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Cloud and rain effects on ALTIKA/SARAL Ka
band radar altimeter. Part II: Definition of a

rain/cloud flag
Jean Tournadre, Juliette Lambin and Nathalie Steunou

Abstract—The main instrument of the French-Indian Al-
tika/SARAL mission scheduled for launch in 2010, is the Ka-
band Altika altimeter. The high attenuation due to atmospheric
water (liquid or vapor) at this frequency band is the major
drawback of the use of Ka-band. In part I of this paper, the
impact of rain/clouds on Ka-band data and on the accuracy of
the estimates of the geophysical parameters have been analyzed
and quantified using an analytical model of waveform. Waveform
distortion and errors on the geophysical parameters can be
significant especially for small dense clouds and rain cells. It
is thus necessary to flag the data potentially affected by rain and
clouds. The use of a single channel for Altika prevents the use
of the classical dual-frequency rain flag used for Topex or Jason
altimeters, and requires the definition of a new flag based on
the altimeter signal alone. Past studies showed that clouds and
rain are characterized by sharp coherent along-track fluctuations
of the off-nadir angle estimates. The new flagging algorithm is
based on the analysis of the variations of this parameter by
Matching Pursuit (MP) algorithm. MP allows the decomposition
of a signal into a few salient features or atoms chosen from a
dictionary of elementary functions. The dictionary is here defined
by the wavelet decomposition of the signal. The method has been
tested on an ensemble of Altika passes simulated for cloudy, rainy
and cloud/rain free situations. The false alarm rate is almost nil
while the detection performances are better than 90% at a range
error of 5 cm and significant wave height error of 20 cm. The
flag can be easily adapted to other altimeters’ data and has
been used to flag several Jason-1 passes. The comparison to the
operational dual-frequency flag shows that the MP flag performs
better in detecting range errors and waveforms distortion, while
its performances are inferior in detecting samples attenuated by
rain.

Index Terms—Ka-band altimeter, rain and cloud impact,
rain/cloud flag.

I. INTRODUCTION

THE main instrument of the AltiKa/SARAL mission, de-
veloped by the French Centre National d’Etudes Spatiales

(CNES) in cooperation with Indian Space Research Organi-
zation (ISRO ), is based on the wide-band Ka-band Altika
altimeter. The major drawback of the use of Ka-band is that the
attenuation of the signal due to liquid water (rain and clouds,
which are often dense and frequent in the Tropics), is high.
This will be a strong constraining factor, as limitation of the
altimeter link budget imposes an attenuation of the signal of
less than 3 dB. In part I of the paper [1] an analytical model,
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based on the one developed by [2] for Ku-band altimeters,
has been adapted to compute Ka-band altimeter waveforms in
presence of cloud and rain. It has been used to model and
quantify the impact of rain and cloud on Altika waveforms
as well as on the accuracy of the geophysical parameters
estimates. The results showed that even light rain and/or
cloud liquid water content, especially for small rain cells
and/or clouds, can significantly distort the echo waveform and
degrade the accuracy of the geophysical parameters inferred
by waveform analysis. It is thus necessary to detect and flag
the samples potentially affected by atmospheric liquid water.
The same problem was encountered for Ku-band altimeters,
such as Topex, Jason-1 or Envisat, for medium and heavy
rain. For these dual frequency altimeters rain flags, based
on the differential attenuation of the main (Ku-band) and
secondary channels (C-band for Topex and Jason-1 and S-band
for Envisat) by rain droplets, were defined and are currently
used operationally [3], [4], [5], [6]. Unfortunately, Altika will
be a single frequency altimeter and this kind of simple and
efficient flag can obviously not be utilized.

Rain flags based on simple threshold on atmospheric liquid
water content estimates from coincident microwave radiometer
data, as originally used for Topex, were shown by [3] and [6]
to have a high false alarm rate for high liquid water content and
a low performance for low liquid water content. Furthermore,
the distortion of waveforms by rain or clouds depends more
on the variability of liquid water within the altimeter footprint
than on the average content itself [1]. This, and the high
sensitivity of Ka-band to liquid water, imply that this kind
of rain/cloud flag can certainly not perform efficiently. It is
thus necessary to develop a new rain flag and it has to be
based on the analysis of the altimeter measurement alone.

