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INTRODUCTION

Following the work of Steele (1985), Pimm & Redfearn
(1988) and Lawton (1988), the time–frequency proper-
ties of a signal have become of major interest to ecolo-
gists (e.g. Petchey et al. 1997). In nature, non-linear and
non-stationary processes are the rule rather than the
exception (Stenseth et al. 1998, Hsieh et al. 2005), and
many classical tools for time series analysis, such as
Fourier analysis, require stationarity (or more often
second-order stationarity, Chatfield 2004). As many eco-

logical time series do not meet such requirements and as
growing evidence supports recognition of the impor-
tance of transient dynamics in ecological processes
(Hastings 2001, Cazelles et al. 2008), the spectral proper-
ties are not always well suited to analyse ecological time
series. Wavelet analysis (Daubechies 1992) is a time
scale and/or time–frequency decomposition of the signal
that  overcomes these problems and provides a powerful
tool for analysing non-stationary, aperiodic and noisy
signals often found in ecological time series (Torrence &
Compo 1998).
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Unlike the Fourier transform which decomposes the
time series into a sum of sine and cosine functions that
are not resolved in time, wavelet analysis uses a set of
functions locally defined in both time and frequency
domains. Wavelet analysis has spread into many fields
of research, such as signal processing, geophysics and
climatology, and is becoming more and more popular
within ecology (e.g. Bradshaw & Spies 1992, Grenfell
et al. 2001, Klvana et al. 2004, Keitt & Urban 2005, Keitt
& Fischer 2006, Ménard et al. 2007). Nonetheless,
wavelet analysis still displays 2 shortcomings with
respect to its use in ecology. First, the time and
frequency locations of the wavelet spectra are not
uncorrelated, and the statistical inference is therefore
difficult (Maraun & Kurths 2004). If standard boot-
strapping methods allow testing the wavelet spectra
with various re-sampling procedures, the underlying
null hypotheses are most often invalid for ecological
time series. For instance, in a number of cases, white
noise and red noise are not supported by the observa-
tions. Second, although wavelet analysis is a powerful
univariate or bivariate analysis, it remains limited to
analysing a large number of (shorter) time series; this
is, however, a situation commonly encountered by
ecologists.

We present 2 approaches to circumvent these limita-
tions and to extend the use of wavelets within the field
of ecology. First, we propose to test the wavelet spectra
using surrogates. The surrogates have been intro-
duced by Theiler et al. (1992) to determine the consis-
tency of experimental time series with various null
hypotheses of simple systems. Each surrogate is
consistent with a specific null hypothesis about the
underlying system (e.g. a random variable or an
autoregressive-like process) while retaining some of
the statistical features of the original time series (e.g.
mean and variance, power spectrum). Statistics are
then computed for the original data and a large set of
surrogates, thus allowing testing of the original data
against an empirical distribution consistent with the
null hypothesis (Royer & Fromentin 2006). We propose
a class of surrogates that models the underlying statis-
tical structure of the time series as 1/ƒ noise (Halley
1996). Such a model is rather convenient as it allows for
the ‘more time, more variation’ effect displayed by
many ecological time series (Lawton 1988, Inchausti &
Halley 2002, Vasseur & Yodzis 2004). This class of sur-
rogates is thus adapted to ecological time series, as it
is, in addition, designed to deal with short time series.

Second, understanding ecological phenomena using
time series often requires the analysis of large datasets.
Wavelet cross analyses allow investigation of the associ-
ation between 2 signals by extending the wavelet trans-
form to bivariate cases. The wavelet cross-spectrum and
the wavelet coherence are respectively used to quantify

the local covariance and correlation between 2 non-
stationary signals (e.g. Cazelles et al. 2008). However,
these methods only enable the study of associations be-
tween pairs of time series, and their use remains limited
in the case of large datasets. In addition, wavelet analy-
ses yield outputs in both time and frequency domains
and comparing wavelet spectra of numerous time series
quickly turns into a very complex issue. When dealing
with large datasets of time series, a classical and useful
approach in ecology is to use hierarchical clustering. A
matrix of dissimilarities between the time series is con-
structed, over which a clustering algorithm is applied.
The dissimilarity matrix can either be performed on the
raw properties of the time series or on their power spec-
trum, according to whether interest is more in the tempo-
ral or frequency aspects. We present here an approach
that combines both time and frequency domains, as the
matrix of dissimilarities used for clustering is constructed
from the comparison between pairs of wavelet spectra.
The wavelet spectra are compared using a procedure
based on the maximum covariance analysis (MCA), a
multivariate method that was originally used to compare
spatio-temporal fields (Bretherton et al. 1992). Both the
surrogate and the clustering approaches are applied in
this paper to several datasets of time series, either
simulated or real, to illustrate their applicability. Wavelet
analysis and the proposed approaches applied to ecolog-
ical questions illustrate how these methods can bring
fruitful insights to the study of coupling between envi-
ronmental and biological fluctuations.

