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Abstract: A simple two-stage biomass random effects population dynamics model is presented for 
carrying out fish stock assessments based on survey indices using no commercial catch information. 
Recruitment and biomass growth are modelled as random effects, reducing the number of model 
parameters while maintaining model flexibility. No assumptions regarding natural mortality rates are 
required. The performance of the method was evaluated using simulated data with emphasis on 
identifying parameter redundancy, which showed that the variance of the biomass growth random 
effect might only be estimable if large (>0.2). The full and two nested models were fitted to European 
anchovy (Engraulis encrasicolus) in the Bay of Biscay using two survey series. The best-fitting model 
had fixed biomass growth and random recruitment following a lognormal distribution. 
 
 
Résumé : Afin d'évaluer des stocks sur la base d’indices de campagnes sans données de captures 
commerciales, nous proposons un modèle de dynamique de population en biomasse à deux stades 
avec effets aléatoires. Le recrutement et la croissance de la biomasse sont modélisés comme des 
effets aléatoires, ce qui réduit le nombre de paramètres à estimer en gardant la flexibilité du modèle. 
Aucune hypothèse de mortalité naturelle n’est requise. La performance du modèle, en particulier, 
l'identification des paramètres redondants, a été évaluée par simulation, ce qui a montré que la 
variance de la croissance de la biomasse n’est estimable que si elle est grande (>0,2). Le modèle 
complet ainsi que deux modèles emboîtés ont été ajustés à deux séries d’indices de campagnes pour 
l’anchois commun (Engraulis encrasicolus) dans le golfe de Gascogne. Dans le modèle qui s’ajustait 
le mieux, la croissance de la biomasse était constante et le recrutement avait une distribution 
lognormale. 
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1. Introduction 
 
Unavailability or unreliability of commercial catch information have spurred the development of fish 
stock assessment methods that only use survey indices and do not require catch data. For example 
Cook (1997) proposed an age-structured stock assessment model which uses only survey indices for 
estimation; the model was applied to haddock by Beare et al. (2005). In addition to unreliable catch 
data, no age sampling data might be available for a given stock, either because ageing is difficult or 
too costly. However, it might still be possible to obtain survey indices for recruits and either the 
recruited proportion of the stock or the total stock including recruits. Possibly these indices will be in 
biomass not in numbers. Clearly in this data limited case, a simple and parsimonous stock 
assessment model is required. 
A range of simple stock assessment models have proposed in the literature. The best known surplus 
production biomass model is the Schaefer model and its derivations (Hilborn and Walters, 1992). One 
step up from this are two-stage models that account separately for adults and recruits (Collie and 
Sissenwine, 1983; Hoenig and Gedamke, 2007; Mesnil, 2003). Most existing simple models, in 
biomass or numbers, have in common that catches are subtracted, hence need to be known. The 
exception is the model proposed by Hoenig and Gedamke (2007) in which instead of subtracting 
catches, survival rates of recruits and recruited animals are modelled. However, constant survival 
rates over time have to be assumed for model parameters to be identifiable.    
Here a two-stage discrete biomass model is proposed that, similar to the model by Hoenig and 
Gedamke (2007), has a term for survival or rather biomass growth. However, the proposed model 
differs in two important aspects. First, biomass growth is not fixed between years, and secondly 
recruitment, although also variable between years, is assumed to come from a statistical distribution, 
for example a lognormal distribution, which reduces the number of parameters to two instead of being 
equal to the number of years. Practically this is achieved by modelling recruitment and biomass 
growth as random effects. For recruitment this choice is motivated by the results of the simulation 
study carried out by Maunder and Deriso (2003). These authors compared the performance of four 
different methods for estimating recruitment in catch-at-age models, including maximum likelihood 
estimation of annual recruitment, a random effects method (termed importance sampling of the 
marginal likelihood) and Bayesian estimation. They found that the random effects method and the 
Bayesian method performed best in terms of estimating annual recruitment and the standard deviation 
of the recruitment residuals. It seemed natural to use the same approach for estimating biomass 
growth. Alternatively a Bayesian approach could have been used as demonstrated by Porch et al. 
(2006) for an age-structured model using only survey data and no catches.  
The focus of this study is on model parameter identifiability, that is how many and which model 
parameters can be estimated for a given model with a given data set. A model is defined to be 
identifiable if no two values of the parameters give rise to the same distribution function resulting in 
different parameter values being associated with the maximum likelihood of any set of observed data 
(Gimenez et al., 2004). A model that is non-identifiable has redundant parameters. For any given 
model, there are two levels of redundancy. Intrinsic redundancy is a model property while for any 
actual data set there can be extrinsic redundancy, i.e. all model parameters are not identifable using 
the particular data set. There are several methods for detecting the number of redundant parameters 
(Gimenez et al., 2004). The number of positive eigenvalues of the Hessian matrix at the maximum 
likelihood informs on model rank, which corresponds to the number of estimable parameters. Non-
zero values in the eigenvector corresponding to zero eigenvalues identify which parameters are 
redundant. This method can be applied to detect intrinsic and extrinsic parameter redundancy using 
simulated and real data respectively. Intrinsic parameter redundancy can also be evaluated in 
simulation studies where estimates and true values are compared.  
In the next section the details of the proposed model are provided. Model properties, in particular 
parameter redundancy are then studied in three simulation studies. Finally the full model and two 
nested sub-models are applied and compared for anchovy in the Bay of Biscay. 
 