Past experience with Ku-band altimeter data showed that
rain cells are characterized by sharp coherent along-track vari-
ations of measured backscatter and off-nadir angle estimates
[2]. Altika waveforms modeled over rain cells or clouds by
[1] using an analytical model exhibit similar behavior. A
method of identification, detection and localization of these
characteristic transient features within the along-track series
of these parameters can certainly be used to flag the rain/cloud
affected samples.

Matching Pursuit (MP) technique [7] which allows the
expansion of a function using a dictionary of elementary
functions (atoms), provides a fast and powerful method for
decomposing a time-series into a few salient features well
localized in time and frequency. It has been quite widely used
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for the identification of transient features in domain such such
as electroencephalogram analysis [8], precipitations studies
[9], [10] or climatic records analysis [11], [12]. It is thus a
good candidate for a fast operational method of rain/cloud
flagging.

The method can be defined and tested on the Ka-band
simulated waveforms, but it can also easily be tested on real
data, i.e. rain affected waveforms measured at Ku-band by
Jason-1, which allows a validation against operational dual
frequency rain flags [4].

In Section 2, we present the Altika altimeter waveforms
modeled in presence of rain and clouds and the typical along
track variations of backscatter and off-nadir angle. Section 3
introduces the Matching Pursuit algorithm and the discrete
wavelet transform used to generate the dictionary of atoms. It
also presents the practical method to flag rain/cloud affected
samples. The flag is tested on simulated Ka-band waveforms
and on Jason-1 measured Ku-band waveforms in this section.
We make some concluding remarks in Section 4.

II. VARIATION OF ATTENUATION AND OFF-NADIR ANGLE

Using the model presented in part I of this paper [1], we
computed about 20,000 20-Hz Altika waveforms (i.e. one
waveform every 580 m along-track) using several clouds fields
as depicted by high resolution (1 km) cloud liquid water
content measurements from MODIS Clouds 5-Min L2 Swath
1 km and 5 km Collection 004 and 005 Product [13] (available
at http://modis-atmos.gsfc.nasa.gov/MOD06_L2/ ). A speckle
noise of the same order of magnitude as the one measured
on Jason-1 waveforms was then added to the Altika simulated
ones. For each waveform, the attenuation, Aw and the off-nadir
angle, ζ2, were then computed. Figure 1 presents an example
of Altika waveforms simulated over a MODIS cloud field
characterized by a medium liquid water content (maximum
of 0.3 kg.m−2) and a large range of cloud sizes. Figure 2
presents the mean and std of the integrated liquid water content
(ILWC) over the altimeter footprint (∼6 km diameter), the off-
nadir angle, and the attenuation estimated from the simulated
waveforms. The altimeter will of course not measure the signal
attenuation but the apparent backscatter σ0 which is the sum
of the true ocean surface backscatter (due to surface wind)
and the attenuation caused by cloud. A modeled backscatter
(Figure 2-d) was thus computed by adding attenuation and
a surface backscatter, here a typical surface backscatter mea-
sured by the Jason-1 altimeter. These variations of backscatter
and off-nadir angle are similar to the ones observed in Ku-
band altimeter data affected by rain such as the one presented
in Figure 4 for Jason-1 20-Hz altimeter measurements. The
Jason-1 off-nadir angle (Figure 4-b) has been estimated using
the same relation as the one used for Altika. Because of the
Jason-1 higher altitude and larger antenna beam-width the
typical off-nadir angle values are about 4.7 times larger than
the Altika ones for the same plateau slope.

The presence of liquid water within the altimeter footprint is
associated to coherent and sharp pulses of off-nadir angle and

Fig. 1. Integrated cloud liquid water from MODIS/Terra Clouds 5-Min L2
Swath 1km data for August 10, 2001 (a). The white line represent the pseudo
Altika track. Altika 20 Hz waveforms simulated along the track presented in
(a).

