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Abstract:  
 
The feasibility of fish oil (FO) replacement by vegetable oils (VO) was investigated in gilthead sea 
bream (Sparus aurata L.) in a growth trial conducted for the duration of 8 months. Four isolipidic and 
isoproteic diets rich in plant proteins were supplemented with L-lysine (0·55 %) and soya lecithin (1 %). 
Added oil was either FO (control) or a blend of VO, replacing 33 % (33VO diet), 66 % (66VO diet) and 
100 % (VO diet) of FO. No detrimental effects on growth performance were found with the partial FO 
replacement, but feed intake and growth rates were reduced by about 10 % in fish fed the VO diet. 
The replacement strategy did not damage the intestinal epithelium, and massive accumulation of lipid 
droplets was not found within enterocytes. All fish showed fatty livers, but signs of lipoid liver disease 
were only found in fish fed the VO diet. Muscle fatty acid profiles of total lipids reflected the diet 
composition with a selective incorporation of unsaturated fatty acids in polar lipids. The robustness of 
the phospholipid fatty acid profile when essential fatty acid requirements were theoretically covered by 
the diet was evidenced by multivariate principal components analysis in fish fed control, 33VO and 
66VO diets.  
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Introduction 36 

 37 

Marine fish farming is mostly based on diets containing high levels of n-3 highly 38 

unsaturated fatty acids (n-3 HUFA), particularly eicosapentaenoic acid (EPA, 20:5n-3) and 39 

docosahexaenoic acid (DHA, 22:6n-3). However, the continuous expansion of aquaculture and the 40 

decreasing global availability of marine oil and fish meal force the industry to explore alternative 41 

and sustainable lipid sources(1,2). In salmonids, the use of vegetable oils to replace the majority of 42 

dietary fish oil (FO) is now feasible in practical aquafeeds without loss of growth performance(3-5). 43 

Nevertheless, essential fatty acid (EFA) requirements differ between species. Thus, linoleic acid 44 

(LA, 18:2n-6) and α-linolenic acid (LNA, 18:3n-3) can satisfy the EFA requirements of freshwater 45 

fish, whereas marine fish require longer chain n-3 and n-6 polyunsaturated fatty acids (PUFA) for 46 

optimal growth and health(6). Supporting this, fatty acid (FA) desaturation and elongation of LA and 47 

LNA are well established in freshwater and anadromous fish species(7), but marine fish including 48 

European sea bass(8) and gilthead sea bream(9,10) do not show rates for bioconversion of C18 PUFA 49 

into C20 and C22 HUFA that would allow n-3 HUFA requirements to be met.  50 

Signs of EFA deficiencies in fish include skin lesions and several neurological alterations 51 

linked to reduced growth and survival rates during larval and juvenile on-growing phases(11). Lipoid 52 

liver disease and intense accumulation of intestinal lipid droplets are also documented as metabolic 53 

disorders arising from defective supplies of phospholipids(12-14) and n-3 HUFA(15). Additionally, FA 54 

modulate immune responses and eicosanoid production from arachidonic acid (ARA, 20:4n-6) are 55 

recognized as inflammatory agents, whereas DHA, and especially EPA-derived eicosanoids exert 56 

anti-inflammatory effects in a wide variety of experimental models(16,17). However, factors other 57 

than dietary ones may influence lipid metabolism, and relative rates of fat deposition and 58 

mobilisation vary greatly as a result of environmental factors including parr-smolt transformation in 59 

salmonids(18,19). Likewise, gonadal maturation and spawning have a significant impact in the muscle 60 

FA profile of gilthead sea bream females(20). Deposition rates and FA profiles also vary seasonally 61 

in wild gilthead sea bream(21), but the feeding regime is a major influence and most of these changes 62 

can be overridden by full rations given under intensive aquaculture. Indeed, monitoring studies in 63 

various Greek fish farms failed to show a seasonal impact in the muscle fat deposition and profiling 64 

of gilthead sea bream(22). 65 

Gilthead sea bream is a major cultured finfish in the Mediterranean area, and extensive 66 

research to sustain further growth has proved that vegetable oils can replace up to 60% of the added 67 

FO, in fish meal-based diets, without adverse effects on growth, feed efficiency and survival 68 

rates(8,23,24). Additional studies have addressed the extensive replacement of fish meal by plant 69 

proteins(25,26), and recently growth-compensatory mechanisms of the somatotropic axis have been 70 