MATERIALS AND METHODS

Wavelet analysis. The wavelet methodology is well
suited for signals whose frequencies change with time.
This is because this methodology enables description
of the variability of a time series in both time and
frequency domains, and it can  cope with aperiodic
components, noise and transients (Daubechies 1992,
Lau & Weng 1995, Torrence & Compo 1998). The
wavelet transform is based on the convolution product
between the time series and a mathematical function,
the so-called ‘daughter wavelet’. For a given set of pa-
rameters a (scale parameter related to frequency) and τ
(translation parameter related to time position), the
wavelet functions Ψ, are defined at time t as follows:

(1)

The wavelet transform, W, is then defined as a con-
volution integral of the time series with the wavelet
function:
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where * indicates complex conjugate. We used the
Morlet wavelet, a continuous and complex wavelet
adapted to wavelike signals, that allows extraction of
time-dependent amplitude and whose scales are
related to frequencies in a simple way (Mallat et al.
1998). The relative importance of frequencies for each
time step may then be represented in the time/fre-
quency plane that forms the wavelet power spectrum:

(3)

where S is the wavelet power spectrum and x is the
raw time series. The wavelet power spectrum, Sx(a, τ),
is plotted as a function of time and period in a 2-dimen-
sional graph. This representation, classically referred
to as a ‘contour plot’, displays contours as identical
power spectrum values, coded in the figures of this
paper by different colors. The wavelet transform acts
as a local filter that directly relates the magnitude of
the signal to time and thus enables one to track how
the frequency components change over time. There-
fore, wavelet analysis is particularly adapted to inves-
tigation of non-stationary and transient signals.

Statistical inference of the wavelet spectrum. Point-
wise testing: While analytical tests for significance can
be straightforwardly calculated in Fourier analysis, the
validity of such tests is greatly questioned in the case of
wavelet analysis (Maraun & Kurths 2004). The point-
wise testing approach, used by Torrence & Compo
(1998), relies on a parametric bootstrap to assess the
significance of areas. A reasonable null model of a
given form is first chosen (e.g. a white noise or a first
order autoregressive process, AR[1]), and a large num-
ber of random realisations is produced. Computing the
wavelet spectrum for each realisation generates an
empirical distribution for each point under the null
model hypothesis. The test is then performed by
comparing the values obtained for the original time
series with the empirical distributions. As for all Monte
Carlo approaches, the choice of the null model used to
test the wavelet spectrum is central. Making the
assumption of a white noise process is generally not
appropriate for ecological data, while an autoregres-
sive process (e.g. an AR[1]) can be an acceptable null
model in some cases, for both ecological and geo-
physical data (Steele 1985, Vasseur & Yodzis 2004).
However ecological time series display a large variety
of autocorrelation structures that neither a white noise,
nor an autoregressive process could consistently
describe (Arino & Pimm 1995, Cuddington & Yodzis
1999, Inchausti & Halley 2002, Halley & Stergiou
2005).

A traditional surrogate approach: The surrogates
can be best suited to test wavelet spectra, as they pro-
duce synthetic time series that share given statistical