attenuation. Attenuation reflects quite closely ILWC and the
characteristics length of the attenuation pulses are of the same
order than that of the clouds. The off-nadir angle, which is a
good indicator of the waveform distortion depends strongly
on ILWC variability within the altimeter footprint and the
strongest variations are thus located preferentially near the
edges of the clouds. The variation of backscatter is more
complex as it reflects not only the variation of attenuation
induced by IWLC but also by that of surface wind. If the
large scale σ0 variability is clearly associated to the large
scale surface wind variability, the medium and short scale ones
result from both liquid water and wind variability. Without
some a-priori information, it is thus impossible to separate
their relative contributions and the σ0 analysis can not be
used alone for rain/cloud flagging. begincenter The along-
track off-nadir angle variations are much simpler and they
can be decomposed into a low frequency signal associated
with the “real” mispointing due to the platform movements
(typical length scale of 10000 km for orbital dynamics or
1000 km for orbital maneuvers), Gaussian noise associated
with speckle and short scale pulse (Dirac). These pulses are
associated with waveform distortion caused by strong short
scales variations of backscatter within the altimeter footprint
created by atmospheric water attenuation. It should be men-
tioned that as shown by [14], surface slick can also created
such pulses but in such cases the signal is not attenuated but
strongly enhanced (so that the phenomenon has been called
“sigma0bloom” in the literature) because of very high surface
backscatter.

The errors induced by clouds on the range and significant
wave height estimated by the MLE4 algorithm planned for
the waveform retracking [15] are also presented in Figure 2-e
and -f. The range and swh errors, i.e. the difference between
the values estimated by MLE4 and the one used as inputs in
the waveform model, result from waveform distortion and the
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Fig. 2. Integrated cloud liquid water, mean (solid line) and standard deviation
(dashed line) over the altimeter footprint (a), Off-nadir angle estimate (b),
attenuation (c), backscatter (d), range error (e) and significant wave height
error (f) corresponding to the simulated waveforms of Figure 1.

21 22 23 24 25 26 27 28 29 30 31

10

15

20

σ 0 (
db

)

(a)
C
Ku

21 22 23 24 25 26 27 28 29 30 31

−0.2

−0.1

0

0.1

0.2

0.3

ζ 2  (
de

g2 )

(b)

21 22 23 24 25 26 27 28 29 30 31
0

0.5

1

1.5

2

latitude

JM
R

 L
W

C
 (

kg
.m

−
2 )

(c)

Fig. 3. Example of rain affected Jason SDR measurements (Cycle 62, Pass
152, Sept. 17, 2003). Ku- and C-band 20-Hz backscatter coefficients (a), 20-
Hz off-nadir angle estimates, the stars in (b) indicate the samples flagged
for rain by the operational Jason rain flag (b) and radiometer liquid water
content, the dashed line represents the liquid water content threshold used in
the detection algorithm (c).

largest errors are associated to the largest peaks of off-nadir

angles as for example near 4o.
Typical attenuation and ζ2 variations induced by clouds

have been modeled using simple cylindrical clouds with ILWC
from 0.1 to 2 kg.m−2 and diameters from 2 to 40 km. The
relative variations of attenuation and ζ2 (i.e. normalized by the
minimum and maximum values) as a function of the distance
between the cloud center and the satellite nadir normalized
by the cloud diameter are presented in Figure 5. Attenuation
presents in all case the same variation, i.e. a sharp drop whose
length is close to the cloud diameter. When the cloud diameter
is smaller than the altimeter footprint, ζ2 presents a single
peaks whilst for larger cloud, the variation is more complex
and characterized by two peaks located near the cloud edges
where IWLC variability is maximum.

III. RAIN/CLOUD FLAG

A. Wavelet analysis and matching pursuit

Matching pursuit was originally formulated by [7] as a
technique for identifying the time/frequency content of a time
series whose spectral properties evolve over time. The basic
idea was to construct a large ’dictionary’ of explanatory func-
tions that are localized both in time and in frequency and then
to analyze a time series by projecting it against the functions
in the dictionary. Matching pursuit can be adapted to explore
other properties of a time series besides its time/frequency
content.