4 

evidenced in short-term trials when juvenile fish were fed during the summer growth spurt with 71 

plant protein-based diets and graded levels of vegetable oils(27). Indeed, with the total replacement 72 

of dietary FO some growth reduction occurred, and it was accompanied by decreased production of 73 

hepatic insulin-like growth factor-I (IGF-I) not compensated by the local expression (skeletal 74 

muscle) of IGFs and/or growth hormone receptors. In humans and other animal models, there is 75 

also increasing evidence linking endocrine and metabolic dysfunctions resulting in obesity and 76 

insulin resistance with steatosic livers and altered FA profiles of phospholipids and stored 77 

triglycerides(28). In this sense, three major goals were addressed herein in a gilthead sea bream trial 78 

conducted over a growth trial of 8 months duration a) the relationship between dietary and muscle 79 

FA profiles b) the robustness of the phospholipid FA profile when EFA requirements are 80 

theoretically covered in the diet, and c) histological alterations of liver and intestine as sensitive 81 

target tissues of lipid-metabolism deregulation. 82 

 83 

 84 
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Materials and methods 85 

 86 

Diets 87 

 88 

Four isoproteic, isolipidic and isoenergetic plant protein-based diets were made with a low 89 

inclusion level (20%) of fish meal and fish soluble protein concentrates (Tables 1 and 2). All diets were 90 

supplemented with L-lysine (0·55%) and contained soya lecithin (1%). Added oil was either 91 

Scandinavian FO (control diet, CTRL diet) or a blend of vegetable oils, replacing 33% (33VO diet), 92 

66% (66VO diet) and 100% (VO diet) of the FO. The blend of vegetable oils (2·5 rapeseed oil: 8·8 93 

linseed oil: 3 palm oil) provided a similar balance of saturates, monoenes and PUFA to that found in 94 

FO, but without HUFA(29,30). All diets were manufactured using a twin-screw extruder (Clextral, BC 95 

45) at the INRA experimental research station of Donzacq (Landes, France), dried under hot air, sealed 96 

and kept in air-tight bags until use.  97 

 98 

Growth trial and tissue sampling  99 

 100 

Juvenile gilthead sea bream (Sparus aurata L.) of Atlantic origin (Ferme Marine de Douhet, 101 

Ile d’Oléron, France) were acclimated to laboratory conditions at the Institute of Aquaculture Torre 102 

de la Sal (IATS) for 20 days before the start of the growth study. Fish of 16 g initial mean body 103 

weight were distributed into 12 fibreglass tanks (500 litres) in groups of 60 fish per tank. Water 104 

flow was 20 l/min, and oxygen content of outlet water remained higher than 85% saturation. The 105 

growth study was undertaken over 8 months (May 23rd - January 18th), and day-length and water 106 

temperature (11-27ºC) varied over the course of the trial following natural changes at IATS latitude 107 

(40º 5’N; 0º 10’E).  108 

Each diet was randomly allocated to triplicate groups of fish, and feed was offered by hand 109 

to apparent visual satiety twice a day (9.00, 14.00 hours) from May to September, and once a day 110 

(12.00 hours) from October to January. No mortality was registered, and feed intake was recorded 111 

daily. At regular intervals, fish were counted and group-weighed under moderate anaesthesia         112 

(3-aminobenzoic acid ethyl ester, MS 222; 100 μg/ml). At critical step windows over the growth 113 

trial (midsummer, August 5th; early autumn, September 27th; and early winter, January 18th), 114 

randomly selected fish (4 fish per tank; 12 fish per treatment) were killed by a blow on the head 115 

prior to tissue sampling. Portions of dorsal muscle (white muscle) were extracted and rapidly 116 

excised, frozen in liquid nitrogen, and stored at –80 ºC until FA analyses of lipid extracts. Liver and 117 

intestine samples for fat content determinations and histological samples were taken only in 118 

September (20 hours after the last feeding) when fish still show an active feeding behaviour. All 119 
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procedures were carried out according to national and institutional regulations (Consejo Superior de 120 

Investigaciones Científicas, Institute of Aquaculture Torre de la Sal Review Board) and the current 121 

European Union legislation on handling experimental animals.  122 

 123 

Histology and tissue lipid content determinations 124 

 125 

Tissue fragments of liver and hind gut were fixed in 10% buffered formalin, embedded in 126 

Technovit-7100 resin (Kulzer, Heraeus, Germany), and stained with toluidine blue (TB) or 127 

hematoxylin-eosin after thin sectioning (1-3 µm). Liver and muscle lipids were extracted according 128 

to Folch et al.(31), and determined gravimetrically after the evaporation of the organic solvent under 129 

a stream of nitrogen and overnight desiccation. 130 

 131 

FA analyses 132 

  133 

Muscle total lipids (TL) for FA analyses were extracted by the method of Folch et al.(31), 134 

using chloroform:methanol (2:1) containing 0·01% butylated hydroxytoluene (BHT) as antioxidant. 135 

Phospholipids (PL) from muscle lipid extracts were isolated by thin layer chromatography (TLC) 136 

