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Abstract:  
 
The fate of benthic bacterial biomass in benthic food webs is a topic of major importance but poorly 
described. This paper describes an alternative method for evaluation of bacterial grazing rate by 
meiofauna and macrofauna using bacteria pre-enriched with stable isotopes. Natural bacteria from the 
sediment of an intertidal mudflat were cultured in a liquid medium enriched with 15NH4Cl. Cultured 
bacteria contained 2.9% of 15N and were enriched sufficiently to be used as tracers during grazing 
experiments. Cultured bacteria presented a biovolume (0.21 μm3) and a percentage of actively 
respiring bacteria (10%) similar to those found in natural communities. The number of Operational 
Taxon Units found in cultures fluctuated between 56 and 75% of that found in natural sediment. 
Despite this change in community composition, the bacterial consortium used for grazing experiments 
exhibited characteristics of size, activity and diversity more representative of the natural community 
than usually noticed in many other grazing studies. The bacterial ingestion rates of three different 
grazers were in the range of literature values resulting from other methods: 1149 ngC ind−1h−1 for the 
mud snail Hydrobia ulvae, 0.027 ngC ind−1 h−1 for the nematode community, and 0.067 ngC ind−1 h−1 
for the foraminifera Ammonia tepida. The alternative method described in this paper overcomes some 
past limitations and it presents interesting advantages such as short time incubation and in situ 
potential utilisation.  
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Introduction 
 
Development of improved methods for measuring bacterial abundance and production have radically 
changed the perception of the role of bacteria in pelagic marine ecosystems. 
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Bacteria are known to play a major role in organic matter degradation and regeneration of 34 

nutrients. Moreover the “microbial loop” model (e.g. Azam et al. 1983) considers bacteria as 35 

a “link” more than a “sink”, increasing the ratio of primary production available for higher 36 

trophic levels. Therefore, bacteria appear to play a major role in pelagic foods web models 37 

(e.g. Vézina and Savenkoff 1999). 38 

Bacterial abundance in marine soft sediments is relatively constant, around 10
9
 cells.ml

-1
 39 

porewater (Schmidt et al. 1998), being a thousand times more abundant than in pelagic 40 

systems. Moreover, high rates of production have been measured in aquatic sediments (e.g. 41 

van Duyl and Kop 1990). These findings have driven a debate on the fate of bacteria in 42 

benthic food webs. Due to technical limitations, studies dealing with benthic bacterivory are 43 

not as developed as pelagic ones (Kemp 1990).  44 

Pelagic bacteria are mainly grazed by protozoa (e.g. Sherr and Sherr 1994) and a similar 45 

pattern was expected in benthic systems (van Duyl and Kop 1990; Bak et al. 1991; Hondeveld 46 

et al. 1994). Nevertheless, numerous authors consider the bacterial grazing by benthic ciliates 47 

and flagellates as insignificant (Alongi 1986; Kemp 1988; Epstein and Shiaris 1992; Epstein 48 

1997). Depending on the studies, meiofauna grazing is considered either as (i) high enough to 49 

structure microbial communities (Montagna 1984b),  (ii)  using 3 % of bacterial production 50 

(van Oevelen et al. 2006a), or (iii) negligible (Epstein and Shiaris 1992). Data on macrofaunal 51 

grazing rates are not less variable than on meiofaunal ones. In a synthesis, Kemp (1990) 52 

asserted that bacteria density is not high enough to play a major role in macrobenthos diet. 53 

These contrasting conclusions probably reflect the use of different methods. In conclusion, it 54 

appears that drawing a general view of the role played by microfauna, meiofauna and 55 

macrofauna in bacterial grazing is presently difficult (Kemp 1990).  56 

Most of the benthic studies on trophic process employ tracers. Labels can be added directly 57 

to sediment. In such a situation, bacteria incorporate labels and are simultaneously grazed by 58 
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predators (Montagna 1995; van Oevelen et al. 2006a; van Oevelen et al. 2006b). This 59 

technique minimizes disturbance of the spatial distribution and metabolism of grazers and 60 

bacteria (Carman et al. 1989). Nevertheless, only a small part of the bacterial assemblages 61 