properties with the original time series (or with a given
null model). This method has already been used for
testing purposes in ecology (e.g. nonlinearity in time
series, recurrence patterns, similarity of rhythms
between time series, phase analysis), as several null
models can be chosen according to the different algo-
rithms employed to create the surrogates (Schreiber &
Schmitz 2000, Cazelles & Stone 2003, Cazelles 2004,
Royer & Fromentin 2006). The surrogate approach has
also been used to test the wavelet spectrum using a
hidden Markov process as a null model (Klvana et al.
2004, Saitoh et al. 2006). Other null models are the
‘Type 0’ surrogates, equivalent to a white noise
assumption, whereas the null model referred to as
‘Type 1’ surrogates (or Fourier surrogates), preserves
the autocorrelation structure of the time series (or
equivalently its power-spectrum). The more complex
null model, ‘Type 2’ surrogates, preserves both the
Fourier spectrum and the original distribution of the
data (Schreiber & Schmitz 1996, Royer & Fromentin
2006). The Fourier Type 1 and Type 2 surrogates are
very interesting in an ecological perspective, as they
preserve the Fourier spectrum of the original time
series, allowing the oscillations that cannot be
produced by an autoregressive process to be tested.
However, these classes of surrogates require the
length of the time series to be much larger than the
dominant frequency in order to lead to satisfying
surrogates, a requirement often difficult to obtain for
ecological time series. They also present the disadvan-
tage of introducing spurious low-frequency effects due
to the phase randomization, but also spurious high-
frequency effects when the time series are short and
non-stationary (for more details see Schreiber &
Schmitz 1996).

Surrogates using the slope of the spectrum: We
proposed a class of surrogates, the ‘beta surrogates’,
that display a similar variance and autocorrelation
structure as the original time series and that form a less
constrained hypothesis than the Fourier and Type 2
surrogates. The beta surrogates display the same rela-
tive distribution of frequencies, i.e. the same slope of
the Fourier spectrum, as the original time series; this
allows the dominance of low frequencies often
displayed by ecological time series to be taken into
account. To do so, we estimated the exponent of a
power law model 1/ƒβ, often called ‘beta’ in the
literature, fitted to the power spectrum of the time
series (Halley 1996), using the multiple segmenting
method proposed by Miramontes & Rohani (2002) for
short time series. Like Cuddington & Yodzis (1999), we
used the spectral synthesis to generate surrogates with
the previously estimated exponent. In the spectral
synthesis, the amplitudes of the Fourier spectrum are
scaled according to the estimated spectral exponent of

S a, = W a,x xτ τ( ) ( ) 2

13



Mar Ecol Prog Ser 359: 11–23, 2008

the 1/ƒβ model, and the phases are drawn by a uniform
variable on the interval (0, 2π). A back transformation
with the inverse Fourier Transform (Voss 1988)
produces the surrogates. Using this approach, we thus
obtain surrogates that mimic the shape of the original
ecological time series by displaying a power spectrum
with the same slope, but without exactly reproducing
it.

Comparing the wavelet spectra with the MCA
method. The maximum covariance analysis: Many
ecological time series, especially from the marine
environment, such as phytoplankton, zooplankton or
fisheries time series, contain a substantial amount of
zeros together with periods of low variability. This
leads to wavelet spectra that often display areas with
poor, or even without, power. As a consequence, a
direct comparison of the wavelet spectra will lead to a
classification that could be driven by the areas with
poor power. We addressed this by focusing on the com-
mon time–frequency properties between the pairs of
wavelet spectra, extracted by the MCA. The MCA,
historically called ‘singular value decomposition’
(Bretherton et al. 1992), has been widely used in mete-
orology to compare spatio-temporal fields (von Storch
& Zwiers 1999). The MCA is close to a combined
empirical orthogonal function analysis, but with a bet-
ter efficiency and robustness. It relies on a singular
value decomposition (which here designs the solution
of the matrix problem) performed on the covariance
matrix between 2 spatio-temporal fields. The first axis
of the MCA thus corresponds to the largest fraction of
the covariance between the 2 fields, which in this case
will be the wavelet spectra (for more details on MCA,
see Newman & Sardeshmukh 1995, Cheng & Dunker-
ton 1995). In other words, the first axis extracts the
most important common pattern between the 2 fields.