(Silica gel G 60, 20 x 20 cm glass plates, Merck, Darmstadt, Germany) using hexane:diethyl-137 

ether:acetic acid (85:15:1.5) as a solvent system. PL bands at the bottom of plates were scraped and 138 

extracted with chloroform:methanol (2:1) containing 0·01% BHT.  139 

After the addition of nonadecanoic FA (Sigma, Poole, Dorset, UK) as internal standard,  140 

muscle PL and TL extracts were subjected to acid-catalysed transmethylation for 16.00 hours at       141 

50 ºC using 1 ml toluene and 2 ml of 1% (v/v) sulphuric acid in methanol(32). FA methyl esters 142 

(FAME) were extracted with hexane:diethyl ether (1:1), and those derived from TL were purified 143 

by TLC using hexane:diethyl-ether:acetic acid (85:15:1.5) as a solvent system. FAME were then 144 

analyzed with a Fisons Instruments GC 8000 Series (Rodano, Italy) gas chromatograph, equipped 145 

with a fused silica 30 m x 0·25 mm open tubular column (Tracer, TR-WAX; film thickness: 0·25 146 

μm, Teknokroma, Spain) and a cold on-column injection system. Helium was used as a  carrier gas 147 

and temperature programming was from 50 to 180 ºC at 40 ºC/min and then to 220 ºC  at 3 ºC/min. 148 

Peaks were recorded in a personal computer using the Azur software package (version 4.0.2.0. 149 

Datalys, France). Individual FAME were identified by reference to well characterized FO standards, 150 

and the relative amount of each FA was expressed as a percentage of the total amount of FA in the 151 

analysed sample.  152 

 153 
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Statistical analysis 154 

 155 

Growth parameters (tank average values) and the relative amount of FA were checked for normal 156 

distribution and homogeneity of variances, and when necessary arcsin transformation was 157 

performed. Data were analyzed by one-way ANOVA followed by Student-Newman-Keuls (SNK) 158 

test at a significance level of 5%. Also, the percentages of each FA were chemometrically analysed 159 

by including them as variables in a multivariate principal components analysis (MPCA) model. 160 

With such a parsimonic approach, the data set of variables (FA) is reduced into a smaller set of 161 

factors or components. Parsimony is achieved by explaining the maximum amount of common 162 

variance in a correlation matrix using the smallest number of explanatory concepts. Factors are 163 

statistical entities that can be visualised as classification axes along which measurement variables 164 

can be plotted, giving an idea of their correlation with the corresponding factor (loading). Score 165 

plots are a graphical representation of individual (dietary groups) scores in the new subset of 166 

measurement variables (factors). They illustrate the relationship among individual cases (dietary 167 

groups), and the variables, and help in the analysis of data by showing graphical associations, or 168 

through new statistical analyses. In the present work, factor scores were subsequently analyzed by 169 

one way ANOVA and SNK multiple comparison tests. All analyses were made using the SPSS 170 

package version 13.0 (SPSS Inc, Chicago, USA). 171 
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Results 172 

 173 

Growth performance 174 

Fish grew from 16 g to 240-270 g over a growth trial of 8 months duration under natural 175 

light and temperature conditions (Fig. 1). The final body weight of fish fed the CTRL diet did not 176 

differ from that of fish fed 33VO and 66VO diets, with overall specific growth rates ranging 177 

between 1·12 and 1·16 (see Table 3). By contrast, the total replacement of FO dictated a slight but 178 

significant reduction (10%) of final body weight in fish fed the VO diet. A concurrent and 179 

significant decrease of voluntary feed intake (g DM intake) was found in fish fed the VO diet. Feed 180 

efficiency (0·97-1·01) remained high and unchanged irrespective of dietary treatment.  181 

 182 

Tissue fat deposition and histological alterations 183 

  184 

After the summer replenishment of energy stores, lipid content of dorsal white muscle        185 

(6-8%) was not affected by the dietary treatment. Hepatic fat content in fish fed CTRL and 33VO 186 

diets was high and of the same order of magnitude (15% on wet matter basis; 0·23-0·25 g/100g 187 

body weight). A progressive and significant increase (up to 25%; 0·44 g/100 g body weight) was 188 

found with the graded replacement of FO in fish fed 66VO and VO diets (Fig. 2C). However, signs 189 

of initial and localized lipoid liver disease were only found with the total replacement of FO with 190 

vegetable oils (Fig. 2A and B). None of the FO-replaced diets produced apparent signs of 191 

histological damage in the intestine. Only one fish fed the VO diet had a moderate accumulation of 192 

lipid droplets in the intestinal epithelium that was not considered pathological. 193 