Below we briefly recall the basic ideas: we seek a linear
expansion approximating the analyzed signal s(t):

s(t) ≈
M∑

i=1

aigi(t) (1)

in terms of functions gi chosen from a large and redundant
set of basic functions (dictionary D). The problem of choosing
M functions, which explain the largest part of variance of a
given signal is a N-P hard problem [16], i.e. computationally
intractable. MP offers a sub-optimal solution, obtained by
means of an iterative algorithm. In the first step, the function
g0 which gives the largest product with the signal s is chosen
from the dictionary D, composed of normalized functions
(||gn|| = 1). In each of the consecutive steps, the function
gn is matched to the signal Rs

n which is the residual left
after subtracting results of previous iterations:





R0
s = s (2a)

Rn+1
s = Rn

s− < Rn
s , gn > gn (2b)

gn = arg maxgi∈D
(< Rn

s , gi >) (2c)

For a complete dictionary the procedure converges to s with
M →∞ [7]. In practice we use finite expansions

s =
M∑

n=0

< Rn
s , gn > gn (3)

Orthogonality of Rn+1
s and gn in each step implies the

conservation of energy

||s||2 =
M−1∑
n=0

| < Rn
s , gn > |2 + ||RM

s ||2 (4)
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The complete demonstration of the convergence and energy
conservation is given in [7]. The most important feature of
this decomposition is that it is a greedy algorithm, i.e. that
chooses at each iteration a function that is best adapted to
approximate part of the signal.

Many different dictionaries can be used for MP depending
on the type of time-series to analyze. As originally proposed
by [7] for audio signal, we use wavelets to create the time-
frequency dictionary of atoms necessary for MP. The contin-
uous wavelet transform (CWT) of time series s with respect
to wavelet ψ is defined as

W (λ, t) =
ˆ +∞

−∞
ψλ, t(u)s(u)du (5)

where
ψλ, t(u) =

1√
λ
ψ

(
u− t

λ

)
(6)

The variable λ is the scale and t is the point where the wavelet
is centered.

For discrete time-series, CWT cannot be computed exactly,
and discrete wavelet transform (DWT) has to be used. The
DWT can be regarded as an approximation of the CWT over
a so-called dyadic grid of scales. Each row is usually set to
the largest integer that is less than or equal to log2(N) where
N represents the sample size [17].

Several wavelet analysis and matching pursuit software are
available as freeware, among them, Wavelab [18] (available at
http://www-stat.stanford.edu/~wavelab/ ) is certainly one of the
most complete and easy to use. The algorithm for rain/cloud
detection is defined using Wavelab functions.

B. Rain/cloud detection using Matching Pursuit

The detection of altimeter samples affected by rain or cloud
is based on the analysis of the along-track variations of the
off-nadir angle. The goal is here to detect the intervals where
the off-nadir angle presents short scales coherent variations
such as the ones presented in Figures 2 and 5.

The along track ζ2 resembles a Werner Sorrows signal, i.e.
a superposition of sinusoids and Diracs [19] and can be easily
decomposed using MP and the dictionary of atoms defined
by the wave-packet decomposition of the signal defined by
Daubechies 8 (D8) mother wavelet (see Figure 6). This wavelet
was chosen because it is quite similar to the typical ζ2

variations presented in Figure 5. The ζ2(t) series is thus
decomposed into a small number of atoms using the Mallat
and Zhang MP algorithm, i.e.

ζ2(t) '
n∑

i=1

aigi(t) =
n∑

i=1

aiψλi,ti(t) (7)

where n is the number of selected atoms, ai is the energy of
atom i and gi are the atoms chosen from the dictionary D of
the D8 wavelets ψλ,t.

In practice, the method can be applied to a time series of any
length m. As the length is arbitrary, the signal is first padded
to dyadic length (i.e. to 2m1 where m1 = dlog2(m)e) by
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Fig. 4. Example of rain affected Jason SDR measurements (Cycle 62, Pass
152, Sept. 17, 2003). Ku- and C-band 20-Hz backscatter coefficients (a), 20-
Hz off-nadir angle estimates, the stars in (b) indicate the samples flagged
for rain by the operational Jason rain flag (b) and radiometer liquid water
content, the dashed line represents the liquid water content threshold used in
the detection algorithm (c).

folding to allow discrete wavelet transform. The signal is then
normalized by the ζ2 noise computed in absence of clouds and
rain and it is decomposed over the wavelet packet defined by
the D8 mother wavelet. Only the wavelets of scale λ less than
9, i.e. less ∼512 sample (about 160 km) length, are considered
as longer scales can not be associated to rain or cloud. The
MP algorithm is then applied to select the pertinent atoms.
The original selection criterion proposed by [7] selects the N
atoms which have the largest energy where N is chosen by
the user. In absence of cloud or rain such a selection criterion
can lead to false alarm as N atoms are always found. It was
adapted to select only the atoms whose energy is significantly
larger than the noise level.