Constructing the covariance matrix implies, as an
underlying assumption, that the frequencies composi-
tions at different times are independent. This is gener-
ally not true but, like the eigenvalue decomposition,
the singular value decomposition is rather robust to
such bias and is therefore often used in this context
(e.g. Cheng & Dunkerton 1995). We compute the
covariance matrix Ri,j between each pair of wavelet
spectra Wi and Wj (Fig. 1):

(4)

with Wj
t denoting the transposition of Wj. Then, the

singular value decomposition is applied on Ri,j: 

Ri,j = U ΓΓVt (5)

The columns of the matrix U are orthogonal and
contain the singular vectors for Wi; the rows of the
matrix Vt are also orthogonal and contain the singu-
lar vectors for Wj. ΓΓ is a diagonal matrix whose diag-

onal elements are the singular values; they are dis-
posed in decreasing order of magnitude, and they
are proportional to the squared covariance accounted
for each axis. Each singular value is thus associated
to common patterns of decreasing importance
between the 2 spectra. The singular value decompo-
sition finds an orthonormal basis for each spectrum,
determined by their respective singular vectors maxi-
mizing their mutual covariance. The singular value

R = W Wi,j i j
t
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Fig. 1. Methodology employed to build the distance matrix for
a set of wavelet spectra. The cross-covariance matrix is com-
puted for a pair of wavelet spectra Wi and Wj. The singular
value decomposition is applied to the covariance matrix. The
k first axes are then extracted, k being chosen so that the sum
of the covariance associated with the axes is below or equal to
the covariance threshold. The distance index is then com-
puted between the k first leading patterns of each wavelet
spectrum and between the k first singular vectors of each

wavelet spectrum
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decomposition is more general than the eigenvalue
decomposition used for principal component analysis,
but the 2 decompositions are nevertheless related. A
singular value decomposition performed on the
covariance matrix between 2 similar wavelet spectra
would yield the same results as an eigenvalue de-
composition. The number of non-zero singular values
(k) of ΓΓ is  inferior or equal to the number of fre-
quencies analysed and each one is associated with a
pair of singular vectors (frequency patterns), that are
respectively associated with each spectrum.

The leading patterns show how respective fre-
quency patterns evolve in time, and are obtained by
projecting each wavelet spectrum onto its respective
singular vectors. Lk

i (t) and Lk
j (t) are respectively the kth

leading patterns for Wi and Wj, and are computed as
follows:

and        (6)

with F the maximum frequency common to both spec-
tra. It is then possible to reconstruct the initial wavelet
spectra with a given number, N, of leading patterns by
the following relationships:

and        (7)

These correspond to the product of a matrix formed
with N singular vectors and another one formed with
the N corresponding leading patterns. The reconstruc-
tion for the kth axis is therefore determined by the kth
singular vector and the kth leading pattern, and the
larger k is, the less important is the common
covariance explained. A reconstruction corre-
sponds to a filtered representation of the spec-
trum; the less important N is, the more impor-
tant is the filter.

Computing the distance between the
wavelet spectra: The distance between 2 wa-
velet spectra was measured by comparing the
leading patterns and the singular vectors ob-
tained by the MCA over a given number of
axes (that correspond to a fixed percentage of
the total covariance). As the relationships be-
tween the 2 singular vectors and between the 2
leading patterns were not linear, they could not
be compared using a simple correlation. We
thus computed the following distance (D) mea-
sure adapted from Keogh & Pazzani (1998):

(8)

with n being the length of the vectors, and Lk
i (t) and

Lk
j (t) being the kth pair of leading patterns for Wi and

Wj. This metric compares 2 vectors by measuring the
angle between each pair of corresponding segments,
defined by the consecutive points of the 2 vectors;
2 parallel vectors will thus lead to a null distance
(Fig. 2). This metric could be interpreted as a robust
version of the correlation between the derivatives of
the leading patterns and/or the leading vectors.

The sum of angles obtained is a comparable metric
between each pair of leading patterns and singular
vectors. The distance was then computed as the
weighted mean of the distance for each of the k pairs of
singular vectors and leading patterns retained (the
weights being equal to the amount of covariance
explained by each axis). For the comparison of the
wavelet spectra i and j, we compute the distance
DT (i,j) according to the following formula:

(9)

with wk being the weights, set equal to the amount of
covariance explained by each axis. The distances,
DT(i,j), were then used to fill a distance matrix suitable
for cluster analysis (Fig. 1). The larger the amount of
covariance, the larger the number of axes retained; a
large number of axes will enable to take into account
more detailed common time–frequency features be-
tween the 2 spectra.

