked to sea temperature measures at the Kola merid-
ian section. The 2 species compete for a common food
resource (capelin Mallotus villosus), but at distinct
stages in the life-cycle. Herring feed on larval capelin
whilst cod feed on adult individuals (Hamre 2003).
Adult cod also feed directly on adult herring (Johansen
2002). In such context the effect of temperature on the
recruitment of both species should be complicated by
trophic interactions which are not explicitly taken into
account in the temperature–recruitment models. Tem-
perature is therefore expected to act as a limiting fac-
tor and the relationship should be stronger for high
than for low quantiles. For cod, the results from the
quantile regressions suggest a homogenenous model
(i.e. no interactions with other factors) and the relation-
ship at high quantiles is not significant. This result is
counter-intuitive and in opposition to already pub-
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lished material (e.g. Ottersen et al. 2006). From Fig. 2c,
it seems that recruitment may be limited to low num-
bers when temperature is low; however, because of the
high scattering of the data, the relationship is not
detected as being significant by the quantile regres-
sion model. For herring, the results are consistent with
expectations under the hypothesis that temperature
acts as a limiting factor, with steeper and significant
slopes of the regressions for high quantiles.

The case of Bay of Biscay anchovy falls in the cate-
gory of relationships which fail after retesting when
additional years of data become available. The rela-
tionship between anchovy recruitment and upwelling
intensity in spring was established by several authors
based on data up to 1997 (Borja et al. 1998, Allain et al.
2001), but when recent data are included in the analy-
sis (1998 to 2004) the relationship no longer holds. On
the other hand, the extensive exploratory analysis
undertaken by Allain et al. (2001) did not retain river
runoff as an explanatory variable for fluctuation in the
recruitment of Bay of Biscay anchovy. A reanalysis of
the runoff–recruitment relationship confirms this
result, only if the modelling approach is restricted to
conventional regression (i.e. modelling of the mean).
When quantile regression models are applied, it
appears that the relationship is significant for the
upper quantiles (τ > 0.70) which is consistent with
runoff acting as a limiting factor to recruitment. The
application of the quantile regression model provides
new insight into the possible control of anchovy
recruitment in the Bay of Biscay and indicates that
strong river runoff during the spring period may limit
recruitment, a result that was not revealed by previous
analyses.

One important consideration (which remains valid
outside the context of quantile regression) was the
explicit incorporation of temporal autocorrelation in
the statistical analyses. Statistical bias induced by
autocorrelation is a common problem in environment–
recruitment studies but is often ignored. In 3 of the 4
cases, autocorrelation was not strong enough to alter
the outcome of the statistical tests performed with
standard least-squares regression. However, in the
case of the Pacific sardine, it appears that the strong
relationship between temperature and recruitment
success cannot be statistically established and the
question remains as to whether the relationship previ-
ously proposed by Jacobson & MacCall (1995) truly
reflects an underlying causal mechanism or simply
results from an artifactual bias in the original statistical
tests. The general increase in the slope of the tempera-
ture–recruitment relationships from low to high quan-
tiles indicates that temperature may nonetheless act as
a limiting factor for recruitment with high recruitment
success never observed when temperature is low.

These 4 case studies reveal that the results from
quantile regression are not straightforward extensions
of conventional regressions. For Northeast Arctic cod
and Pacific sardine, the original relationships with
temperature were not statistically significant in the
quantile model (for τ > 0.80). For Atlanto-Scandian her-
ring the relationship was confirmed and temperature
clearly appeared as a limiting factor to recruitment.
Finally, for the Bay of Biscay anchovy the published
relationship with upwelling was not confirmed but the
previously undetected relationship with river runoff
was established. In this specific case, it was only by
using a quantile model that the relationship could be
detected as statistically significant.

One interesting feature of quantile regression mod-
els is their ability to provide forecasts of recruitment
potential (i.e. maximum, rather than mean) based on
environmental conditions in the case when not all
environmental controls are measured. By doing so it
would be possible to provide advance warning for
situations in which recruitment potential is expected to
be low, as for example in the case of cold temperature
recorded at the Kola section and recruitment of
Atlanto-Scandian herring. Such advance warning may
be easily communicated to expert and advisory
working groups.
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