takes up detectable quantities of labels (Carman 1990b). Moreover, the main drawback to this 62 

method is that a large part (up to 83 % in Montagna & Bauer (1988)) of the total labels uptake 63 

may be attributable to processes other than grazing. Grazers may become labelled by 64 

absorption and adsorption of dissolved organic matter (DOM) (Montagna 1984a) or by uptake 65 

of labels by non-prey microorganisms associated with grazers (e. g. epicuticular or gut 66 

microorganisms) (Carman 1990a). 67 

To reduce this bias, microbial prey can be prelabelled with fluorescent products, or 68 

isotopes either stable or radioactive. Fluorescent Labelled Bacteria (FLB) with monodispersed 69 

FLB or whole-sediment staining methods are used mainly to assess grazing activity of small 70 

predators like flagellates and ciliates (Novitsky 1990; Epstein and Shiaris 1992; Hondeveld et 71 

al. 1992; Starink et al. 1994; Hamels et al. 2001). Meiofauna studies using FLB are seldom 72 

because FLB detection is difficult and time consuming in large sized grazers. Consequently, 73 

only a small number of specimens can be examined preventing detection of inter individual 74 

variations in grazing rate. Therefore, grazers like nematodes are able to discharge various 75 

digestive enzyme to realise extracorporeal hydrolyse of food (Riemann and Helmke 2002). In 76 

such a case, pre-digested FLB ingested are impossible to detect in grazers. Nevertheless 77 

bacterivory levels by foraminifera (Langezaal et al. 2005) and nematodes (Epstein 1997) were 78 

assessed using FLB. 79 

Bacterivory assessment by the way of adding radioactive or stable isotope to sediment was 80 

performed on meiofauna and macrofauna (e. g. Montagna 1984b; Sundback et al. 1996; van 81 

Oevelen et al. 2006a; van Oevelen et al. 2006b). 82 



 

 

5 

Bacterivory assessment using prelabelled bacteria was performed with radioactive isotopes 83 

(Rieper 1978; Carman and Thistle 1985). To our knowledge, the use of stable isotopes on 84 

prelabelled bacteria has never been performed until present. Compared to radioactive 85 

isotopes, bacteria enriched with stable isotopes are more convenient to use, since they can be 86 

used in situ without negative environmental effects and legal restrictions. This method will 87 

help investigators who are limited by radioactive material prohibition. 88 

The aim of this paper is to describe a method using 
15

N stable isotope to prelabel bacteria 89 

in the view to assess bacterivory of large size benthic organisms (meiofauna and macrofauna). 90 

Experiments were performed mainly to assess the validity of this method, taking in 91 

consideration size, diversity, and activity of the prelabeled bacteria in order to be close to 92 

natural population parameters. The method was applied to 3 grazers from an intertidal mudflat 93 

in order to appreciate its potential generalization: one mollusc Hydrobia ulvae, a nematode 94 

community and the foraminifera Ammonia tepida.  95 

Material and methods 96 

Bacterial culture 97 

Superficial sediment (1 cm) was collected from the Brouage intertidal mudflat located in 98 

the eastern part of Marennes-Oléron Bay (45°55N, 1°06W) on the Atlantic Coast of France. 99 

One ml of this sediment was added to 20 ml of bacterial liquid culture medium and kept in the 100 

dark at 13°C during 24 hours. The liquid bacterial culture medium was composed of: peptone 101 

3 g.l
-1

 (BioRad), yeast extract 1 g.l
-1

 (BioRad), 
15

NH4Cl 1 g.l
-1

 (99 % 
15

N-enriched NH4Cl 102 

CortecNet); sodium glycerophosphate 0.025 g.l
-1

 and sequestren Fe 6 g.l
-1

. It was completed 103 

with 0.2 !m filtered distilled water (500 ml) and 0.2 !m filtered sea water (500 ml) at pH 7.4. 104 

The first culture was subcultured during 24 hours under the same incubation conditions in the 105 

view to reach approximately 2 ! 10
9
 cells.ml

-1
. Bacteria were rinsed (i.e. separated from 106 
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culture medium) by the means of 3 centrifugations  (3500 g, 10 min, 20°C) in 0.2 !m filtered 107 

sea water, then frozen in liquid nitrogen and kept frozen (-80°C) until grazing experiments.  108 