 194 

Muscle FA profile 195 

 196 

The effects of dietary treatment upon muscle FA profiles of TL are shown in a time course 197 

basis (Table 4). Overall, fish fed the CTRL diet contained 28% saturates (mainly 16:0 and 14:0), 198 

almost 32% monoenes (over half of which were 18:1n-9), 12% n-6 FA (predominantly 18:2n-6), 199 

and 18-20% n-3 HUFA (predominantly EPA and DHA). Increased amounts of 18:1n-9, 18:2n-6 and 200 

18:3n-3, in combination with reduced proportions of n-3 HUFA and saturated FA, were found with 201 

the progressive replacement of FO by vegetable oils. The two first components of MPCA accounted 202 

for the 78% of variation of this data set, although 67·9% of variation was explained by component 1 203 

itself (Fig. 3A). Thus, no grouping was recognized on the basis of sampling time (second factor 204 
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score), whereas four groups were significantly separated (SNK, P<0·05) and identified as VO, 205 

66VO 33VO and CTRL in the first factor score (Fig. 3B).  206 

The FA profile of muscle PL of fish sampled at the end of the trial (January) is shown in        207 

Table 5. All experimental groups retained high amounts of saturated FA predominantly 16:0 208 

(>13%) and 18:0 (>8%), but the relative amount of 18:2n-6 increased up to 23% in fish fed the VO 209 

diet. A concurrent reduction in n-3 HUFA was also found, decreasing the EPA plus DHA content 210 

from 36-28% (CTRL/33VO/66VO fish) to 16% (VO fish). Thus, when data of PL and TL fractions 211 

were analysed by MPCA, the two principal components accounted for 67% of variation (Fig. 4A). 212 

Component 1 explained 39·6% of variation and separated FA that predominate in TL (on the left) 213 

from those characteristic of more unsaturated PL (on the right). Component 2 accounted for 27·8% 214 

of variation, and separated FA representative of FO (above the zero line) from those characteristic 215 

of vegetable oils (below the zero line). The factor score plot separated TL and PL in the abscise 216 

axis, whereas grouping in the ordinate axis was based on the different effects of dietary intervention 217 

upon each lipid class. Accordingly, three major clusters were significantly separated (SNK, P<0·05) 218 

and identified in the first factor score plot as a) TL group, b) PL of fish fed the VO diet, and c) a 219 

homogenous group corresponding to PL of fish fed CTRL, 33VO and 66VO diets (Fig. 4B). 220 
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Discussion 221 

 222 

The demand for feed in intensive aquaculture has increased over recent years and extensive 223 

research has been done on alternative raw materials of vegetable origin. However, the main 224 

constraint for the use of vegetable oils in marine fish feeds is the lack of n-3 long-chain PUFA, 225 

particularly EPA and DHA. Moreover, quantitative requirements depend on species and growth 226 

rates, and the biological demand for n-3 HUFA was at least 1·6% of dry matter for flatfish larvae(33) 227 

decreasing to 0.8-0.6% in juvenile(34,35) and grower fish(36). Similar requirements were reported for 228 

juvenile European sea bass(37) and gilthead sea bream(38). In the present study the theoretical 229 

requirements of EFA were met by 33VO (1·6% EPA +DHA) and 66VO (0·9% EPA + DHA) diets, 230 

but not by the VO diet (0·3% EPA + DHA). Thereby, in this and in a previous short-term trial(27), no 231 

detrimental effects on growth performance were found with the replacement of up to 66% of the 232 

added FO, whereas a slight but significant reduction in feed intake and weight gain was found with 233 

the total FO replacement, indicating that a dietary supply of 0·3% of EPA+DHA was not sufficient 234 

for normal growth and development of gilthead seabream. However, fish meal itself contains 235 

appreciable amounts of FO, and trials conducted in our experimental facilities show that the total 236 

replacement of the added FO is feasible without adverse effects on growth in gilthead sea bream 237 

diets with a 30-35% fish meal inclusion (unpublished results). Regost et al.(39) also reported the 238 

feasibility of the total replacement of FO by vegetable oils in turbot fed fish meal based-diets. 239 