After testing different threshold values in particular for false
alarm rate, the energy threshold was set to three times the noise
level. An example of MP decomposition of the along track ζ2

variations of Figure 2 is presented in Figure 7. The twenty-
nine atoms selected are shown in Figure 7-a. Each atom is
characterized by its location (Figure 7-a), its energy (Figure
7-d) and its scale (Figure 7-e). Some very energetic events,
such as the one near 4o, can be associated to several atoms of
different scales and energies, while less energetic ones such
as the one near 16 o are well represented by a single atom.

The approximation of the signal by the selected atoms (7) is
a filtered version ζ̄2 of the signal that contains only the most
energetic short scale variations associated to clouds. Figure
8 which presents ζ2 computed from the noisy waveforms
of Figure 1 as well as the ones estimated from the non-
noisy waveforms and the MP filtered ones, shows that the
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Fig. 5. Variation of attenuation (a) and off-nadir angle (b) as a function of
the distance between the satellite nadir and the cloud center for cylindrical
constant clouds whose diameters are larger than the altimeter footprint. IWLC
ranges from 0.1 to 2.0 kg.m−2 and diameter from 10 to 30 km. The distance
is normalized by the cloud diameter and the variations are normalized by the
minimum and maximum values. (c) and (d) idem for clouds with diameter (2
to 6 km) smaller than the altimeter footprint.

0 10 20 30
−0.2

0

0.2

0.4

0.6

Samples

Y

Fig. 6. Daubechies 8 (D8) mother wavelet.

reconstructed ζ2 reproduces very well the variations associated
to clouds (i.e. ζ2 estimated from the non-noisy waveforms).
The MP ζ̄2 is then used to flag the samples by selecting the
values whose absolute value is larger than a given threshold
(|ξ2| > αξ2noise with α = 0.1). This selection is used to
eliminate the small ripples associated located at the edges of
some atoms.

The first quality a flag should have is a false alarm rate as small
as possible. This has been tested by applying the method to an
ensemble of Altika passes simulated in cloud free conditions.
More than 20,000 cloud free waveforms composing 6 passes
have been analyzed. The MP method detected no atoms and
no samples were flagged showing that the false alarm rate is
minimum.
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Fig. 7. Matching pursuit decomposition of the off-nadir angle of figure 2.
The 29 atoms that pass the energy threshold are presented in (a), the integrated
liquid water content in (b), the filtered off-nadir angle and flagged samples
(stars) in (c), the energy in (d) and the scale in (e).

The second quality of a flag is its score, i.e. its ability to detect
the samples for which cloud/rain causes large geophysical
parameters errors (range, swh and attenuation). Errors on
geophysical parameters can be decomposed into coherent ones
caused by cloud/rain and random ones induced by speckle
noise. As we used simulated waveforms, the cloud induced
errors are estimated as the differences between the values used
in the model and the ones retrieved by MLE4 on the non-
noisy waveforms. The score of the MP flag can be estimated
by comparison of the percentage of the flagged noisy and
non-noisy samples for given geophysical parameters errors.
An ensemble of 15 Altika tracks, totaling more than 60,000
waveforms simulated in cloudy, rainy and cloud/rain free
conditions, has been flagged (using the noisy off-nadir angle
estimates). For each waveforms, the geophysical parameters
errors are estimated by MLE4 for both noisy and non-noisy
waveforms. The percentages of flagged samples for given
range error, swh error and attenuation are presented in Figure
9. The detection of cloud induced errors is over 90 % for range
error larger than 5 cm and swh error larger than 20 cm, which
shows that the score of the algorithm is very good in detecting
all the waveforms that are strongly distorted by cloud liquid
water. The comparison of noisy and non-noisy percentages of
flagged samples, presented in the Figure, shows that the MP
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Fig. 8. Off-nadir angle computed from the noisy waveform of Figure 1
(a), from non-noisylyx ones (b), off-nadir angle filtered by the MP detection
algorithm (c).

algorithm allows a good discrimination of cloud and noise
induced errors. The Figure also shows that no samples with
zero IWLC are flagged, i.e. that the probability of false alarm
for cloud is null. However, the false alarm rate for range and
swh, i.e. percentage of samples having a zero non-noisy range
or swh error (or a noisy range error < 2.5 cm and noisy
swh error < 20cm) is about 10 %. As the probability of false
alarm of non cloudy samples is null, these false alarms for
range and swh concern only samples that are located within
or near clouds and are only weakly affected.