2. Two-stage biomass random effects model  
 
The population dynamics are modelled as    
 

Bt = Rt + gt-1 Bt-1           (1) 
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where Bt is the total population biomass, Rt the recruitment in biomass in year t and gt-1 the biomass 
growth rate during year t-1 which is the result of individual growth and survival (including natural and 
fishing mortality). Recruitment is assumed to follow a lognormal distribution with no autocorrelation or 
any relationship between the spawning stock and recruits  
 

log(Rt) ~ N (μR, σR
2)      (2) 

 
Biomass growth is modelled by a random walk on the log-scale  
 

log(gt) = log(gt-1) + εt
   with εt  ~ N(-0.5σg

2, σg
2).    (3) 

 
This formulation implies that the effects of catches on the inter-annual variation of the integrative 
parameter gt are either random or, if not, sufficiently small not to matter. Thus both recruitment Rt and 
biomass growth gt are treated as random effects. 
The observation model has two components. The first one is for observations of total biomass bt at 
time t (recruits included) and the second for observations of recruits rt. This formulation has been 
developed for the case where one survey method is used to obtain a total biomass index and a 
different method for the recruit index although the recruit index might rely partly on the same 
information. Both indices are assumed to follow lognormal distributions with the variance for the recruit 
index being a multiple of that for the total biomass index and each have separate constants of 
proportionality 

 

log(bt) ~ N( log(qb Bt), σI
2)    (4) 

log(rt) ~ N( log(qr Rt), α σI
2).    (5) 

 
To make the model identifiable, qb is set to 1 but qr is estimated. Hence all population biomass 
estimates are relative to the index for which q is fixed to 1. Furthermore, α =1, but any other value 
could be chosen for a given case study. If two survey series are used for the same time period, 
separate constants of proportionality are fitted for each survey series, but again constraining the 
constant of proportionality of one of the survey series to one. Thus, in that case the observation model 
parameters are  and  for total biomass and recruitment biomass of survey 1,    and   for the 
corresponding constants of proportionality of survey 2. Again, some constraints are necessary: either 

=1 or =1. For any lognormally distributed variable x, 

1
bq 1rq 2

bq

)1+

2rq

1
bq 2

bq )(log()][log( 2≈ xcvxV
1
I

, given cv(x) is 

small. Hence instead of estimating survey observation errors σ and 2
Iσ , the coefficient of variations 

CVI
1 for survey 1 and CVI

2 for survey 2 are estimated.      

 
2.1. Parameter estimation  
 
Estimation of model parameters θ (see Table 1) is carried out by maximum likelihood based on the 
observation vector y = (b1,..., bn, r2,..., rn) which has conditional density )( uyθf  where u = (R2,..., Rn, 
g2,..., gn) is the vector of latent random variables with marginal density h(u).  The marginal likelihood 
function is obtained by integrating out u from the joint density )()( uuy θθ hf   
 

uuuyθ dhfL ∫= )()()( θθ        (6) 

 
The joint penalized loglikelihood is ))(log())(log()( uu θθθ hyfPL += . 
The integral in (6) is evaluated using the Laplace approximation as implemented in the random effects 
module of AD Model builder and described in Skaug and Fournier (2006). AD Model builder 
automatically calculates standard deviations of estimates based on the observed Fisher Information 
matrix. 
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3. Simulation studies 
 
3.1. Simulation study 1: Parameter redundancy 
To investigate the parameter redundancy in the proposed biomass model (eqs. 1-5) given the 
constant of proportionality for total biomass qb=1 and the ratio between survey variances α=1, 
observations were simulated using the same model as for the estimation. The usefulness of the recruit 
survey index in addition to the total biomass index for the estimation was evaluated by comparing 
parameter estimates with and without the use of a recruit index. Two scenarios were investigated in 
each case, one with a small value for the interannual variability in biomass growth (σg

2 = 0.02) and one 
with a much larger value (σg

2 = 0.2) to increase the variance in the data for biomass growth estimation. 
Finally, the observation equations 4) and 5) assume that recruit and total biomass survey indices have 
independent errors. To evaluate the impact violation of this assumption might have on parameter 
estimates, a scenario with correlated observation errors for the total and recruit biomass index in each 
year t was simulated (εb,t = εr,t; εr,t ~N(0, σI

2
 )).   