The bacteria "
15

N was measured on an Eurovector Elemental Analyser coupled with an 109 

Isotope Mass Ratio Spectrometer (Isoprime, Micromass). Nitrogen isotope composition is 110 

expressed in the delta notation ("
15

N) relative to air N2: "
15

N = [(15
N/

14
N)sample / 111 

(
15

N/
14

N)reference)-1] ! 1000. Rinsing efficiencies were tested using bacteria cultured in the 112 

medium previously described with non-enriched NH4Cl. These bacteria were killed by 113 

formalin (2 %), placed in the 
15

N-enriched culture medium previously described, harvested by 114 

the means of 3 centrifugations  (3500 g, 10 min, 20°C) before isotope ratio measurement.  115 

Cultured bacteria size 116 

Size of bacteria from original sediment and cultures were measured. For sediment samples, 117 

particle-associated bacteria were detached by pyrophosphate (0.01M) and sonication. Bacteria 118 

were stained using 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) (2500 !g.l
-1

) and 119 

filtered onto 0.2 !m Nucleopore black filters (Porter and Feig 1980). 120 

Length (L) and width (2r) of each bacteria was determined by a computer-assisted image 121 

analysis (AxioVision Release 4.3) with an epifluorescence microscope (AxioSkop 2 mot plus 122 

– Zeiss) equipped with a charge-coupled device camera (AxioCam MRc5 – Zeiss). Bacterial 123 

biovolumes (V) were calculated for cultured bacteria (N = 1981) and natural bacteria (N = 124 

1806) as follows: V = " r
2
.(L-2/3 r) (Fuhrman 1981). 125 

Cultured bacteria activity 126 

Frozen aliquots of cultured bacteria were thawed and immediately incubated with 5-cyano-127 

2,3-ditoyl tetrazolium chloride (CTC) (final concentration of 5 mM). After 2, 3 and 5 hours of 128 

incubation, experiments were stopped with formalin (2%) and stored at 4°C. Bacterial 129 

samples were processed as described above for the DAPI staining in order to simultaneously 130 

count total cells (UV excitation) and active cells (green excitation) on same slide. 131 
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Cultured bacteria diversity 132 

The bacterial diversity of original sediment and culture aliquots was assessed. The DNA 133 

was extracted using an Ultraclean Soil DNA Kit (MO BIO, Oxyme) for sediment samples and 134 

a QIAamp DNA Mini Kit (Qiagen) for cultures. Bacterial 16S rRNA gene fragments of about 135 

520 bp (the V6-V8 regions of 16r DNA (Gelsomino et al. 1999)) were amplified by PCR 136 

using primers 968fGC (5’-AACGCGAAGAACCTTAC-3’[with GC clamp 5’]) and 1401r 137 

(5’-CGGTGTGTACAAGGCCC-3’). 138 

PCR products (300 ng) were loaded onto polyacrilamide gel (8% w/v, 7M urea) in TAE 1 139 

X buffer. Electrophoresis was processed under a constant voltage of 68 V, during 17 h, with a 140 

thermal gradient from 66 to 69.7°C increasing at the rate of 0.2°C h
-1

 (Dcode#System: 141 

Biorad). The gel was stained with 0.5 !g.ml
-1

 Gelstar (BMA) in 1.25! TAE buffer during 30 142 

min and checked through a UV transilluminator system (Versa Doc (Bio-Rad)) equipped with 143 

a camera. Temperature Gradient Gel Electrophoresis (TGGE) banding patterns were 144 

automatically calculated by the Bionumerix software (Applied Biomaths, Koutrai, Belgium) 145 

using the Dice coefficient (DC), without band weighing by both the complete linkage and 146 

unweighted pair group method with arithmetic mean (UPGMA) algorithms (threshold of 1%). 147 

Grazing experiments 148 

The first centimetre of sediment was collected from a square meter patch during ebb tide 149 

from the Brouage intertidal mudflat (France) on March 13, 2006. It was sieved on 500 !m, 150 