Similar results were reported in sharpsnout sea bream by Piedecausa et al.(40). However, in the 240 

present study, we report for the first time, over the production cycle of a marine fish, the use of well 241 

balanced plant protein diets with a low inclusion of marine raw materials (<20%) just to cover EFA 242 

needs. 243 

It is noteworthy that growth rates in the trial conducted in the present study were excellent 244 

and even improved upon the values reported for fish of the same size class under similar 245 

experimental conditions(25,26, 41,42). This fact can be attributed to the genetic improvement of fish 246 

strains but also to better fish management, culture conditions and dietary formulation. Since fish 247 

meal is also a source of PL, the plant protein mixture in this study was adequately supplemented 248 

with amino acids and PL supplied in the form of soya lecithin. This added component is rich in 249 

phosphatidylcholine (PC), a polar lipid molecule that is a natural component of lipoproteins and 250 

cellular membranes adding fluidity and rigidity to cells as well as being required for lipoprotein 251 

synthesis, lipid mobilisation and digestibility. Our experimental design does not delineate 252 

unequivocally the beneficial effects of soya lecithin, but it must be noted that signs of intestine 253 

damage and transport dysfunction (massive accumulation of lipid droplets) were not found in any 254 

experimental group. By contrast, intense accumulation of lipid droplets was reported earlier in the 255 
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hind gut of juvenile gilthead sea bream fed plant protein and FO based-diets without phospholipid 256 

supplementation(43). Similar histological alterations have been reported by other authors using 257 

transmission electron microscopy(15) and, interestingly, earlier studies in young larvae demonstrated 258 

that dietary lecithin increases the appearance of lipoproteins and enhances the lipid transport 259 

through the gut(12,44,45). Likewise, intense accumulation of lipid droplets was seen in the 260 

gastrointestinal tract of salmonids fed with plant oils, but this condition was reversed by 261 

phospholipid supplementation(13,14). 262 

Defects in FA storage and oxidation are a central initiating factor for metabolic and 263 

endocrine alterations, resulting in enhanced FA flux from adipose tissue towards liver and 264 

muscle(46,47). Ration size by itself is also a major disrupting factor, and long-term feeding close to 265 

satiation increases hepatic fat deposition in gilthead sea bream juveniles, leading to lipoid liver 266 

disease and enterocyte desquamation in fish fed commercial diets(48). Dietary inclusion of vegetable 267 

oils(49,50) and plant proteins(43) also induces lipoid liver disease, and the role of tumour necrosis 268 

factor-α (TNFα) and lipoprotein lipase (LPL) as lipolytic cytokines and rate-limiting enzymes in 269 

tissue FA uptake has been reported in gilthead sea bream(51,52). Precise effects of nutrients on the 270 

deregulation of lipid metabolic pathways still remain largely unknown, but several studies indicate 271 

that soybean PC may alleviate signs of liver diseases, promoting a healthy lipid metabolism(12,53,54). 272 

This notion is supported herein by the observation that hepatic fat deposition varied between 15% 273 

and 25% of wet weight, though signs of initial and focal lipoid liver disease were only found with 274 

the total FO replacement. By contrast, clear signs of liver disease have been reported with a liver fat 275 

deposition below 15% in fish fed 16% lipid diets(43) (22% lipid diets were used in the present 276 

study). This finding suggests that the fat threshold level for liver damage was significantly 277 

increased in the present study. However, the extent to which this condition is due to PL 278 

supplementation with soya lecithin rather than to other poorly defined dietary factors merits more 279 

specific research. 280 

Gilthead sea bream, as other poikilotherms, utilizes favourable conditions in summer for 281 

rapid growth and replenishment of energy stores, but analyses of FA profiles in this and other fish 282 

species including Atlantic salmon(55,56), rainbow trout(57), turbot(39) and European sea bass(58,59) 283 

suggest a selective incorporation of n-3 PUFA in polar lipids and perhaps increased oxidation rates 284 

of other more easily utilizable FA. Moreover, the seasonal cycling increases in fat storage alter the 285 

ratio of polar and neutral lipids, driving the well reported changes in the muscle FA profile seen in 286 

wild gilthead sea bream(21). In addition, there is experimental evidence linking FA profiles of wild 287 

brown trout with the trophic level of the species, the location of the catch, and the size and 288 

physiological status of the animal(60). However, feeding regimes under intensive aquaculture 289 

production apparently override the impact of the season on the FA profile of farmed gilthead sea 290 
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bream(22). This notion is supported by data from the present study, and the MPCA analysis revealed 291 

that the 68% of the total variation in the muscle FA profile of TL is explained by the dietary 292 

component. Likewise, alterations in the muscle FA acid profile of cultured Chinook salmon are 293 

viewed as a direct consequence of changes in body weight, fat deposition and ration size(61). This 294 

information is of relevance and highlights important nutritional and quality traits, in particular for 295 

meeting human requirements for n-3 PUFA and HUFA, which needs to be considered for a proper 296 

timing and use of FO finishing diets for the recovery of a marine FA profile in fish fed vegetal oils 297 

through most of the production cycle(29,30,39). 298 

The degree of unsaturation of FA mediates the fluidity and structural integrity of cell 299 

membranes, which may exacerbate signs of EFA deficiency during fish overwintering(1,62,63). This is 300 

the reason why the analysis of PL FA profiles was focused herein on the cold season. At this time, 301 