For each scenario, 20 years of 100 population trajectories and one realisation of survey observations 
for each trajectory were simulated. Parameter estimation started from the true values in all cases. 
Table 1, last column, gives the parameter values used for the simulations. 
Comparing estimated parameter values with true values for the scenario with small σg, it appeared that 
histograms of estimated parameters were centred on the true values for all parameters except σg  
which was estimated as zero, or rather a very small values corresponding to the lower bound in the 
estimation procedure (Fig. 1a). The estimates of this parameter became non-zero for 70% of 
population realisations when the true parameter value was large (Fig. 1b). Thus the actual value of the 
interannual variability in biomass growth influences the estimability of this parameter, i.e. the fact that 
parameter estimates are less often running up against the boundary which implies that the parameter 
is less often redundant. Parameter redundancy will be investigated more formally below. When 
estimation model parameters using only a total biomass index and no recruit index, estimates of 
survey CVI tended to be zero for a large majority of trajectories and σg was also generally not 
estimable (Figs. 1c&d). Thus the use of the recruit index series allowed more accurate and precise 
estimation of survey index CVs and of the recruitment distribution. In the case of using survey indices 
with correlated observation errors, only the estimates of survey uncertainty CVI itself were mainly 
affected by being underestimated and none of the other parameters apart from σg (Fig. 1e). Hence, if 
survey indices are correlated instead of independent as assumed by the model, the magnitude of the 
survey uncertainty will be underestimated. 
To investigate the confounding of model parameter estimates, Table 2 provides as an example 
correlation estimates from the scenario with large interannual variability in biomass growth 
(corresponding to Fig 1b). The lower triangular part of the matrix shows the minimum, median and 
maximum pair-wise correlations across the 100 simulations. Several parameter estimates were found 
to be strongly correlated indicating they may be confounded. The constant of proportionality qr of the 
recruit index was strongly positively correlated with biomass growth g1, and strongly negatively 
correlated with biomass growth uncertainty σg and average recruitment μR. Estimates of μR were 
further negatively correlated with g1 and positively with σg, which in turn was negatively correlated with 
CVI.  
For each simulation of all five scenarios, model rank was determined from analysis of the non-zero 
(<10-6) eigenvalues of the Hessian matrix at the maximum likelihood estimates. Full rank (seven 
parameters) was found for 10% and 70% of simulations for the scenarios with small (Fig. 1a) and 
large σg (Fig. 1b) values respectively that used both survey indices. The remaining simulations had 
rank six with the parameter σg being redundant. For the scenarios with no recruit survey index, model 
rank was only five for all simulations with small (Fig. 1c) and 60% of simulations with large σg (Fig 1d) 
and rank six for the remainder. The parameters that were redundant varied between simulations and 
affected all parameters except μR and qr which were always estimable. In the case of survey series 
with correlated observation errors (σg =0.2; Fig. 1e) 66% of simulations had full model rank, while 
model rank was only six for 34% of simulations in which case either σg or CVI were redundant. So in 
general σg tended to be redundant while all other parameters proved to be estimable to various 
degrees in the different scenarios. 
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3.2. Simulation study 2: Impact of fishing history and survey index uncertainty 
This simulation study addresses the issue of the impact of fishing history, underlying natural mortality 
rates and survey index precision on model parameter estimates. Fish population trajectories were 
simulated using an age-structured population dynamics model with size-selective fishing, stochastic 
recruitment following a Beverton-Holt function and variations in fishing mortality over time (for a 
description of the model see appendix of Mesnil 2003). Three scenarios were simulated intended to 
represent common fishing histories and species characteristics. The first two scenarios imitate longer 
lived species with relative low natural mortality (M=0.2) and randomly varying fishing mortality (range 
0.4-0.7) for scenario F1 and increasing fishing mortality towards the end of the series for scenario F2 
(increase from 0.4 to 0.75). The third scenario M1 is the same as the first but for shorter lived species 
such as anchovy with higher natural mortality (M=0.8). For each scenario, one population trajectory 
was simulated from which 100 survey indices were drawn for a range of observation errors. The 
scaled trajectories of total population biomass are shown in Fig. 2. Simulated survey indices in 
numbers were transformed into indices in biomass by multiplying numbers-at-age by constant weight-
at-age values and then summing over all 15 ages for the total biomass index.  
For scenario F1, coefficients of variations of parameter estimates increased with the uncertainty in 
survey indices (Fig. 3a). The increase was strongest for the survey constant of proportionality qr and 
least for the estimate of survey uncertainty CVI. The overall most precisely estimated parameter was 
mean recruitment μR and recruitment variability σR was the least precisely estimated. It might appear 
surprising at first, that σg was estimated in more simulation runs when survey uncertainty was large, 
about 40% of simulations for a CVI of 0.5 and only 20% for a CVI  of 0.3. However, more uncertainty in 
survey indices can also be interpreted as larger interannual variability in biomass growth, which as 
simulation study 1 showed makes this parameter less likely to be redundant. When comparing true to 
estimated survey uncertainties, a clear negative bias appeared where the bias increased with 
increasing values of CVi (Fig. 3b). The root mean squared error (RMSE), defined as the square root of 
the mean over years and simulations of the squared deviations between estimates and truth, of total 
population biomass estimates did not depend on survey index CVI (Fig. 3c). In contrast, RMSE for 
recruit biomass estimates increased linearly with survey index CVI (Fig. 3d).  
From the comparison of  coefficients of variations across simulation scenarios (CVI=0.3) it appeared 
that the type of fishing history and natural mortality level had a great impact on the coefficient of 
variation of model parameter estimates (Fig. 4). Most affected was the CV of recruitment variability σR, 
followed by mean recruitment μR and recruit survey qR. Survey CVI was underestimated in all 
scenarios (true value 0.3). In the detailed study of scenario F1 above, it was also found that the bias 
increased as the simulated survey CVI increased. Scenario F2 with higher fishing mortalities at the 
end of the time series was the least informative leading to the most imprecise parameter estimates, 
i.e. highest CVs in Fig. 4. Second was scenario M2 with higher natural mortality compared to scenario 
F1 which provided the most information for model parameter estimation. As the population dynamics 
model used for simulation was different from the fitted model, model misspecification was present in 
all cases.           
 

