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Abstract:  
 
Features computed as statistics (e.g. histograms) of local filter responses have been reported as the 
most powerful descriptors for texture classification and segmentation. The selection of the filter banks 
remains however a crucial issue, as well as determining a relevant combination of these descriptors. 
To cope with selection and fusion issues, we propose a novel approach relying on the definition of the 
texture-based similarity measure as a weighted sum of the Kullback–Leibler measures between 
empirical feature statistics. Within a supervised framework, the weighting factors are estimated 
according to the maximization of a margin-based criterion. This weighting scheme can also be 
considered as a filter selection method: texture filter response distributions are ranked according to the 
associated weighting factors so that the problem of selecting a subset of filters reduces to picking the 
first features only. An application of this similarity measure to texture recognition is reported. We also 
investigate its use for texture segmentation within a Bayesian Markov Random Field (MRF)-based 
framework. Experiments carried out on Brodatz textures and sonar images show that the proposed 
weighting method improves the classification and the segmentation rates while relying on a 
parsimonious texture representation.  
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Introduction 
 
 
Texture describes a visual information which is related to local spatial variations of 

color, orientation and in tensity in an image. It is usually described by qualitative 

adjectives such as smooth or rough, coarse or fine, homogeneous or random, and 

etc. This information is fundamental in image analysis and interpretation and it helps 

at solving a wide range of applied recognition, segmentation and synthesis problems 

related to several areas of application including biomedical image analysis, industrial 

inspection, analysis of satellite, sonar or aerial imagery, content-based retrieval from 

image databases, scene analysis for robot navigation, texture synthesis for computer 

graphics and animation etc. A basic goal of texture research in computer vision is to 

develop automated computational methods for retrieving textural properties in 

images, and deriving efficient quantitative texture descriptions. Due to the complexity 

and the diversity of natural textures, there is a wide range of texture features used in 

the literature. Texture features can however be classified into four main groups: – 

Statistical approaches that describe a texture via image signal statistics which 

describe the spatial distribution of image; – Filtering methods that extract texture 

features from the filter texture response domain; – Structural approaches that 

consider a texture as a hierarchy of spatial arrangements of well-defined texture 

primitives; – Probabilitymodels which describe the underlying stochastic process that 

generates textures. The main comparative studies related to texture features 

reported that none of these feature classes outperforms the others for all textures but 

have however noted the effectiveness of the co-occurrence matrices, the wavelet 

frames, the quadrature mirror filter-banks and the Gabor filters [4–10]. Some of these 

studies [11, 12] stressed that the fusion of different feature types and parame- 
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ters may improve texture characterization. In fact, for
example, Gabor filters, known as good models of the
frequency and orientation sensitivity of the human vi-
sual system, are parametrized by an angle, correspond-
ing to the expected main orientation of edges and struc-
tural elements, and a variance, associated with the scale
at which the structural elements of the texture are an-
alyzed. Hence, the parameters of the Gabor function
must be varied to describe different types of textures.
Changes in the orientation angle lead to different sensi-
tivities to edge and texture orientations. Similarly, co-
occurrences [13] are computed as the frequencies of the
image values for pixel pairs at a given distance in a given
direction. The selection of co-occurrence parameters per-
mits to capture the characteristics of different textures
in terms of orientation, smoothness, coarseness and reg-
ularity. Recent studies have stressed the effectiveness of
the marginals of a large set of filters for characterizing
and discriminating texture samples compared to texture
features computed as moments of such statistical distri-
bution (for example Gabor features, Haralick parame-
ters, etc) [14–18]. For instance, Zhu et al. [19] proposed
a maximum entropy principle for learning probabilis-
tic texture models from a set of empirical distributions
of filter responses. Gimel’farb used the “difference co-
occurrence” statistics to model texture [20] and later,
Xiuwen et al. [14] proposed a local spectral histogram,
defined as the marginal distributions of feature statistics
for texture classification. Motivated by these studies, we
describe texture by a wide set of statistics of texture
filter responses and a set of co-occurrence distributions.