Concerning attenuation, the MP flag score is good for medium
and high attenuation: over 99 % at a 2 dB level and over 80 %
at a 1 dB level and it is acceptable at low attenuation: about
50 % at a 0.5 dB level. The percentage of flagged samples
for given mean and std of the integrated water content (Figure
9-d) confirms that for non cloudy samples the false alarm rate
is null. For high IWLC (> 0.5mm.h−1) and for high std
(> 0.25mm.h−1) more than 90 % of the samples will be
flagged which is in good agreement with the results of the
analysis of the simulated waveforms presented in part I of the
study.

C. Validation using Jason data

The method was further tested and validated using real high-
rate waveform data (SDR) from the Jason-1 altimeter. The MP
flag is very versatile and can be very easily adapted to Jason-1
data by simply changing the normalization coefficient of ζ2,
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Fig. 9. Cloud/rain flag performances. Percentage of detection for given range
errors (a), and swh error (b), attenuation (c). The thick solid line represents
the detection for non-noisy waveforms and the thin one for noisy waveforms.
Percentage of samples detected for given mean IWLC (thick solid line) and
std of IWLC (thin solid line) (d).

i.e. the noise level of the rain-free ζ2. The different selection
thresholds are the same as the Altika ones. The results can then
easily be compared to the operational flag based on the dual-
frequency capabilities of the Jason-1 altimeter. Several passes,
totaling 80,000 waveforms have been thus been processed and
flagged. The operational Jason-1 rain flag, which is normally
given only for 1 Hz GDR data, has here been applied to the 20
Hz SDR data for a more precise comparison. A description of
this flag is given in Appendix. Figure 10 presents a comparison
of the MP and operational flags for the Jason-1 pass presented
in Figure 4. The Ku-band attenuation presented in Figure 4-a
is the one given by (8) of Appendix. As it is not possible
to compute the true range error from measured waveform,
we computed a first order approximation of this error in the
form of the difference between the 20 Hz range and the 1 Hz
one (presented in Figure 4-c). All the rain events detected by
the operational flag (near 24o, 29-31o) are detected by the
MP flag. The MP flags only the samples strongly distorted
and not those that are strongly attenuated and that might still
be used to estimate valid geophysical parameters. MP also
detects two smaller rain events near 21.5 o and 26 o associated
to large waveform distortions and range errors. They were
not detected by the operational flag because the liquid water
content was below the detection threshold of 0.2 kg.m−2 (see
Figure 4-c), certainly because the rain cells were small. This
example shows that the MP flag performs certainly as well as
the operational one and that it is certainly more sensitive in
detecting small light rain events. It also shows that a sample-
to-sample comparison of the two flags, for example in the
form of dichotomous discrimination, will not be fully pertinent
because the bases of the two flags are too different. The MP
flags detects along track structures while the operational ones
tests the Ku and C-band backscatters sample by sample. The
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Fig. 10. Rain flag using MP for Jason data. Example of detection for pass
152 of cycle 62 (Sept. 17, 2003). 20-Hz Ku-band attenuation (a) range error
(b), off-nadir angle (c) and MP filtered off-nadir angle (d). The upper symbols
(crosses) indicate the samples flagged for rain by the MP algorithm and the
lower symbols (triangles) the ones flagged by the operational Jason rain flag.

flags’ performances are thus estimated by comparison of their
respective scores in detecting range errors, off-nadir angles
and attenuations. The MP flags has a much better score in
detecting high range error as can be seen in Figure 11-a, whilst
the false alarm rate is somewhat larger (8 % compared to 4 %).
As it can be expected from the respective flag definitions, the
detection of large off-nadir angle by MP (Figure 11-b) is much
better than by the operational flag one, while the detection of
attenuation (Figure 11-c) is inferior by about 20 %. However,
MP score is still over 80 % at a 2 dB level. The percentage
of flagged samples for given liquid water content (Figure 11-
d) is by definition null for low liquid water content (below
0.2 kg.m−2 for the operational flag and it is about 5-10%
for MP. For higher values, more samples are flagged by the
operational flag than by MP but the difference remains limited
(about 5%).