3.3. Simulation study 3: National Research Council scenarios 
The five data sets simulated for the US National Research Council rounds of tests of various fish stock 
assessment methods during 1997 were used to further explore the performance of the proposed 
model. Four data sets correspond to a fishing history of depletion and one to a recovery situation; a 
sixth set was added for a two-way trip and no observation error (Table 3). The advantage using a 
standard data set is that the outcome has been published (NRC, 1998), enabling the performance of 
any proposed method to be compared with that of the methods considered then. The data were 
generated by an age-structured population model, where a 15-age population was projected over 
some 40 years but data for only the last 30 years were retained. Details of the data generation are 
given in Chapter 5 and Appendix E of the NRC report. Fishing mortality was adjusted in the 
simulations as to obtain the desired trend in population abundance. Each data set is a single 
replication of a combination of stochastic processes. A special comment applies to data set 3, which 
involves a change in survey vessel (and a near doubling of the survey catchability q), a feature that is 
a clear violation of basic model assumptions. Data set 5 simulates a case with very low exploitation 
rate. 
Two performance measures were calculated. For each quantity of interest, the time series of 
estimates, on the one hand, and of true values, on the other hand, were first normalised by subtracting 
the respective mean and dividing by their standard deviation, which gives a common scaling. Then the 
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RMSE was computed. The estimated biomass depletion, that is as considered in the NRC 
tests was also retained as an indicator for comparisons, together with the NRC criterion that the 
relative estimation error, , where ( is the true depletion, should 
be smaller than ± 25%. 

130
ˆ/ˆ BB

)/ 130 BB)//()/ˆ/ˆ(*100 130130130 BBBBBB −

The comparison between true biomass and estimated biomass showed that estimates  followed the 
time trends but were smoother for some simulation sets (Figure 5). The exception was set 3 for which 
a change in catchability in the middle of the time series was ignored in the estimation model. This led 
to an error in the estimated time trend around that point which resulted in a large root mean square 
error (RMSE) for both total biomass and recruit estimates (Table 3, column 5 and 6). In contrast, 
biomass trends for set 6 with no observation error were most precisely estimated, i.e. scaled total and 
recruit biomass estimates had the smallest RMSE. The results for all other sets were similar. Thus the 
type of simulated fishing history (depletion or recovery) did not have any impact on the error of 
estimated biomass trends. However, ignored changes in survey catchability (simulation set 3) had a 
large impact. Depletion estimates were within the 25% limit for four out of the six data sets. None of 
the six models tested by the NRC provided satisfactory depletion estimates for simulation set 3, while 
depletion estimates were within the limit for one to three out of five tested models depending on the 
simulation set (Table 3, last column).  
 