Given the variety of the filter types and the asso-
ciated parameterizations, the selection and the combi-
nation of the most relevant filters arise as major issues
with a view to improve the classification accuracy and
to shorten the learning time. Existing methods however,
generally employ filter banks consisting of a large set of
filters selected in an ad-hoc manner with pre-determined
parameters [21, 22], and only few studies cope with the
filter selection for texture synthesis and discrimination.
In [19, 20] the selection is based on a synthesis crite-
rion. It is worth noting that this selection may not be
appropriate for texture classification. More broadly, the
comparative study on texture classification conducted
by Randen et al. [5] suggests that it should be preferred
to extract texture features based on a discrimination cri-
terion rather than on a characterization criterion.
In the subsequent, we treat the filter selection issue us-
ing a texture discrimination based criterion. We describe
textures by a set of distributions of local filter responses
with respect to different predefined filter banks, and we
use the Kullback-Leibler divergence [23] to evaluate the
similarity for each type of statistics. The texture similar-
ity measure is then computed as a weighted sum of these
Kullback-Leibler divergences. According to a supervised
strategy, the weights are estimated such that they lead
to the maximization of a margin-based criterion.

The proposed metric serves at texture segregation
and can then be used at many field of image processing
like pattern classification, object identification, texture
synthesis etc. In this paper we report a texture based
classification and segmentation of synthetic and natural
images based on the proposed similarity measure.

The paper is organized as follows. The proposed tex-
ture based similarity measure is introduced in Section
2. A minimum distance classification and a Bayesian
Markov Random Field (MRF) based segmentation method
using this similarity measure are detailed in Section 3
and some experiments are reported in Section 4.

2 Texture based similarity measure

We characterize each texture sample T by a set of F first-
order statistics of filter texture responses {Qf (T )}f=1:F .
Note that F accounts both for given filter and associated
parameterizations. In the subsequent, filter type will re-
fer to a given filter category with some parameterization.
The computation of these first-order statistics is issued
from a Parzen non parametric estimation [24]. We focus
on supervised texture characterization and discrimina-
tion such that each texture type k is associated with a
texture sample T k characterized by Qk =

{

Qk
f

}

f=1:F
.

Here, we propose to use the Kullback-Leibler diver-
gence to compare texture features. The Kullback-Leibler
divergence (KL) between two distributions α and β is
defined as [23]:

KL(α, β) =

Z

α(x)log

„

α(x)

β(x)

«

dx (1)

For an unlabeled texture sample T , we compute the set
of similarity measures

{

KL(Qk
f , Qf(T ))

}

f=1:F
for each

texture type T k. Our goal is to determine a relevant
combination of these measures to ensure a better dis-
crimination from the resulting similarity measure.

Algorithms for feature selection can be categorized
into two classes according to their tie to the induction
algorithm: “Filter methods” and “Wrapper methods”
[25]. “Filter methods for feature selection” [25] are in-
dependent on any induction algorithm, since irrelevant
features are filtered out of the data before induction
takes place. “Wrapper methods for feature selection”
rely on the induction algorithm along with a statisti-
cal re-sampling techniques, such as cross-validation, to
evaluate feature subsets. The latter methods, generally
outperform Filter methods in terms of prediction accu-
racy, but are generally more complex and more time
consuming. We propose a “Filter method” [25] based
on a weighting scheme. In opposition to classical “Filter
methods for feature selection”, our method fits the char-
acteristics of our similarity measure based on the use of
the Kullback-Leibler divergence [23]. The method relies
on weighting each filter type according to its relative rel-
evance for the discrimination task. For a given weighting
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vector w, the similarity measure between two distribu-
tion sets: Q = {Qf}f=1:F and R = {Rf}f=1:F is defined
as follows:

KLw(Q, R) =

F
∑

f=1

w2
fKL(Qf , Rf ) (2)

We aim at determining weights w2
f , f = 1, ..., F that

maximize the feature space separation. To this end, the
proposed procedure comes to the maximization of the
global margin expressed by (Eq.4). Given a texture sam-
ple T characterized by Q = {Qf}f=1:F , a set of proto-

types
{

Qk
}

k=1:K
and a weight vector w, the margin of

T is defined as:

Mw(T ) = KLw(QDT , Q(T ))− KLw(QST , Q(T )) (3)

where ST is the texture class of T and DT is the texture
type different from ST the closest to T with respect to
KLw: DT = arg min

k 6=ST

KLw(Qk, Q(T )). Unlike existing

margin based “Filter methods for feature selection” [1–3]
that estimate the quality of attributes according to how
well their values distinguish between samples that are
near to each other with respect to the euclidean dis-
tance, we compute the margin according to Kullback-
Leibler and we evaluate the margin with respect to pre-
defined prototypes. This scheme is more appropriate to
our application because texture prototypes (empirical
non parametric marginal distributions) are estimated on
larger support than samples and this parsimonious rep-
resentation is faster than classical methods. For a train-
ing set T , the total margin is given by:

MT
w =

X

T∈T

Mw(T ) (4)

The maximization of criterion MT
w is carried out using a

gradient-based approach. For filter type f , the first-order
derivative of MT

w with respect to wf is given by:

(∇MT
w )f =

∂MT
w

∂wf
=
∑

T∈T

∂Mw(T )

∂wf

= 2wf

∑

T∈T

(

KL(QDT

f , Qf (T )) − KL(QST

f , Qf (T )
)

(5)
Rather than exploiting a purely deterministic gradient
ascent, we adopt a stochastic framework with a view to
improving convergence performance. It relies on itera-
tively updating weight vectors with respect to the gra-
dient direction associated with one randomly selected
texture sample. More precisely, we proceed as follows:

1. Initialization w = [1, 1, ..., 1];
2. For t = 1, ..., maxITer

(a) Pick randomly an instance T from T ;
(b) Determine DT with respect to the weighting vec-

tor w;
(c) For f = 1, ..., F , calculate

∆f =

2wt−1
f

(

KL
(

QDT

f , Qf(T )
)

− KL
(

QST

f , Qf(T )
))

(d) wt = wt−1 + γ∆;
3. wt = (wt)2/

∥

∥(wt)2
∥

∥, where ((wt)2)f = ((wt)f )2.

The resulting weighting factors are exploited on the
one hand for filter selection keeping only the distribu-
tions corresponding to the greatest weights, and, on the
other hand, for the definition of an optimized texture-
based similarity measure KLw given the selected distri-
butions.

3 Application to distance-based texture

recognition and Bayesian based MRF texture

segmentation

3.1 Distance-based texture recognition

We first consider an application of the proposed texture
based metric to texture recognition. It aims at determin-
ing the class of unlabeled texture samples. Considering a
supervised issue, texture types

{

T k
}

k=1:K
are character-

ized by a set of labeled prototypes
{

Qk
}

k=1:K
. Texture

classification can be applied to further image process-
ing and analysis, for instance, to object recognition and
image retrieval.

The classification of a texture sample T with respect
to the set of reference classes is based on the comparison
of the feature statistics through our similarity measure
KLw between texture prototypes

{

Qk
}

k=1:K
, and the

statistics estimated on the texture sample and denoted
by: Q(T ) = {Qf (T )}f=1:F . We assign a sample T to

class labelT that minimizes KLw

(

Qk, Q(T )
)

:

labelT = arg min
k

KLw

(

Qk, Q(T )
)

3.2 Bayesian MRF based texture segmentation

The second proposed application of the use of the sim-
ilarity measure KLw is a Bayesian textured image seg-
mentation. Similar to classification, segmentation of tex-
ture also involves extracting features and deriving met-
rics to segregate textures. However, segmentation is gen-
erally more difficult than classification, since boundaries
that separate different texture regions have to be de-
tected in addition to recognizing texture in each region.
Results of segmentation can be applied to further image
processing and analysis, for instance, to object recog-
nition, lesion detection in biomedical imaging, acoustic
image segmentation, etc.