200 !m and 50 !m in order to concentrate respectively H. ulvae, A. tepida and nematodes. 151 

Choice of these organisms was driven by their high natural abundance in the study area. Each 152 

type of grazer was placed in individual microcosms. Seventeen handpicked specimens of H. 153 

ulvae were placed in polypropylene Petri dishes (diameter 9 cm). For the foraminifera and 154 

nematode experiments, 1 ml of the fraction remaining on the 200 !m and on the 50 !m mesh 155 

sieves respectively were placed in 100 ml Pyrex beakers. Each experiment was carried out in 156 
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triplicate, along with triplicate controls. Control samples were frozen (-80°C) during 12 hours 157 

in order to kill grazers before thawing. 158 

Sediment that passed through the 50 !m mesh was mixed with 
15

N enriched bacteria. 159 

Abundance of sediment and cultured bacteria were counted using the methods previously 160 

described. This slurry containing 1.05 ! 10
9
 bacteria ml

-1
 and 

15
N enriched bacteria were 161 

twice as abundant as natural ones. Seventeen ml of this slurry were placed in H. ulvae 162 

microcosms and 4 ml were placed in nematode and foraminifera microcosms. Grazing 163 

incubations were run in the dark at 20°C. Incubations were stopped by freezing the 164 

microcosms at -80°C. 165 

H. ulvae were separated by hand from their shell and all specimens of each microcosm 166 

were pooled and homogenised using a Potter-Eveljhem. Nematodes were extracted from 167 

sediment using ludox (Heip et al. 1985). Approximately 700 nematodes were randomly 168 

handpicked from each sample. Foraminifera were stained with rose Bengal in order to identify 169 

living specimens. As Rose Bengal is an organic compound, it could affect isotopic 170 

composition but control experiments were also stained in order to take this bias into account. 171 

For each sample, 150 specimens of A. tepida were picked individually and cleaned of any 172 

adhering particles. 173 

"
15

N of grazers was determined using the technique described above. Incorporation of 
15

N 174 

is defined as excess (above background) 
15

N and is expressed in terms of specific uptake (I) 175 

(gN ind
-1

). I was calculated as the product of excess 
15

N (E) and biomass of N per grazer.  E is 176 

the difference between the fraction 
15

N in the background (Fbackground) and in the sample 177 

(Fsample): E = Fsample - Fbackground, where F = 
15

N / (
15

N + 
14

N) = R / (R + 2) and R = the 178 

nitrogen isotope ratio. For the Fbackground, we used control values measured with killed grazers 179 

(frozen). R was derived from the measured "
15

N values as: R = (("
15

N/1000)+1) ! RairN2 with 180 

RairN2 = 7.35293 ! 10
-3

 (Mariotti 1982). The uptake of bacteria (gC ind
-1

 h
-1

) was calculated as 181 
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Uptake = (I ! (% Cenriched bacteria /  % Nenriched bacteria )) / (Fenriched bacteria ! incubation time). This 182 

uptake was multiplied by the ratio between the abundance of total and enriched bacteria, 183 

determined from DAPI counts. Uptake (gCbacteria/h/gCgrazer) were obtained by dividing uptake 184 

of bacteria (gC/ind/h) by grazer mean weight (gC / ind). 185 

Results 186 

Characteristics of enriched bacteria 187 

Bacteria cultured in a liquid medium with a 18 mM
  15

NH4Cl subsequently centrifuged to 188 

remove unincorporated label were found to contain 2.88 ± 0.03 % 
15

N. Bacteria killed by 189 

formaldehyde before being placed in the same culture medium and centrifuged, contained 190 

0.028 % 
15

N. Cultured bacteria were enriched enough to allow their detection in the three 191 

studied grazers (Tab. 1). Bacterial abundance was not affected by the liquid nitrogen freezing 192 

process. 193 

Cell volume of cultured bacteria (0.21 !m
3
 ± 0.26) was not significantly (bilateral 194 

unpairwise student test; p = 0.07) different from cell volume of natural bacteria (0.23 !m
3
 ± 195 