 
4.  Case study: Anchovy in Bay of Biscay 
 
4.1. Survey indices  
Biomass survey indices for anchovy (Engraulis encrasicolus) from Spanish and French surveys taking 
both place in the Bay of Biscay in May every year were available for the period 1989 to 2005, with 
some missing years (ICES, 2006). Spain carries out an egg survey and uses the daily egg production 
method (DEPM), estimates of  daily fecundity and regional population age structure to estimate total 
biomass and biomass at age 1 (Somarakis et al., 2004). The French biomass indices are based on 
acoustic data and pelagic trawl hauls for species identification (Massé, 1996). Age 1 indices are 
obtained using length-frequency distributions per sampling unit and a global age-length key. For this 
survey, age 1 biomass was estimated from numbers by assuming a mean weight of 15 gram per 
individual. All survey indices were divided by 1000 for model fitting. Given the recruit indices were 
obtained from data collected during the same survey as for the total biomass index, although in both 
cases splitting into age classes was done on a regional basis, both indices are expected to be 
correlated to some degree. The results of simulation study 1 have shown that in the case of correlation 
between the two indices, estimates of survey uncertainty CVI are likely to be underestimated but none 
of the other model parameters should be much affected.  
 

4.2.  Models 
The simulations studies reported above showed that certain parameters of the proposed two-stage 
random effects biomass model might not be estimable independently (μR, g1 and qr are confounded), 
while σg might not be estimable at all. Survey uncertainty (CVI) was found to be often underestimated, 
in particular when the observation error of the two survey series was correlated. Therefore three 
nested models were fitted to the anchovy data and compared by likelihood ratio tests. The p-values 
from these tests are only approximate and should be treated with care in case of borderline results 
(see discussion in Wood 2006, section 6.2.3). The base-line model, called RE-g, corresponds to the 
full model (eqs. 1-5) with a random effet for biomass growth. In the constant growth model, FE-g, 
biomass growth is treated as a fixed effect across years (σg = 0). Finally, in the constant growth and 
known survey uncertainty model, FE-g-CV, CVI is fixed at some suitable value in addition to constant 
biomass growth. For the DEPM indices, a CV of 0.2 taken from ICES (2006) was used. For the 
acoustic indices, a CV of 0.16 as estimated by Petitgas et al. (2003) was employed. For all three 
models, the constant of proportionality of the acoustic total biomass index was set to one ( ). 
This is an arbitrary choice, to explore its consequences, the value was varied between 0.1 and 1.2. In 
addition, the constant of proportionality of the DEPM index, , was also fixed at different values. 

1=acoustic
bq

DEPM
bq

To check that the assumption of an independent random distribution was reasonable for recruitment, 
the autocorrelation function was calculated for each recruitment survey index. There was clearly no 
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sign for any autocorrelation (results not shown). As for the type of distribution, assuming a log-normal 
distribution for recruitment seemed reasonable; Bergh and Butterworth (1987) made the same 
assumption when studying management options for South African anchovy.  

 
4.3. Anchovy results 
The three nested models were compared using approximate likelihood ratio tests  (Table 4, column 4). 
The best model was model FE-g with constant biomass growth across years. Analysis of the Hessian 
matrix showed that all parameters were estimable in models FE-g and FE-g-CV, while there was one 
redundant parameter in model RE-g which turned out to be the interannual variability in biomass 
growth σg.  
Model parameter estimates did not differ much between models (Table 4 right hand columns). CVs of 
parameter estimates were generally in the range 0.2-0.3 for models RE-g and FE-g;  CVs of 
parameter estimates were about halved when survey CVs were fixed (model FE-g-CV). A noticeable 
exception were the parameter estimates for σR. The CV of the estimate of this parameter was high for 
all models. The standard error of biomass growth σg was not actually estimable in model RE-g 
(estimate corresponded to lower parameter bound). Estimates of the constant of proportionality for 
recruits were smaller than those for total biomass indices for the acoustic time series, but about the 
same or larger for the DEPM series. Point estimates for survey CVs were 0.49 for the acoustic indices 
and 0.31 for the DEPM indices. This is much larger than the values assumed in model FE-g-CV, which 
were 0.16 and 0.2 respectively.  
Some parameter estimates were strongly correlated (Table 5). The constants of proportionality for the 
two recruit indices were positively correlated with each other and also with the annual year biomass 
growth g and negatively correlated with the mean recruitment level μR. All other parameter estimates 
were less correlated.   
Population biomass estimates (95% confidence bands based on assuming normal distributions) for 
the three models are given in Fig. 5. Note that estimates from models RE-g and FE-g have identical 
confidence bounds. The most noticeable feature of these figures is that by fixing survey uncertainty 
instead of estimating it, the confidence intervals for total and recruit biomass estimates with model FE-
g-CV were much tighter than for the other two models.  
To check model assumptions, residual qq-plots were investigated for the best model FE-g (Figure 6). 
Residuals from total biomass indices followed the expected standard normal distribution quite well, 
whereas there were some problems for residuals from the recruitment indices. The lognormal 
distribution assumptions was not completely satisfactory for the recruitment indices, as the quantiles 
departed from the diagonal at small and large quantiles. Thus a different distribution might be more 
appropriate. However, trials with recruitment being modelled by a normal approximation to a Poisson 
distribution or a Normal distribution did not lead to better results. 
Finally, to investigate the impact of the arbitrary choice of setting the constant of proportionality for the 
acoustic total biomass index to one, the penalised loglikelihood function was compared for a range of 
values for  and  for the best model FE-g. Differences occurred only after the 12th 
decimal value. Hence there is no optimal value for the constant of proportionality and assuming 