the factor score plot showed two major clusters corresponding to PL and TL subgroups. In addition, 302 

the PL branch of fish fed CTRL, 33VO and 66VO diets appeared as a high homogenous group, 303 

which evidenced the robustness of the PL FA profile when EFA requirements were theoretically 304 

covered. However, fish fed VO diet were deficient in EFA, and PL-VO appeared as an outlier-305 

group in the MPCA analysis. More detailed analyses revealed the relative enrichment of these fish 306 

in 20:2n-6, 20:3n-6 and 20:3n-3. Since vegetable oils are devoid of these FA and they are part of the 307 

biosynthetic routes of n-6 and n-3 HUFA, this finding highlights adaptive attempts to alleviate EFA 308 

deficiencies. The accumulation of 20:3n-6 indicates increased Δ6 desaturation and elongation of 309 

dietary 18:2n-6 that is driven by increased dietary and tissue levels of this FA, derived from 310 

vegetable oils, as well as reduced tissue levels of n-3 HUFA(8). The increased levels of 20:2n-6 and 311 

20:3n-3, which are “dead-end” elongation products of 18:2n-6 and 18:3n-3, respectively, reflect 312 

increased levels of dietary C18 PUFA although increased levels of 20:3n-9, a marker of EFA 313 

deficiency, were not observed. In gilthead sea bream, the expression of Δ-6 desaturase is highly 314 

induced in fish fed a HUFA-free diet(10). There is also now evidence for a regulatory role of 315 

conjugated LA acid upon the hepatic and intestine expression of fatty acyl elongase and Δ-6 fatty 316 

acyl desaturase(64). However, a low activity of Δ-5 fatty acyl desaturase activity has been reported 317 

either in vitro(65) or in vivo(9), which may act as a major constraining factor for bioconvertion of  C18 318 

PUFA into C20 and C22 HUFA at appreciable rates. 319 

In summary, data on growth performance, tissue histology and FA analysis prompted us to 320 

use practical diets with a low inclusion of marine raw materials through most of the production 321 

cycle of gilthead sea bream, linking the robustness of the PL FA profile with endocrine, metabolic 322 

and somatotropic factors. Precise effects at different developmental stages need to be further 323 

evaluated, and interestingly muscle FA profiles and MPCA emerge not only as powerful tools to 324 
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understand foraging ecology and food webs, but also to evaluate alternative and sustainable 325 

aquafeeds in a global change scenario. 326 
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Figure legends 526 

 527 

Figure 1. Seasonal changes of temperature (solid line) and day length (dashed line) (A). Body 528 

weight over the course of trial of fish fed the experimental diets (B). Values are the means and SEM 529 

of triplicate tanks. Arrows indicate tissue sampling times.  530 

 531 

Figure 2. Representative histological sections of CTRL (A) and VO (B) livers of fish sampled in 532 

September, after 18 weeks of feeding the experimental diets (Staining: toluidine blue; Scale bars = 533 

50 µm). Notice the lipoid liver degeneration with breakdown of hepatocyte membranes 534 

(arrowheads). Liver fat content (C) of fish fed the four experimental diets (18 weeks). Each bar 535 

represents the mean plus the SEM. Different letters stand for statistically significant differences 536 

(P<0·05, SNK).  537 

  538 

Figure 3. Component plot (A) and factor score plot (B) of the MPCA for the muscle FA profile of 539 

total lipids in fish sampled in August, September and January. Mean values are shown in the factor 540 

score plot to simplify the graph representation. Circles stand for different clusters in the factor score 541 

1 (P<0·05, SNK). 542 

 543 

Figure 4. Component plot (A) and factor score plot (B) of the MPCA for the muscle fatty acid 544 

profile of total lipids and phospholipids (January sampled fish). Mean values are shown in the factor 545 

score plot to simplify the graph representation. Circles stand for different clusters in the factor score 546 

1 (P<0·05, SNK). 547 

  548 
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 Table 1. Ingredients and chemical composition of experimental diets. 

Ingredient (%) CTRL 33VO 66VO VO 
Fish meal (CP 70%)1 15·00 15·00 15·00 15·00 
CPSP 90 2 5·00 5·00 5·00 5·00 
Corn gluten meal (CP 63%) 40·00 40·00 40·00 40·00 
Soybean meal (CP 46%) 14·30 14·30 14·30 14·30 
Extruded wheat (CP 15%) 4·00 4·00 4·00 4·00 
Fish oil 3 15·15 10·15 5·15 0·00 
Rapeseed oil 0·00 0·85 1·70 2·58 
Linseed oil 0·00 2·90 5·80 8·79 
Palm oil 0·00 1·25 2·50 3·79 
Soya lecithin 1·00 1·00 1·00 1·00 
Binder (sodium alginate) 1·00 1·00 1·00 1·00 
Mineral premix 4 1·00 1·00 1·00 1·00 
Vitamin premix 5 1·00 1·00 1·00 1·00 
CaHPO4.2H2O (18%P) 2·00 2·00 2·00 2·00 
L-Lysine 0·55 0·55 0·55 0·55 
     