All the computations were done using R version 2.4
(R Development Core Team [2006] R: a language and
environment for statistical computing). This is avail-
able online at: www.R-project.org.
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Fig. 2. Computation of the distance index used between the pair of
kth leading patterns (or singular vectors), Lk

i and Lk
j (see Eq. 8). The

absolute difference between the pair of vertical dashed lines for
every pair of segments of the 2 series is computed and the angle a,
between each pair of segments is obtained by taking the atan of the
absolute differences. Summing over the segments yields the total 

angle between the 2 series
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RESULTS

Significant cycles in bluefin tuna time series

Time series

An extensive description of the whole dataset can
be found in Ravier & Fromentin (2001, 2004). These
data consist of 7 time series of trap catches from
various Mediterranean locations: Sicily (Favignana

and Formica), Sardinia (Saline, Porto Paglia,
Portoscuso, Isola Piana) and Tunisia (Sidi Daoud)
(Fig. 3). These time series were selected from an
extensive dataset of more than 100 time series, as
they displayed a common period of 83 contiguous
years (1878 to 1960) without missing values. They
also displayed synchronous long-term and short-term
fluctuations, and they thus constituted good exam-
ples for comparing various null models (Ravier &
Fromentin 2001, Royer & Fromentin 2006). We used
the beta surrogates to test whether or not the
fluctuations detected in these time series were
artefacts of the autocorrelation structure of the time
series. The results were then compared to those
obtained using Type 1 surrogates (Fourier surro-
gates), AR[1] and white noise, in order to assess their
relevance.
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Fig. 3. Mediterranean Sea and geographic origin (1 to 7) of the Bluefin tuna trap time series. Adapted from Ravier & Fromentin
(2004)



Rouyer et al.: Wavelet analysis of multiple time series

Time series results

The results for the Formica and Portoscuso time
series are presented to illustrate the differences
between the methods (Fig. 4). The wavelet spectra
displayed different significant areas (indicated by solid
black lines in Fig. 4), according to the null model
against which they were tested. The spectra tested
against white noise displayed large significant areas at
low frequencies, whereas the AR[1] process identified
significant areas mostly at high frequency (e.g.
Formica). These results were expected; an AR[1] is

dominated by low-frequency oscillations,
whereas white noise does not produce
such highly autocorrelated signals. On the
contrary, the Fourier surrogates identified
significant areas in the whole range of fre-
quencies. However, their locations were
sometimes not consistent (e.g. Portoscuso),
and many small areas were identified.
These spurious effects were likely to be
created by the Fourier surrogates applied
on short and non-stationary time series, as
explained in ‘Methods’. The beta surro-
gates identified significant areas in the
whole range of frequencies. However,
unlike the Fourier surrogates, the size of
the time series and its non-stationarity did
not influence the algorithm used to pro-
duce the surrogates. The locations of sig-
nificant pseudo-cyclic components were
well defined, and no spurious effects were
detected. This approach thus allowed us to
identify cycles significantly different from
the expected behaviour of ecological time
series displaying similarly coloured noise.

Clustering wavelet spectra

Signals with determined time–frequency
properties

In order to illustrate how the classification
procedure extracts common time–fre-
quency patterns to compare the wavelet
spectra, we first formed a data set with time
series displaying known and controlled
properties in time and frequency. Six time
series displaying contrasting time–fre-
quency properties were simulated, using
sine and cosine functions (Fig. 5). The
changes in frequency were either abrupt
(Fig. 5, time series 2, 3, 5 and 6) or smooth
(Fig. 5, time series 1 and 4). Indeed, these

time series displayed different dynamics compared to
real ecological time series or outputs from models (e.g.
a stochastic version of the Ricker model). However,
they allowed us to control both the time and frequency
properties of the time series, and we could thus obtain
wavelet spectra with desired time–frequency patterns.

The dataset with determined time–frequency prop-
erties was first analysed using wavelet analysis (Fig. 6).
The wavelet spectra (WS) displayed clearly different
patterns: (1) an increase in frequency with time; (2) a
decrease in frequency with time; and (3) continuous
patterns.