0.62). 196 

The ratio between active and non active bacteria increased significantly with time in 197 

cultured bacteria (Analyse of variance, p < 0.01) and evolved from 9.9 to 12.9 % during the 198 

first five hours after thawing. 199 

The number of Operational Taxon Units (OTU) found in cultures fluctuated between 56 200 

and 75 % of that found in natural sediment (Fig. 2). The resulting dendrogram of TGGE 201 

patterns for cultured and natural sediment samples displayed two clusters. These clusters, of 202 

similar community composition, were defined by 49 % pattern similarity. Subculturing does 203 

not seem to affect community composition to a great extent (75 % of similarity) and did not 204 

change bacterial diversity. Freezing process induced a decline of 25 % in the diversity of 205 

bacteria and slightly affected the bacterial community composition (84 % of similarity).  206 
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Bacterial ingestion rates 207 

After grazing experiments with pre-labelled bacteria, frozen grazers (control) were 208 

systematically less 
15

N enriched than living ones for the three grazers types under study (Tab. 209 

1). 
15

N concentration increased linearly in grazers according to incubation time (Fig. 3). This 210 

linearity pointed that ingestion rates were constant during incubation period studied: 2 hours 211 

for H. ulvae and 5 hours for the nematode community and A. tepida. Raw data used for 212 

ingestion rates calculations are presented in Tab. 1. The mud snail H. ulvae grazed 1149  (± 213 

0.285) ngC ind
-1

 h
-1

, each nematode in the community grazed 0.027 (± 0.005) ngC ind
-1

 h
-1

 214 

and the foraminifera A. tepida grazed 0.067 (± 0.013) ngC ind
-1

 h
-1

. 215 

Discussion 216 

Discussion on methodology 217 

$ Success of enrichment 218 

Rinsing efficiency was tested by placing non enriched killed bacteria in enriched medium 219 

and by separating them from this medium by centrifugations. Those bacteria were poorly 220 

enriched in 
15

N, showing that the bacterial rinsing centrifugation process was efficient. Thus, 221 

15
N enrichment of bacteria was due to a bacterial assimilation and not to culture medium 222 

remaining between bacterial cells. This high bacterial rinsing efficiency is essential, since 223 

some grazers are able to consume directly DOM (Montagna and Bauer 1988) from the culture 224 

medium.  225 

There is one disadvantage in using 
15

N instead of 
13

C enriched bacteria. As grazers contain 226 

more C than N, more biomass is required for isotopic measurements. However, the use of 
15

N  227 

avoids the decalcification step required by 
13

C and bias associated with this decalcification 228 

(Jacob et al. 2005). Moreover, grazing experiences are based on the assumption that isotopic 229 

composition of bacteria remains constant during the incubation period. The isotopic 230 
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composition of 
13

C enriched bacteria will vary quickly due principally to respiration loss and 231 

to a lower degree to production of DOM (Ogawa et al. 2001; Kawasaki and Benner 2006). 232 

The use of 
15

N permits to limit this respiration loss bias so isotopic composition of bacteria 233 

remains more stable during incubation. 234 

$ Size of cultured bacteria 235 

Discrimination of prey by grazers on the basis of size can influence the estimate of total 236 

bacterivory. Bacterial selection according to size has been well documented in planktonic 237 

protozoa (Pérez-Uz 1996; Hahn and Höfle 1999). Most protists graze preferentially on 238 

medium-sized bacterial cells, grazing being less efficient with smaller and larger cells (review 239 

in Hahn and Höfle 2001). The soil nematode, Caenorhabditis elegans feeds on bacteria 240 

suspended in liquid and smaller bacteria are better food sources than larger ones for this 241 

species (Avery and Shtonda 2003). Since, in our study, cultured and natural bacteria presented 242 

a similar average size, it can be inferred that there is only a small bias if any due to cell size 243 

selection by grazers. 244 

$ Activity of cultured bacteria  245 

Few data are available on CTC activities of natural benthic bacteria for comparison with 246 

our results. In superficial sediments from intertidal mudflats, 4 to 20% of benthic bacteria 247 

were found to be active (van Duyl et al. 1999). Proctor and Souza (2001) found 9 to 10 % 248 

active cells in river sediments and 25 % in intertidal sediments in the Gulf of Mexico. 249 