=1 seems as good a choice as any other value.      

acoustic
bq DEPM

bq

acoustic
bq

 
4.4. Comparison of biomass estimates with model outputs using catch data  
The ICES working group in 2005 produced stock estimates on January 1 for the years 1987-2005 (see 
ICES, 2005) using the stock assessment package ICA (Patterson and Melvin, 1996). ICA uses survey 
indices and commercial catch data for the estimation. In order to obtain total biomass estimates in mid 
May at the time of the biomass estimates calculated in this paper, ICA numbers were projected 
forward using the formula (ICES 2005, p 418)  

( )MSFNwB at
jan
tata

may
ta 12

5.4ˆ
12

5.4expˆˆ ,,, −−=  a=1,..., 5 

where  is the estimated stock number for age a in year t, wa,t is mean weight at age in the stock,  

 is the estimated annual fishing mortality which is applied pro rata, Sa is fisheries selectivity (fixed 
to 0.45, 1, 0.99, 0.79 and 0.79 for ages 1 to 5 respectively). Note that in ICA animals become one year 
older in January although anchovy spawn in spring (April - June) in the Bay of Biscay. Natural 
mortality M is assumed constant for all ages and years. All parameter estimates were taken from the 

jan
taN ,

ˆ

tF̂
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2005 assessment. As the fishing mortality for 2005 was unknown, the values for 2004 were applied, 
similarly for the mean weight at age.   
ICA biomass estimates lay within the 95% confidence intervals of estimates obtained with model FE-g 
although generally at the lower end (Figure 8). Note that ICA estimates were based on the assumption 
of =1 whereas for model estimates obtained here  =1 and = 0.73  (see 
Table 4) which explains the difference. 

DEPM
bq acoustic

bq DEPM
bq acoustic

bq

 
5. Discussion 
 
A simple model for fish stock assessment using two biomass survey indices and no catches was 
presented and its properties explored using simulations. These simulation studies showed that one 
parameter, the standard deviation of biomass growth σg, is only estimable if the true value is at least 
0.2. Furthermore, in both the simulation studies and the anchovy case study, estimates of several 
parameters were found to be strongly correlated among each other, for example estimates of σg with 
those of mean recruitment μR, the constant of proportionality qR and the observation error CVI. Due to 
setting the constant of proportionality for the total biomass index qb=1, all total biomass estimates are 
proportional to this survey index. In terms of using these stock estimates for management this means 
that only relative trends are available. 
The test using the NRC simulated data (NRC, 1998) showed that model performance was satisfactory 
compared to a number standard stock assessment methods tested in that study. The estimated 
depletion was within 25% of the true value for four out of six simulation sets. For set 3, the change in 
catchability in the middle of the time series threw the model off track. Similarly, none of the six 
assessment model variants using only survey data that were tested by the NRC was able to provide 
reasonable estimates for this data set (Table 3, last column). For simulation set 5, two out of five 
methods achieved depletion estimations within the 25% error bound, while in this study the relative 
error was slightly larger (33%). Comparing root mean squared errors for normalised time series for 
total biomass and recruits showed that the proposed model achieved a lower RMSE value for total 
biomass estimates, errors being typically about half those for recruits. In summary, the proposed 
model performed better than a number of those tested by the NRC, although the assumed population 
dynamics are rather simple.   
The application to Bay of Biscay anchovy illustrated the advantage of using a model compared to 
using the survey indices directly for stock assessment as it allowed reconciliation of two independent 
survey index series obtained using quite different sampling methods. All three models performed 
satisfactorily for total biomass estimates, though the 95% confidence bands were wide. A large 
increase in precision was achieved when observations errors were fixed instead of being estimated 
(model FE-g-CV). However, as shown by the residual plots, the recruitment model could be improved 
for anchovy, perhaps by including additional information or a stock-recruitment relationship. Various 
studies have been carried out to develop predictive models of anchovy recruitment using 
environmental variables (e.g. Borja et al. 1998). Nevertheless, as De Oliveira et al. (2005) have 
concluded from simulations, improved predictions can only be expected if indeed there is a strong link 
between environmental conditions and subsequent recruitment.  
Carrying out parameter estimation in a maximum likelihood framework allowed to compare different 
models for anchovy using likelihood ratio tests and to conclude that interannual variations in biomass 
growth were not estimable. Hence the best model was one with constant biomass growth, a feature 
which it has in common with the model proposed by Hoenig and Gedamke (2007), though in their 
case it was constant survival, because their model refers to abundance instead of biomass. In contrast 
to these authors, a model with constant biomass was selected as a result of model selection, not 
assumed a priori. An essential lesson to be drawn from the simulation studies and the anchovy 
application is that there can be extrinsic parameter redundancy in the proposed model depending on 
the data  used and that there is intrinsic parameter redundancy for certain parameter values, in 
particular for small values for the variance of biomass growth. It is therefore important when applying 
the model to check for extrinsic parameter redundancy by analysing the Hessian matrix of the fitted 
model and to consider a range of models in order to select the most suitable model for the case at 
hand.       
In terms of using model stock estimates for management, different ideas for using relative stock 
estimates have been put forward in the literature. Estimates could be scaled to absolute stock size 
using catch based stock assessment results, e.g. VPA estimates for years were the model has 
converged (Korsbrekke et al., 2001) or be made relative to some measure of virgin stock size (Porch 
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et al., 2006). Harvest control rules using changes in stock size to determine required changes in 
quotas or fishing effort are another possibility.  
When considering using the biomass estimates for the management of anchovy, one has to bear in 
mind that the management of small pelagics is generally impaired by the unpredictability of 
recruitment, as the incoming year class will contribute the bulk of the current year's catches (Hampton, 
1996). Indeed, the estimated standard deviation for the lognormal distribution of anchovy recruitment 
in the Bay of Biscay was 0.9 which is rather high compared to values generally below 0.6 found for a 
range of species, including herring and anchovy in other areas (see summary table 2 in Beddington 
and Cooke, 1983), or New Zealand snapper (Maunder and Deriso, 2003). In this situation, the only 
option might be to closely follow the stock using scientific survey data and opt for a flexible and 
reactive management strategy (Fréon et al., 2005; Uriarte et al., 1996). The proposed model could 
then provide smoothed stock biomass estimates which could feed into a harvest control rule. 
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Tables 
 