We propose a statistical segmentation based on KLw.
Let S be a 2D lattice of pixels, Y the set of observations
and X the hidden (unobserved) label field, defined on the
same lattice S. Realizations of fields Y and X will be de-
noted y and x, respectively. The segmentation issue then
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comes to estimating x from the observation of the field y.
Segmentation we consider in this paper is based on the
Markovianity of the posterior distribution P(X/Y ). The
latter Markovianity is obtained from a Markov field PX ,
a prior on the region label map, and P(Y/X) the distribu-
tion of Y conditional to X = x. Under some assumptions
on P(Y/X), the posterior distribution is a Markov distri-
bution and different Bayesian segmentation techniques
like the Maximum Posteriori Mode (MPM) [26], Max-
imum A Posteriori (MAP) [27] or Iterated Conditional
Mode (ICM) [28] can be applied.

Here each texture type T k is characterized by a set
of features Qk and each pixel s is associated with a
set of features Q (Ws) = {Qf (Ws)}f=1:F estimated ac-

cording to a Parzen estimation method [24], within a
square window Ws centered at s. Then we consider Y =
{Q (Ws)}s∈S and we propose to consider that the likeli-
hood of each pixel xs to each class k is defined from the
similarity measure KLw by:

p (ys/xs = k) =
exp−KLw(Qk,Q(Ws))

∑K
k=1 exp−KLw(Qk,Q(Ws))

(6)

We use as a prior PX , a Markov model associated to an
8-neighborhood system with potential functions given
by:

U2 (x) =
∑

s∈S

∑

t∈cs

αc (1 − δ (xs, xt)) (7)

where δ is the delta function, αc ∈ {αH , αV , αD} are real
parameters assigned respectively to horizontal, vertical
and diagonal cliques.

Using Bayes rule the posterior distribution is expressed
as follows:

PX/Y (x/y) =

1

Z
exp

∑

s∈S

−
∑

t∈cs

αc (1 − δ (xs, xt)) + log (p (ys/xs)) (8)

where Z is a normalization function. According to the
general Bayesian theory, the MPM segmentation method
is optimal with respect to the classification error rate
(the number of mis-classified pixels). The decision rule
associated to the MPM segmentation strategy is defined
for each pixel s ∈ S as follows [26]:

x̂MPM
s = arg min

k∈Λ
pX/Y (xs = k/ys) (9)

where Λ = {1, ..., K}.
Therefore we have:

x̂MPM
s = arg max

k∈Λ
−
(

∑

t∈cs

αc (1 − δ (xs = k, xt))+

KLw

(

Qk, Q (Ws)
)

− log

K
∑

k=1

exp−KLw(Qk,Q(Ws))

)

(10)
Model parameters are

{

Qk
}

k=1:K
and αc ∈ {αH , αV , αD}

are estimated according to Iterative Conditional Estima-
tion (ICE) method [29].

4 Experimental results

Reported experiments have been carried out using 219
texture-related features as follows: a set of 121 distribu-
tions issued from co-occurrence statistics [13] computed
for the eight main directions θ ∈ {kπ/8}k=0:7 and for dis-
placements varying between 0 and 10 pixels; a set of 50
distributions of the magnitude of Gabor filter responses,
computed for several parameterizations (six normalized

radial frequencies
{√

2/2k
}

k=1:6
, and five orientations:

θ ∈ {kπ/4}k=0:4) and a set of 48 distributions of the en-
ergy of the image wavelet packet coefficient computed for
different bands for three wavelet types: Haar, Debauchies
and Coiflet. The computation of the co-occurrence dis-
tributions is issued from a k-means [30] based quantiza-
tion of the images into 10 gray levels, where 100 bins are
exploited for Gabor and wavelet-based distributions.

4.1 Distance-based texture recognition

Texture recognition experiments for test images of var-
ious complexities have been carried out to evaluate the
performance of the proposed texture-based similarity mea-
sure. Here, we show the results of the classification of
32×32 texture samples belonging to ten different classes
issued from the Brodatz album [31] (D3, D4, D6, D21,
D24, D49, D68, D71, D82 and D87) (figure 1). The cho-
sen textures are of different types: D3, D6, D21 and
D82 are regular textures formed by regular tiling or-
ganized into periodic patterns, but with different scales.
D4 and D24 are stochastic textures without noticeable
structures, displaying rather random patterns. D49 is an
homogeneous texture with accurate orientation. D6 and
D21 are fine textures and D68 and D71 are coarse tex-
tures.