Halgund et al. (2002) detected 46 % active bacteria in lake sediments.  250 

Enriched bacteria with activity levels different from those of the natural community may 251 

induce a bias if grazers select bacteria according to prey activity. Nematodes can discriminate 252 

bacteria exhibiting different physiological or nutritional states (Grewal and Wright 1992). 253 

Pellioditis marina do not assimilate heat-killed bacteria even though it feeds on live cells at 254 
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high rates (Moens 1999). In contrast, Diplolaimelloides meyli is more attracted by killed than 255 

by live bacteria (Moens et al. 1999a). The foraminifera Ammonia beccarii collects dead and 256 

living stained bacteria without discrimination (Langezaal et al. 2005). 257 

Many existing methods to quantify bacterivory use bacterial communities with activity 258 

levels different from those of the natural communities. For instance, labels directly added to 259 

the sediment are only incorporated by the active fraction of the bacterial community: 100 % 260 

of labelled bacteria are active. In contrast, prelabelled bacteria such as standard FLB are 261 

generally dead (heat-killed): 0 % of labelled bacteria are active. With the method described in 262 

our study, 10 % of labelled bacteria are active after thawing of frozen cultures (Fig. 1). This 263 

activity is included in range found in natural environments (van Duyl et al. 1999; Proctor and 264 

Souza 2001; Haglund et al. 2002). With the present method, grazers have the opportunity to 265 

pick up active or inactive bacteria according to their preference like in the natural 266 

environment. 267 

$ Diversity in the cultured bacteria 268 

Subculturing of bacteria produces a final culture free of sediment. Freezing allows storage 269 

of aliquots that may be enriched under standardised conditions at any time. The freezing step 270 

induces small variations in the diversity of the bacterial community that must be nevertheless 271 

kept in mind when using this method. 272 

Grazers may be highly selective of prey species. To our knowledge, selection of bacteria 273 

has never been observed for macrofauna but demonstrated for nematodes (Moens et al. 274 

1999a) and foraminifera (Lee et al. 1966; Bernhard and Bowser 1992; Langezaal et al. 2005). 275 

Nematodes used to be considered as generalist feeders, but they were recently shown to be 276 

selective feeders exhibiting various preferences for algal and microbial prey. Their 277 

reproduction rates differ according to the ingested strain of bacteria (Venette and Ferris 1998; 278 

Blanc et al. 2006). Moens et al.  (1999a) show that monhysterid nematodes are able to select 279 
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bacterial strain. Selection can be due to the bacterial size: filamentous bacteria escape uptake 280 

by nematodes with small buccal cavities (Blanc et al. 2006). Moens et al. (1999a) consider 281 

that the chemotaxic responses of nematodes to their bacterial prey may be due more to 282 

chemical cues produced by the bacteria than to bacterial cell-wall structure that determine 283 

their palatability. Nematodes are also able to significantly modify the composition of a 284 

bacterial community by their species-specific bacterial food preferences (De Mesel et al. 285 

2004). 286 

The foraminifera A. beccarii distinguishes food and non-food particles during collection 287 

(Langezaal et al. 2005). Two allogromiidae species (Foraminifera) have been shown to be non 288 

selective grazers, actively harvesting bacterial biofilm from 3 different inocula (Bernhard and 289 

Bowser 1992). Lee et al. (1966) found that most species of bacteria do not serve as food for 290 

foraminifera whereas selected species of bacteria are consumed in large quantity. 291 

Each bacterial species presents characteristics such as cell surface, nutritional quality or 292 

chemical cues which may influence bacterial grazer behaviour. These differences have not 293 

been evaluated between cultured versus natural bacteria in the present study. However, 294 

estimation of total community composition and diversity gives us an approximate idea of 295 

these differences. This molecular approach has the advantage to target dominant community 296 

members. The cultured community presents 49 % of similarity with the natural bacterial 297 

community. Although cultivation of natural bacteria induces a shift in community 298 

composition (Fig. 2), this bacterial consortium seems more representative of the natural 299 

community than that of many other grazing studies. The majority of experiments that use FLB 300 

are done with monospecific bacteria or with a really limited number of bacterial species. Even 301 

if natural and cultured community are not strictly identical, the probability for grazers to find 302 

and ingest their preferred bacterial species is higher in the supplied bacterial consortium than 303 

with monospecific bacteria. 304 
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$ Characteristics of grazing experiment 305 