Table 1. Model parameter definitions and values used for simulation study 1. 
 
Parameter Description Eq. Value for 

simulation study 

1 

μR mean recruitment (base Normal distribution) (2) 10 

σR standard error of recruitment (base Normal distribution) (2) 0.5 

g1 biomass growth in year 1  (3) exp(-1) 

σg standard error of biomass growth (3) 0.02 (small) 

0.2 (large) 

qb
k constant of proportionality for total biomass index for 

survey k 

(4) 1 (fixed) 

qr
k constant of proportionality for recruit biomass index for 

survey k 

(5) 0.3 

CVI
k coefficient of variation of biomass indices on original 

scale for survey k 

(4) & (5) 0.15 

B1 Total biomass year 1  (1) 80 000 
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g q

Table 2. Correlations (minimum:median:maximum) between parameter estimates in simulation study 1 for scenario with σg = 0.2 and use of recruit and total 
biomass indices.  
 

 μR σR 1 σg r CVI 

σR -0.28:0.1: 0.37      

g1 -0.95:-0.5: 0.22 -0.03:0.08: 0.29     

σg -0.17:0.21: 0.86 -0.42:-0.01:0.19 -0.78:0:0.58    

qr -0.97:-0.74:-0.25 -0.03:0.13:0.41 -0.29:0.67:0.99 -0.92:-0.29:0.19   

CVI -0.42:0.01: 0.45 -0.26 -0.07 0.02 -0.47 -0.01 0.62 -0.78:-0.2: 0.31 -0.55:-0.01:0.48  

B1 -0.28:0.06: 0.42 -0.07:-0.01:0.05 -0.7:-0.36: 0.14 -0.54:0:0.4 -0.44:-0.08:0.38 -0.31:0.04:0.37 

 
 
Table 3. Specifications of simulated data (expanded from NRC 1998) and performance results for biomass random effects model. In bold proportion of models 
in NRC test using only survey information passing ±25% criterion. RMSE root mean square error. 
 

Set Population 
trend 

Survey q Survey 
cv 

Recruit 
biomass 
RMSE  

Total 
biomass 
RMSE  

Depletion 
estimate 

% error in 
depletion 
estimate 

Prop. 
models  in 
NRC test  

1 Depletion Constant 0.3 0.56 0.22 0.07 -23.7 1/5 

2 Depletion Constant 0.3 0.44 0.21 0.08 -6.0 3/5 

3 Depletion Higher 
later 

0.3 0.78 0.80 0.47 187.0 0/6 

4 Depletion Constant 0.3 0.54 0.18 0.06 13.4 2/5 

5 Recovery Constant 0.3 0.55 0.20 4.7 33.4 2/5 
6  2-way trip Constant 0  0.001 0.05 0.33 -6.4 not used 

 
 
 



 
Table 4. Model description and parameter estimates with coefficients of variation in brackets for anchovy case study. Results for models with  . p-
values for likelihood ratio test with model in line above. 