IV. SUMMARY AND CONCLUSION

The main instrument of the future Altika/SARAL mission
will be a wide-band Ka-band altimeter. The major drawback
of the use of Ka-band for altimeter mission is its sensitivity to
atmospheric cloud liquid water. The analysis of the impact of
cloud and rain through analytical model have shown that even
for light rain and small cloud the altimeter echo waveforms can
be significantly attenuated and distorted leading to erroneous
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Fig. 11. Comparison of the MP (solid line) and the operational Jason-1
(dashed line) rain flags. Fraction of samples detected as a function of range
error (a) absolute value of off-nadir angle (b), attenuation (c) and liquid water
content (d).

geophysical parameters estimates. It is thus necessary to accu-
rately detect and flag the samples that are potentially affected
by liquid water. Because of the use of a single frequency
for Altika, it is not possible to use the kind of rain flag
developed and currently used for dual frequency altimeters
such as Jason-1. A new rain flag has thus been defined, based
on the detection of coherent short scale variations of the off-
nadir angle estimates (i.e. basically the slope of the plateau of
the waveform). Indeed, past studies using Topex and Jason-
1 data or Altika simulations have shown that rain cells and
clouds are always associated with sharp variations of this
parameter. The detection algorithm is based on the Matching
Pursuit technique which allows the decomposition of a signal
into a few salient features using a dictionary of elementary
functions, here constituted by the wave-packet decomposition
of the signal. The analysis of the algorithm performances using
an ensemble of simulated altimeter passes for different cloud
conditions shows that MP flag detects more than 90 % of
samples with range errors over 5 cm, swh errors over 20 cm
and attenuation over 2 dB. The false alarm rate for cloud is
null, i.e. that no samples with zero IWLC are flagged. The false
alarm rate for range and swh, i.e. the percentage of sample
with range error less than 2.5 cm and swh error less than
25 cm is about 10%. These flagged samples are located near
clouds and are only weakly affected.

The MP algorithm is extremely versatile and it can be
easily adapted to any altimeter data by simply changing the
coefficient used to normalize the off-nadir angle (i.e. the noise
level in cloud/rain free conditions). The method has thus been
applied to an ensemble of Jason-1 passes. The comparison of
the MP and Jason-1 operational rain flag shows that the MP
flag performs better in detecting the waveform distortion and
thus range errors with a slightly higher false alarm rate, while
it performances are inferior in detecting attenuated samples.

The MP algorithm is fast and can easily be coded in the
ground processing chain to flag first the high rate waveforms
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and then the 1 second average ones (GDR). During the
commissioning phase, the different thresholds used in the
atoms selection and the rain/cloud flagging can easily be
adjusted as well as the normalization coefficient of the off-
nadir angle to refine the detection for given range and swh
errors.

APPENDIX
OPERATIONAL JASON RAIN FLAG

The detection of rain events using dual-frequency altimeter
data is well established and is currently used operationally in
the Jason processing to flag rain affected altimeter samples.
The principle has been described in detail in several studies
[3], [6], [4] It is based on the frequency dependency of
rain attenuation of the electromagnetic signals. Basically, it
detects occurrences where the Ku band (13.6 GHz) backscatter
measurements, σ0, is significantly attenuated compared to the
C-band (5.3 GHz) one. In practice, the measured Ku band σ0

is compared to the Ku band σ0 that should be expected from
the measured C-band σ0 through a rain free relationship. The
rain free Ku/C relation, f, is determined by binning the Ku-
band σ0 data in intervals of 0.1 dB of C band σ0. The mean,
f(σC

0 ), and standard deviation, rms(σC
0 ), are then computed

in each bin. The rain events are detected using the following
criteria [4]

∆σ0 = f(σC
0 )− σKu

0 > min(0.5 dB, 1.8 ∗ rms(σC
0 )) (8)

and
Lz > 200µm (9)

where ∆σ0 is the Ku band rain attenuation, σKu
0 is the Ku

band backscatter coefficient, σC
0 is the C-band backscatter

coefficient. The radiometer liquid water content, Lz , is ex-
pressed as a quadratic polynomial of the three JMR brightness
temperatures [20]. This second criterion is used to ensure
the presence of cloud liquid water and thus to minimize the
possibility of false alarm.
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