All various methods developed and applied to measure bacterivory in natural communities 306 

possess methodological shortcomings that make interpretation of the resulting data 307 

problematic. The method presented in this study, using 
15

N pre-enriched bacteria also presents 308 

bias. Sieving the sediment changes the bacterial availability for predators, bacteria being not 309 

attached to particle as in natural situation. The best way to minimize this artefact is to add the 310 

label directly to sediment in order to label bacteria while they are being grazed. This method 311 

is problematic as a high fraction of label found in grazers is due to processes other than 312 

grazing as underlined before. This requires control of incubations with a prokaryote activity 313 

inhibitor and the effectiveness of this inhibitor has to be tested for each grazer. The pre-314 

enriched bacteria technique does not require the use of such inhibitors and only necessitate 315 

one control to determine adsorption of enriched bacteria on grazers.  316 

Nematodes (Gerlach 1978), foraminifera from the genera Ammonia (Chandler 1989) and 317 

H. ulvae secrete mucus. During experiments with pre-enriched bacteria, controls must be 318 

performed to determine abundance of enriched bacteria stuck in the mucus secreted by 319 

grazers. Stuck bacteria modify the isotopic composition of grazers and controls are required to 320 

evaluate this bias due to non-grazing processes. In this study, freeze-killed grazer controls 321 

were used to determine this adsorption assuming that mucus post-freezing and mucus never 322 

frozen absorb bacteria at the same rate. 323 

During grazing experiments, prey egestion from grazers may occur when chemical 324 

preservatives are used and this leads to underestimating grazing rates. Nematodes can egest a 325 

significant part of their gut contents when killed with formaldehyde (Moens et al. 1999b). In 326 

this study, grazers were frozen at -80°C to reduce this bias. 327 

Prior to grazing experiments, enriched bacteria were frozen in liquid nitrogen to prevent 328 

spontaneous and enzymatic degradation and maintain their viability. Bacteria are commonly 329 
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cryopreserved during long-term storage in liquid nitrogen. Some agents like glycerol and 330 

methanol can be used to enhance cryopreservation, but in the case of grazing experiments, 331 

they can be toxic to grazers. Low-temperature storage enables standardised cultures, helping 332 

to ensure reproducible results in a series of experiments. This storage is really useful when 333 

monitoring over long periods is considered. 334 

The method used allows short incubations that limit bias due to recycling. Bacterial 335 

ingestion is detectable after 2 hours of incubation for 3 grazers (Fig. 3). During incubation, 336 

labelled bacteria may be first ingested by grazers that are themselves preyed by studied 337 

grazers. In such a situation, it is impossible to determine the part of label present in studied 338 

grazers that is provided respectively by bacteria and first grazers. Even if a short incubation 339 

time does not prevent this type of bias, it reduces it substantially. 340 

Demonstration of applicability 341 

Data from literature to compare with our values are scarce. First, these predator species 342 

have not been systematically studied. Secondly, herbivory is more commonly studied than 343 

bacterivory. Thirdly, the manner in which to report grazing rates depends on the aim of the 344 

study. Studies dealing with carbon flow generally report values on a biomass basis (e.g. ngC. 345 

ind
-1

 h
-1

). When the aim of the study is the impact of grazers on microbial community, 346 

grazing rates are generally reported as rate constants (e.g. h
-1

) (Montagna 1995). 347 

While meiofaunal grazers are adapted to pick out specific microbial particles, macrofaunal 348 

deposit feeders process large volumes of sediment. Mud snails of the genus Hydrobia 349 

assimilate epipelic diatoms and attached bacteria (Newell 1965; Kofoed 1975; Lopez and 350 

Levinton 1978; Jensen and Siegismund 1980) contained in the ingested sediment. To our 351 

knowledge bacterial ingestion rates have never been determined but data is available 352 

concerning algal ingestion rates. The bacterial ingestion rate found in our study is in the same 353 
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range as algal ingestion rates found by Forbes and Lopez (1989), Blanchard et al. (2000) and 354 