17

Fig. 4. Wavelet spectra of the Formica and Portoscuso time series, tested with
different null hypotheses. We used a white noise process, an AR[1] process, the
Fourier surrogates (Type I) and our class of surrogates (Beta surrogates). Solid
black lines indicate significant areas at the 5% level. The colour gradient, from
dark blue to dark red, codes for low to high power values. Curved dashed lines: 

limit of the cone of influence, the area where edge effects are present
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Applying the classification method with a covariance
threshold set at C = 99% of the total covariance, thus
retaining all the details between the wavelet spectra,
clustering the results produced a cluster tree revealing
2 main groups (Fig. 6). The group comprising WS 2 and

5 displayed a decrease in frequency with
time, while that consisting of WS 3, 6, 1 and
4 displayed an increase in frequency with
time. Examining the cluster in more detail
confirmed that the procedure grouped the
WS displaying similar time–frequency pat-
terns. For instance, WS 1 and 4 displayed
continuous time–frequency patterns that
were the same from t = 0 up to t = 150 (see
also Fig. 6); these were the closest of the
dataset. On the contrary, WS 2 and 5, that
displayed a discontinuous decrease in fre-
quency with time, only shared a reduced
common area that was expressed through
the height of their connection in the cluster
tree.

In order to illustrate how the multivariate
method classifies the wavelet spectra, the

first leading patterns, first singular vectors and the re-
constructed WS by the first axis were plotted for the com-
parison of WS 1 and 4 and the comparison of WS 2 and
6 from the simulated dataset (Fig. 6). These 2 compar-
isons were contrasted, as the time–frequency patterns

18

Fig. 5. Simulated dataset. The time series were designed to produce con-
trolled and contrasting time frequency–patterns on their wavelet spectrum

Fig. 6. Wavelet spectra (WS 1 to 6) and cluster tree for the simulated data. The colour gradient, from dark blue to dark red, codes
for low to high power values. The cluster tree was obtained using the distance matrix constructed for the simulated data using
the classification method. The covariance threshold was set to C = 99% of the total covariance. Curved dashed lines: limit of the 

cone of influence, the area where edge effects are present
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between WS 1 and 4 presented a good match, whereas
WS 2 and 6 displayed opposed patterns (Fig. 7). WS 1
reconstructed by the first axis displayed a similar pattern
with the reconstructed WS 4 (Fig. 7a). The leading
patterns (Fig. 7b) and the singular vectors (Fig. 7c)
reflected this similarity with, however, a slightly different
frequency mode for the singular vectors. The difference
between the patterns of the reconstructed WS 6 and
2 (Fig. 7a) was not expressed through the leading pat-
terns (Fig. 7b), but was very well expressed through the
singular vectors (Fig. 7c), as they displayed a clearly
opposed fluctuation.

Sea surface temperature time series in the
Mediterranean

The cluster method was applied to a large data set of
Mediterranean sea surface temperature (SST). The
Mediterranean is a semi-enclosed basin connected to
the Atlantic Ocean by the narrow strait of Gibraltar
(Fig. 3) and that consists of 2 main parts — Eastern and
Western. The SST data used were extracted from the
National Oceanic and Atmospheric Administration
Extended Reconstructed Sea Surface Temperature,
which is based on the COADS dataset (www.cdc.noaa.
gov/cdc/data.noaa.ersst.html). The dataset is available

on a 2 by 2° grid from 1854 to 2005 on a monthly basis.
We selected the period 1900 to 2005 in order to avoid
spatial coverage problems in the historic part of the
dataset. We extracted the monthly time series on each
of the 80 pixels available over the Mediterranean and,
in order to focus on the interannual variations, we used
wavelets to filter the time series and remove the sea-
sonal component. SST is a highly spatially-correlated
variable, so that the 80 SST time series only differed by
small features. Therefore, checking whether the proce-
dure is able to discriminate spatially homogenous areas
among this data set is a good test. In other words, it al-
lows us to test whether it is powerful enough to detect
differences among a large number of time series with
mainly similar time–frequency properties.

The procedure was run with a covariance threshold
fixed at C = 99% of total covariance and analyzed
using flexible clustering. The cluster tree obtained (not
presented here) was cut at 4 different heights to inter-
pret the first levels of clustering. This led to 2, 3, 4 and
5 groups of pixels, that were then mapped (Fig. 8a–d).