Proximate composition     
Dry matter (DM, %) 93·43 94·10 94·79 95·38 
Protein (% DM) 48·98 48·74 49·03 48·65 
Fat (% DM) 22·19 22·26 22·11 22·31 
Ash (% DM) 6·54 6·57 6·62 6·41 
EPA + DHA (% DM) 2·31 1·61 0·90 0·30 
Gross energy (kJ/g DM) 24·72 24·71 24·65 24·49 
1Fish meal (Scandinavian LT)  
2Fish soluble protein concentrate (Sopropêche, France) 
3Fish oil (Sopropêche, France) 
4Supplied the following (mg / kg diet, except as noted): calcium carbonate (40% Ca) 2·15 g, 
magnesium hydroxide (60% Mg) 1·24 g, potassium chloride 0·9 g, ferric citrate 0·2 g, 
potassium iodine 4 mg, sodium chloride 0·4 g, calcium hydrogen phosphate 50 g, copper 
sulphate 0·3, zinc sulphate 40, cobalt sulphate 2, manganese sulphate 30, sodium selenite 
0·3. 
5Supplied the following (mg / kg diet): retinyl acetate 2·58, DL-cholecalciferol 0·037, DL-α 
tocopheryl acetate 30, menadione sodium bisulphite 2·5, thiamin 7·5, riboflavin 15, 
pyridoxine 7·5, nicotinic acid 87·5, folic acid 2·5, calcium pantothenate 2·5, vitamin B12 
0·025, ascorbic acid 250, inositol 500, biotin 1·25 and choline chloride 500. 
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Table 2.  Fatty acid composition of experimental diets (% FAME). Values are 
the mean of two determinations.  
 
FA % CTRL 33VO 66VO VO 
14 :0 5·02 3·70 1·89 0·59 
15:0 0·35 0·22 0·13 0·12 
16:0 16·70 16·90 16·9 16·7 
16:1n-7 4·63 2·97 1·96 0·76 
16:1n-9 0·22 0·15 tr tr 
16:2 0·49 0·35 0·26 0·14 
16:3n-3 0·19 0·13 0·08 tr 
16:4 0·40 0·29 0·17 tr 
17:0 0·41 0·29 0·23 0·10 
18:0 2·55 2·92 3·43 3·73 
18:1n-9 12·50 17·50 21·90 25·90 
18:1n-7 1·92 1·69 1·49 1·21 
18:2n-6 12·10 15·70 19·20 21·30 
18:3n-3 1·58 8·94 16·30 23·20 
18:4n-3 2·16 1·47 0·82 0·20 
20:0 0·30 0·30 0·31 0·29 
20:1n-9 7·24 5·12 3·05 1·06 
20:1n-7 0·21 0·16 0·09 tr 
20:2n-6 0·17 0·12 0·11 tr 
20:3n-3 0·08 0·07 tr tr 
20:4n-6 0·31 0·22 0·13 tr 
20:4n-3 0·43 0·28 0·15 tr 
20:5n-3   6·86 4·68 2·75 0·94 
22:0 tr 0·16 0·16 0·17 
22:1n-11 10·19 6·74 3·68 0·74 
22:1n-9 0·56 0·43 0·29 0·16 
22:5n-3 0·64 0·40 0·18 tr 
22:6n-3   8·34 5·68 3·38 1·06 
     
Total 96·55 97·58 98·04 98·37 
Saturates 25·33 24·33 22·89 21·53 
Monoenes 37·47 34·76 32·46 29·83 
n-3 HUFA1 16·35 11·11 6·46 2·00 
n-6 HUFA2 0·48 0·34 0·24 tr 

tr = trace values  < 0·05 
1Calculated excluding 18 C atoms n-3 series. 
2Calculated excluding 18 C atoms n-6 series.  
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Table 3. Data on growth performance of fish fed the four experimental diets during 8 months. Values 
are the means and standard deviations of triplicate tanks.   
 