Haubois et al., (2005) (Tab. 2). 355 

In literature, grazing rates of nematodes are strongly variable with a range of fluctuations 356 

of more than two orders of magnitude (Tab. 2). Thus, comparison of our data with literature is 357 

difficult. Those discrepancies may arise from a lot of reasons such as the use of different 358 

techniques or the experimental conditions. When grazing experiments are performed in 359 

monoxenical conditions, nematodes are in an environment constituted by water (or agar) and 360 

bacteria. Nematodes would probably present higher grazing rates in such conditions than 361 

during grazing experiments where bacterial food is mixed with minerals and refractory 362 

organic matter and therefore is less available. However, when our results are compared to 363 

values resulting from experiments using nematodes from mudflat grazing on labelled bacteria 364 

mixed with sediment, it appeared that they are in the range of grazing rates found by Epstein 365 

& Shiaris (1992) but more than ten times lower than those found by Montagna (1984b). 366 

Algal ingestion rates by A. tepida are higher (Moodley et al. 2000) than bacterial ingestion 367 

rates found in our study (Tab. 2). Langezaal et al. (2005) used FLB in simplified microcosms 368 

with one specimen of A. beccarii in a reduced volume of water. Their bacterial grazing rate is 369 

lower than ours. This may be linked to the bacterial concentration used in microcosms (1.4 370 

10
3
cell ml

-1
), which is considerably lower than benthic bacterial abundance in the natural 371 

environment  (c.a. 10
9
cell ml

-1
) and in the present study. 372 

Conclusion 373 

The fate of benthic bacterial biomass is a topic of major importance in microbial ecology 374 

and in food web studies. All various methods developed and applied to measure bacterivory 375 

in natural communities possess artefacts and difficulties that make interpretation of the 376 

resulting data problematic. Our experimental approach is not an exception and also presents 377 

shortcomings. These bias are due principally to sediment manipulation. Labelled bacteria are 378 
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not available to bacterivores in the same manner as bacteria in unmanipulated sediment. 379 

However, grazing experiments with 
15

N pre-enriched bacteria also present several 380 

advantages: (i) they can be performed in situ without environmental consequences, (ii) they 381 

do not require long incubations, so bias due to recycling is minimized, (iii) they require quite 382 

simple control tests with freezing of enriched prey, (iv) they can be performed at different 383 

times under standardised conditions, (v) they can be extended to other types of sediment or 384 

soil and (vi) they can be used in double-labelling experiments with 
13

C enriched algae, in 385 

order to simultaneously measure bacterial and algal ingestion rates. 386 

387 
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Tables 564 

Table 1. Calculation of ingestions rates of three different grazers 565 

 566 

 
Enriched 

Bacteria 

Gastropoda 

H. ulvae 

Nematod 

community 

Foraminifera 

A. tepida 

% C by dry weight 35.2 33.6 38.2 5.8 

% N by dry weight 10.2 8.0 7.4 0.8 

Weight (g/ind)  5.4E-04 3.0E-07 1.8E-05 

!
15

N living grazers 7068.2 95.0 20.6 20.0 

!
15

N dead grazers  10.7 11.1 16.7 

Incubation time (h)  2 5 5 

Ratio (enriched/non enriched bacteria) = 1.5 

Ingestion rate (ngC/ind/h)  1149.16 0.03 0.07 

Ingestion rate 

(10
-3

 gCbacteria / gCgrazer/h) 
 6.43 0.23 0.06 
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Figure captions 569 

Fig 1. Evolution of the percentage of CTC + cells related to total bacteria after thawing 570 

cultured bacteria. Bars indicate standard deviation (n = 3). 571 

Fig 2. TGGE analyses of natural sediment, first culture, subculture from the first culture and 572 

subculture from the first frozen culture. The right panel shows the relating band similarity (%) 573 

of bacterial communities. 574 

Fig 3. Evolution of isotopic composition of three types of living (!) and dead (!) grazers 575 

placed in contact with 
15

N enriched bacteria. Bars indicate standard deviation (n = 3). 576 
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