In order to test for texture discrimination regard-
less local gray level means or variances, we used two
test sets: original texture images and globally histogram-
equalized images. Within the training stage, the distri-
butions of the filter responses for each filter type are first
estimated for each texture class, as well as the estima-
tion of optimal weighting factors w using the proposed
separability-based criterion. We then test for classifica-
tion performances on sub-images which are not part of
the training samples.

For the experiments reported below, we first report
the plot of the estimated weighting factors ranked ac-
cording to the filter type (from 1 to 121 for co-occurrence
distributions, from 122 to 171 for Gabor distributions
and from 172 to 219 for wavelet distributions). Besides,
the classification error rate is used as the evaluation cri-
terion of the relevance of the proposed approach. The
proposed margin-based weighting criterion is compared
to two random selection procedures (2 random feature
permutations) and reverse order ranking with respect to
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w. Figure 3 presents these results for the experiments
with the ten Brodatz samples of figure 1.

50 100 150 200 250

100

200

300

400

500

600

D3 

D4 

D6

D21

D24

D49 

D68 

D71 

D82 

D87 

Fig. 1 Test image: 10-Brodatz texture mosaic (D3, D4, D6,
D21, D24, D49, D68, D71, D82 and D87)

1 121 171 219
0

0.1

0.2

0.3

0.4

0.5

0.6

Feature indexes

w
2 f

Co−occurrence

Gabor

Wavelet

Fig. 2 Estimation of
˘

w2

f

¯

for the definition of KLw (Eq.2)
for the histogram equalized mosaic of figure 1. Feature in-
dexes are as follows. Indexes from 1 → 121 we refer to co-
occurrence distributions, from 122 → 171 to Gabor energy
distributions and from 172 → 219 to wavelet energy distribu-
tions. Co-occurrence distribution computed for parameters
(d, θ) = (3, 0) and 2 Gabor magnitude distributions com-

puted for parameters (f0, θ) ∈
n“

2−6
√

2, 0
”

,
“

2−5
√

2, π/2
”o

have a weight sum more than 80% of the total weight sum.

The reported classification error rates (τ) are very
good compared to the results given in the literature
(τ = 15% for the ten histogram equalized Brodatz tex-
ture). As expected, the best results are obtained by the
proposed discriminant ranking and weighting of the com-
puted feature statistics. Only less than 15% of the fea-
tures have a total weight greater than 80% of the sum
of weights of all features (see figure 2 and figure 4).
In addition, the optimized similarity measure leads to
better discrimination performance compared to a sim-
ple filter selection step: we notice a decrease of the error
rate classification if we use only the selected set of fea-
tures compared to the case when we use all distributions
with constant weights (from τ = 22.5% to τ = 15% for

50 100 150 200
10

20

30

40

50

60

70

80

90
KLw
Inverse ranking
Random selection (1)
Random selection(2)

Fig. 3 Comparison of the evolution of classification error
rates of the histogram equalized mosaic of figure 1 w.r.t to
the number of exploited features respectively for the proposed
similarity measure KLw , 2 random feature selections and a
selection according to the inverse feature ranking w.r.t w.

the normalized Brodatz samples and from τ = 6.25%
to τ = 3.75% for non histogram equalized mosaic). It
is worth noting that if we do not equalize the texture
histograms, we get different weights in favor of the co-
occurrence matrices and an improvement of the classifi-
cation results (a gain of 11.25%) (see figure 4 and figure
5).