The results obtained divided the Mediterranean into
geographically homogenous and consistent units at
each aggregation level. The first level of aggregation
cut the Mediterranean into 2 clear parts near the Sicil-
ian Strait, that separated the western Mediterranean
from the eastern Mediterranean (Fig. 8a). The second
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Fig. 7. Comparisons between wa-
velet spectra (WS) 1 and 4 (compa-
rable patterns) and between WS 2
and 6 (dissimilar patterns) from the
simulated dataset. Shown are (a)
the first reconstructed WS, (b) lead-
ing patterns and (c) singular vectors
for each comparison. The WS in (a)
were reconstructed using the first
leading pattern and the first singu-
lar vector extracted from each com-
parison. The 2 reconstructed WS on
the left correspond to the compari-
son of WS 4 and 1, and the 2 on the
right corresponded to the compari-
son of WS 6 and 2. The colour gra-
dient, from dark blue to dark red,
codes for low to high power values.
Curved dashed lines: limit of the
cone of influence, the area where 

edge effects are present
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level of aggregation identified an area located in the
western Mediterranean, that extended from the Albo-
ran Sea (see Fig. 3) up to the Balearic islands (Fig. 8b).
The third level of aggregation divided the eastern
Mediterranean, with a group that combined the
Aegean sea with the northern part of the Levantine
Basin (Fig. 8c). Finally, the last level of aggregation
identified pixels from the Gulf of Lions and the Lig-
urian Sea, that were separated from the rest of the
western Mediterranean (Fig. 8d).

DISCUSSION

Testing the wavelet spectra

The class of surrogates presented in this study offers
a consistent and more powerful approach to the signif-
icance testing of the wavelet spectra of ecological time
series. The autocorrelation structure of time series is
here described as a 1/ƒβ process, which takes into
account the ‘spectral redness’ often displayed by real
time series (Lawton 1988, Pimm & Redfearn 1988, Ryb-
ski et al. 2006). While Fourier Type 1 and Type 2
exactly reproduce the initial spectrum, the beta surro-
gate uses the fit of a 1/ƒβ model to generate the surro-
gates. As fitting such models with the classical fast
Fourier transform regression is problematic for short
time series, we used the multiple segmenting method
to overcome this (Miramontes & Rohani 2002). How-
ever, a time series dominated by low frequency fluctu-
ations must be long enough to contain sufficient long-

term fluctuations to reliably fit the model. Following
Miramontes & Rohani (2002), and from an empirical
perception, a size of 40 points seems to be the lesser
bound to apply the beta surrogates. The generation of
the 1/ƒβ process can then be achieved by different
techniques. Even if complex techniques proved to be
more optimal to generate discrete 1/ƒβ processes (Wor-
nell 1993, Kasdin 1995), we used the spectral synthesis
as it produced consistent results and displayed a good
trade-off between simplicity, accuracy and computa-
tional speed. The underlying null model assumed is
critical for testing the wavelet spectrum. The beta sur-
rogates build time series that mimic the slope of the
power spectrum of the original time series; in other
words, the same relative importance of frequencies in
the signal. Therefore, the beta surrogates assume a
large range of autocorrelation structures that are not
constrained to a reduced frequency band; unlike auto-
regressive processes, the beta surrogates consistently
test the wavelet spectrum at both low and high fre-
quencies. It can also be of further interest when there
is important shift in the autocorrelation structure be-
tween different time periods, as the surrogates enable
an assessement of the significance of this change in the
frequency content of the signal.

Time series clustering

Many approaches have been developed in the field
of signal processing to compare time series by using
their raw properties, the fitted parameters of auto-
regressive moving average (ARMA) models or their
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Fig. 8. Classification of the wavelet spectra for the yearly time series of sea surface temperature in the Mediterranean Sea. The
classification method was applied with the covariance threshold fixed at C = 99% of the total covariance. The cluster tree was cut
to identify (a) 2, (b) 3, (c) 4 and (d) 5 groups of pixels that were mapped and identified by the different shading or hatching.