1=acoustic
bq

 
Model Description marginal 

loglikelihood 

n p-value   μR σR g1  σg  

qb
acoustic

 qb
DEPM  qr

acoustic  qr
DEPM  

CVI
acoustic

 

CVI
DEPM 

 B1 

RE-g random effect 

biomass growth  

32.67 10 -45.34 4.258 

(0.085) 

0.91 

(2.091) 

0.216 

(0.278) 

0.002 

(0) 

1 0.734 

(0.157) 

0.826 

(0.284) 

0.732 

(0.268) 

0.489 

(0.248) 

0.307 

(0.252) 

34.507 

(0.242) 

FE-g fixed effect 

biomass growth 

18.89 9 <0.001 

-19.78 

4.258 

(0.085) 

0.91 

(2.091) 

0.216 

(0.278) 

- 1 0.734 

(0.157) 

0.826 

(0.284) 

0.733 

(0.268) 

0.489 

(0.248) 

0.307 

(0.252) 

34.506 

(0.242) 

FE-g-

CV 

as FE-g and 

fixed survey 

uncertainty 

-14.20 7  0.24 

42.4 

4.033 

(0.074) 

0.948 

(3.447) 

0.293 

(0.117) 

- 1 0.737 

(0.071) 

0.965 

(0.126) 

0.925 

(0.117) 

0.16 0.2 29.158 

(0.103) 
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Table 5. Correlation coefficients for parameter estimates of model FE-g fitted to anchovy case study. 
See Table 1 for parameter definitions. acoustic: acoustic survey indices; DEPM: daily egg production 
method survey indices.  
 

  
μR σR g1 qb

DEPM qr
acoustic qr

DEPM CVI
acoustic CVI

DEPM 
σR 0.36        

g -0.49 0.13      

 qb
DEPM -0.38 -0.01 0.08     

 qr
acoustic -0.46 0.14 0.63 0.44    

 qr
DEPM -0.58 0.11 0.76 0.50 0.73   

CVI
acoustic 0.33 0.00 -0.39 -0.04 -0.20 -0.47  

 CVI
DEPM -0.29 -0.02 0.43 0.06 0.21 0.44 -0.44  

 B1 0.26 0.00 -0.18 -0.39 -0.24 -0.36 0.34 -0.26 
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Figure 1: Estimates and true values (vertical lines) from simulation study 1 (see table 1 for parameter 
values). a) Use of total and independent recruit biomass index for scenario with σg = 0.02 b) Use of 
total and recruit biomass index for scenario with σg = 0.2; c) Use of only total biomass survey index for 
estimation for scenario with small σg d) Use of only total biomass survey index for estimation for 
scenario with large σg; e) Use of total and recruit biomass with correlated errors for scenario with large 
σg. 
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Figure 2. Simulated population biomass trajectories for simulations study 2: scenario F1 (continuous 
line), scenario F2 (dashed line) and scenario M2 (dotted line). 
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Figure 3. Impact of survey uncertainty (CVI) on coefficients of variations of parameter estimates for 
scenario F1 of simulation study 2.  RMSE is the residual mean squared error. 
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Figure 4. Coefficient of variations of model parameter estimates for different fishing scenarios. F1 
constant fishing mortality; F2 higher fishing mortality at the end of the series; M1 as F1 but higher 
natural mortality, see figure 2 for simulated population trajectories. 
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Figure 5: Results for simulation study 3. True (continuous line) and model estimates (dashed line) for 
normalised total and recruit biomass. 
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Figure 6. Confidence bands (95%) derived from the fitted Hessian matrix for biomass estimates for 
recruits (age 1) and total population biomass for anchovy case study for model RE-g with random 
effect biomass growth (grey), model FE-g with fixed effect biomass growth (shaded) and model FE-g-
CV with fixed effect biomass growth and fixed survey CV (white). Acoustic (°) and DEPM (+) survey 
indices were transformed into population biomass indices by multiplying them with the inverse of the 
estimated survey coefficients of proportionality for model FE-g. 
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Figure 7. QQ-plots for residuals for total biomass and recruitment biomass estimates for model FE-g 
for anchovy case study. a) total biomass, b) recruit biomass. 
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Figure 8. Comparison of a) total and b) recruitment biomass estimates for model FE-g (°) with 
estimates derived from the 2005 ICES stock assessment (x) using the same survey indices and 
additionally commercial catches. 
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