1 121 171 219
0

0.1

0.2

0.3

0.4

0.5

0.6

Feature indexes

w
2 f

Co−occurrence
Gabor
Wavelet

Fig. 4 Estimation of
˘

w2

f

¯

for the definition of KLw (Eq.2)
for the non histogram equalized mosaic of figure 1. Feature
indexes are as follows. Indexes from 1 → 121 we refer to co-
occurrence distributions, from 122 → 171 to Gabor energy
distributions and from 172 → 219 to wavelet energy distri-
butions. Co-occurrence distribution computed for parameters
(d, θ) = (3, π/4) and 1 Gabor magnitude distributions com-

puted for the parameters (f0, θ) ∈
n“

2−5
√

2, π/4
”o

have a

weight sum more than 80% of the overall weight sum.

Let us further stress that the larger misclassification
rates do not always refer to the reserve ranking strat-
egy. This illustrates that the proposed approach does
not assign a weight to each feature type independently.
Contrary to classical methods based on independent and
individual ranking criteria [32, 33]. The computation of
the weights of the Kullback-Leibler divergences is issued
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50 100 150 200

5

10

15

20

25
KLw
Inverse ranking
Random selection (1)
Random selection (2)

Fig. 5 Comparison of the evolution of classification error
rates of the non histogram equalized mosaic of figure 1, w.r.t
to the number of exploited features respectively for the pro-
posed similarity measure KLw , 2 random feature selections
and a selection according to the inverse feature ranking w.r.t
w.

from a global margin-based criterion, which leads to an
efficient feature combination evaluating the redundancy
or the complementary properties of the considered statis-
tics.

4.2 Bayesian texture-based segmentation

The segmentation algorithm described in section 3.2 is
applied to a set of Brodatz mosaics and real sonar im-
ages. Figure 7 shows several MPM based segmentations
respectively of the image of figure 6 using a window of
size TW = 11 × 11 and the selected features (we use
only features that the weighting sum exceeds 80% of the
total weight sum). The image is composed of five tex-
tures with different types (D6, D24, D16, D92 and D29)
but with some visually close textures. For this image,
the selected features are the co-occurrence distribution
computed for parameters (d, θ) = (7, 0) and two Ga-
bor magnitude distributions computed for the param-

eters (f0, θ) ∈
{(

2−6
√

2, π/4
)

,
(

2−5
√

2, π/2
)}

. Figure

50 100 150 200 250

50

100

150

200

250

Fig. 6 5-Brodatz texture mosaic (D6, D24, D16, D92 and
D29).

selected features 1 co-occurrence 1 Gabor

MPM 3.1% 4.45% 22.87%

Table 1 Classification error rates
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Fig. 8 MPM MRF based segmentation of the 16-texture
mosaic, TW = 33 × 33, (α̂H , α̂V , α̂D) = (3, 2, 0.5).

7.(a) shows the segmentation of the image with the se-
lected features, in figure 7.(b), we report the segmenta-
tion obtained when the co-occurrence distribution with
the highest weight (d, θ) = (7, 0) is only used and fig-
ure 7.(c) represents the segmentation using one magni-
tude Gabor distribution computed for Gabor filter hav-
ing the highest weight among the used Gabor param-

eters
(

(f0, θ) =
(

2−6
√

2, π/4
))

. The best classification

rate are obtained using all the selected features (see Ta-
ble 1).

In figure 8, we show the results for the segmenta-
tion of a complex mosaic composed of sixteen Brodatz
texture [31] with wide variability (D3, D4, D5, D6, D9,
D21, D24, D29, D32, D33, D54, D55, D57, D68, D77
et D84): regular, weakly-homogeneous, oriented, coarse,
fine and stochastic textures. The segmentation is done
using a window of size TW = 33×33. For this image, only
three co-occurrence distributions computed for parame-
ters (d, θ) ∈ {(3, π/2) , (6, π/2) , (2, π/4)} are selected.
The segmentation error rate is about 16.3% which is a
very good rate compared to results reported in the com-
parative study carried out by Randen et al. [4, 5] (the
best classification error rate for the compared methods
is about τ = 37%)