SST time series were extracted from the COADS dataset on a 2 × 2° grid and covered the period 1900 to 2005
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rhythmic properties (e.g. Henson et al. 1998, Keogh &
Pazzani 1998, Xiong & Yeung 2002, Cazelles 2004).
Other approaches have compared time series at vari-
ous resolutions, but comparing the time series focusing
on their time–frequency properties using the continu-
ous wavelet transform as we did has not, to our knowl-
edge, been done (Lukasik 2000, Keogh et al. 2001).
Comparing time series based on their wavelet spectra
is similar to comparing a set of images, and many
methods from this field of research (e.g. face recog-
nition) have used multivariate approaches coupled to
wavelet transform techniques to extract features of the
original image (Feng et al. 2000, Gupta & Jacobson
2006). The multivariate method used here proved to be
powerful for indexing images and also for comparing
spatio-temporal fields (Wu et al. 1996). It also allowed
us to put the emphasis on the common time–frequency
properties of the time series, as this can be of central
interest to ecologists dealing with non-stationarity
(Hastings 2001, Hsieh et al. 2005, Cazelles & Hales
2006). Transformation, and particularly log-transfor-
mation, is a common procedure for ecological data.
This is useful for many analyses (e.g. to stabilize or
rescale the variance) but it is not a requirement for
wavelet analysis because it can handle non-stationary
signals. Such transformations may further be applied
carefully, as they affect the relative changes in ampli-
tude between time steps and can thus distort the
time–frequency patterns detected by the wavelet
analysis.

Being fairly robust, the method is not expected to fail
in common ecological cases. However, simulated cases
showed that wavelet spectra displaying patchy pat-
terns without a dominant frequency mode and no clear
common areas could lead the procedure to produce
spurious associations. One could also get counter-
intuitive groupings when a wavelet spectrum shares
different areas with 2 spectra, and when these 2 other
spectra do not clearly share a common area (an artefact
that is also known for cluster analysis computed from a
distance matrix between raw time series). In fact, the
main limitation of the method is that it does not specify
the common patterns detected; one has to go back to
the wavelet spectra to identify them. However, using
the reconstruction by the first axes of the MCA to iden-
tify the common patterns between wavelet spectra
may help in detecting such spurious grouping (e.g.
Fig. 7a).

Classification of the Mediterranean sea surface
temperature

As expected with such a spatially autocorrelated
variable, the results obtained by the classification

procedure on the SST time series clearly separated
different areas. However, the areas obtained did not
consist of random groups of contiguous locations, but
rather reflected different hydrological conditions, as
they were consistent with outputs from oceanic mod-
els of the Mediterranean Sea. For instance, the sepa-
ration found between the eastern and the western
part of the Mediterranean at the relatively shallow
and narrow Sicily Strait (some 450 m depth and 140
km wide) conforms with the literature, as it separates
their respective gyral circulation (e.g. Zavatarelli &
Mellor 1995). The combination of the Alboran Sea and
the south of the Balearic Basin (Fig. 8b) identifies an
area of more dynamic circulation. The Atlantic water
that enters the basin forms anticyclonic gyres in the
Alboran sea (Fig. 3), and it defines a front at their
eastern boundary from which mesoscale eddies arise
and drift into the Balearic Basin (Millot 1985, Tintore
et al. 1988). The joining of the Aegean sea with the
northern part of the Levantine Basin (Fig. 8c) sepa-
rates the Rhodes Gyre from the more southwestern
Shikmona and Mersa-Matruh gyres (Pinardi &
Masetti 2000). The last level of aggregation roughly
separates the Gulf of Lions and the Ligurian Sea from
the rest of the western Mediterranean (Fig. 8d). This
area corresponds to a gyre but is also the source —
with the northern Adriatic, that was not covered by
our dataset — of deep water (Zavatarelli & Mellor
1995). If spatial groups were expected from a classifi-
cation of such a spatially autocorrelated variable, the
boundaries obtained well matched the different
hydrological conditions over the region. This showed
that the procedure was able to detect consistent
groups over a large number of rather similar wavelet
spectra.

CONCLUSIONS

Associations between environmental and ecological
signals are often transient and difficult to identify.
Wavelet analysis offers a powerful way to investigate
these associations, but it has so far been restricted to
univariate or bivariate analyses. Our approach in the
present study allows the exterior of the use of wavelet
analysis to multiple ecological and environmental time
series. For instance, this procedure can be used as a
basis for investigating potential statistical links
between ecological and environmental time series or
how an environmental variable can affect different
populations. The beta surrogate addresses a second
critical point, i.e. the assessment of whether or not the
associations detected are likely to be an artefact
caused by the intrinsic autocorrelation structure. The
2 approaches presented in this study might thus form
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consistent tools for quantitative ecologists that often
face non-stationary time series and their potential
associations with environmental fluctuations, in a mul-
tiple time series framework.
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