In figure 9, we show MPM based segmentation of a
real sidescan image further used in seafloor cartography.
The image is composed of three seafloor types [34]: a
coarse texture of rock, an homogeneous class of mud
and oriented texture associated to sand ripples. The co-
occurrence distribution computed for (d, θ) = (1, π/4) is
the only selected and exploited texture feature. For this
image, we use the geologist segmentation as a reference
and we compute the classification error rate. It is about
12%.
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Fig. 7 MPM MRF based segmentation of the 5-texture mosaic of figure 6.(a) Segmentation with the selected features, (b)
Segmentation with a co-occurrence distribution, (c) Segmentation with a magnitude Gabor distribution.
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Fig. 9 Sidescan sonar image segmentation (Project Rebent,
Ifremer), the boundaries of the different regions given by
the segmentation map are superimposed on the original im-
age. (a) Geologist segmentation , (b) MPM based segmen-
tation: TW = 9 × 9, Tmax = 100 and (αH , αV , αD) =
(0.99, 1.18, 0.14) (τ = 12%).

5 Conclusion

In this paper, we proposed a simple effective histogram
selection algorithm for supervised texture discrimination
problems. The proposed method is based on a weighted
sum of Kullback-Leibler measure of similarity between
different texture filter response distributions, where the
weights are computed in order to maximize the feature

space separation. We used the proposed similarity mea-
sure with a minimum distance classifier on the one hand,
and with a hidden Markov field based segmentation,
on the other hand. Different experiments, whose results
show the effectiveness and the performance of the news
models and related processing methods, have been pro-
vided.

As perspectives for further works, we can mention
that our study open different ways for other applications
based on segmentation or analysis techniques involving
filter response statistics. Making the proposed methods
unsupervised, is undoubtedly among the most important
issues to be addressed in further investigations.

Originality and Contribution

The originality of this work lies in the use of a sim-
ple and effective similarity measure between textures in
the space of probability distributions within a supervised
framework. This similarity measure leads to the fusion
and the selection of the most discriminant features. This
method is different from the existing feature selection
methods in the sense that:

– It does not exploit classical texture features: it relies
on empirical marginal distributions of local texture
features (co-occurrence distributions, Gabor magni-
tude distributions, etc) which have been reported to
outperform other texture features (Haralick parame-
ters, mean Gabor magnitude, etc).

– In contrary to many feature selection approaches, the
method is not restricted to one type of features but it
is able to deal at the same time with features of differ-
ent types and parameterizations (e.g. Gabor, wavelet,
co-occurrence, etc).

– The proposed method is an extension of margin based
selection methods (Relief, RelieF, Simba, etc [1–3]) to
probability distribution features and to non-euclidean
distances. Unlike the existing methods, we do not
compute the margin according to the nearest neigh-
bor classifier within a learning sample set but accord-
ing to the proposed similarity measure between pre-
defined prototypes and samples. Our scheme is more
parsimonious and in subsequent faster than other
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methods. In fact, for classical methods, in order to
compute the margin for a sample according to a train-
ing set of N samples, we have to compute the simi-
larities between the sample and all other samples of
the set, whereas in our case we simply compute the
similarities between the sample and only the K pro-
totypes. Besides, our method is more robust with re-
spect to noise because the similarity between efficient
prototypes and samples is more reliable than simi-
larity between samples. Finally, thanks to the non
parametric feature aspect, the method allows to deal
with multi-modal features.

– The method is a “Filter method” because feature
subsets selection is based on a general criterion (mar-
gin maximization) and the features are filtered out of
the data before induction takes place. However, un-
like classical “Filter methods”, the selection is related
to the induction algorithm in the sense that we use
the same similarity measure to evaluate the margin
criterion and to proceed to the classification or to the
segmentation.

In this work, only textural features are considered. The
extension to other type of features e.g. color, etc would
be straightforward. Similarly, the Kullback-Leibler di-
vergence has been chosen as the measure between sta-
tistical distributions, but other statistical distances can
also be considered, such as Bhattacharya, χ2, etc.

Many segmentation, clustering, classification, image
retrieval and analysis techniques involving filter response
statistics will benefit from this approach. This similarity
measure is exploited for texture recognition and Bayesian
Markov Random Field (MRF) based segmentation. Re-
ported results shown the relevance and the effectiveness
of the method.
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