1P values result from one-way ANOVA. Different superscript letters in each row indicate significant differences 
among dietary treatments (P<0.05, SNK). 
2Specific growth ratio= [100 × (ln final fish wt − ln initial fish wt)] / days 
3Feed efficiency = wet wt gain / dry feed intake 
 
   

 CTRL 33VO 66VO  VO  
 Mean SD Mean SD Mean SD  Mean SD P 1 

Initial body weight (g) 16·10 0·09 16·30 0·01 16·30 0·03  16·10 0·09 0·31 
Final body weight (g) 257·80ab 11·84 269·57b 2·41 253·72a 0·16  237·39c 3·07 <0·05 
DM intake (g/fish)   238·35a 6·68 256·87b 4·42 241·59a 2·69  226·11c 0·62 <0·001
SGR (%) 2 1·14ab 0·01 1·16a 0·00 1·13b 0·00  1·11c 0·00 <0·05 
FE3 1·01 0·02 0·98 0·00 0·98 0·01  0·97 0·01 0·07 
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 Table 4. Effects of the feeding regimen on the muscle FA profile of TL (% FAME) in fish sampled in August, September and January. Values are the means and 
standard deviations of 10 fish. Different superscript letters in each row indicate significant differences over sampling time for each dietary treatment (P<0·05, SNK).  
 

 CTRL 33VO 66VO VO 
 Aug Sep Jan Aug Sep Jan Aug Sep Jan Aug Sep Jan 

FA % Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
14 :0 3·70a 0·22 3·67a 0·63 4·52b 0·36 2·48 0·41 2·54 0·41 2·60 0·42 1·79 0·16 1·62 0·15 1·77 0·31 0·90 0·12 0·79 0·12 1·12 0·45 
16:0 20·40a 0·74 20·10a 0·81 18·30b 0·98 20·60a 0·79 19·00b 0·79 19·00b 0·44 17·80a 0·89 19·00b 0·90 17·20a 0·62 15·80 0·58 16·20 0·34 16·10 0·53 
16:1n-7 4·75 0·28 4·58 0·74 5·38 0·52 3·60 0·51 3·65 0·51 3·64 0·50 2·93 0·18 2·56 0·21 2·85 0·38 1·77 0·34 1·52 0·21 2·15 0·52 
16:2 0·25 0·02 0·25 0·02 0·28 0·02 0·13 0·05 0·18 0·05 0·15 0·02 0·08 0·03 0·13 0·04 0·11 0·03 tr  tr  0·11 0·00 
16:3 0·19 0·06 0·22 0·04 0·23 0·02 0·15 0·01 0·16 0·01 0·14 0·04 0·12 0·06 0·08 0·02 0·10 0·04 0·08 0·04 0·09 0·01 0·09 0·01 
16:4 0·18 0·02 0·15 0·04 0·15 0·01 0·11 0·03 0·11 0·03 0·10 0·02 0·07 0·01 0·06 0·00 0·08 0·06 tr  0·07 0·02 0·13 0·05 
17:0 0·22 0·02 0·26 0·05 0·23 0·01 0·20 0·04 0·18 0·04 0·19 0·02 0·12 0·06 0·18 0·01 0·21 0·06 0·14 0·56 0·14 0·56 0·13 0·01 
18:0 3·82a 0·38 3·96a 0·66 3·00b 0·26 4·57 0·74 4·32 0·74 4·10 0·55 4·15 0·56 4·88 0·48 3·92 0·64 4·53 0·36 4·92 1·67 4·40 0·66 
18:1n-9 17·40 0·56 16·00 0·86 16·80 0·98 20·40 1·40 20·60 1·41 18·50 2·85 25·00 1·61 23·80 0·91 24·50 2·25 28·20 0·78 27·50 0·08 27·30 3·06 
18:1n-7 1·87 0·08 1·84 0·10 1·93 0·07 1·59 0·20 1·75 0·19 1·55 0·05 1·38 0·02 1·30 0·04 1·36 0·04 1·10 0·06 1·09 0·85 1·22 0·13 
18:2n-6 10·70a 0·12 10·60a 0·65 11·80b 0·19 12·80a 0·93 13·40ab 0·93 14·90b 1·56 16·30a 0·46 16·60a 0·33 17·40b 0·15 19·40 0·52 20·40 1·54 20·50 1·66 
18:3n-3 1·06 0·12 0·98 0·09 1·07 0·05 5·65 0·83 6·42 0·83 5·80 0·64 12·20 1·15 11·00 1·19 12·10 1·50 17·80 0·76 16·80 0·11 15·80 1·75 
18:4n-3 1·28 0·08 1·22 0·22 1·38 0·10 0·89 0·20 1·00 0·20 0·83 0·13 0·81 0·12 0·64 0·15 0·77 0·12 0·63 0·08 0·51 0·03 0·55 0·13 
20:0 0·18 0·02 0·18 0·02 0·18 0·01 0·17 0·06 0·20 0·06 0·17 0·02 0·16 0·01 0·16 0·01 0·17 0·01 0·15 0·01 0·17 0·10 0·16 0·01 
20:1n-9 4·90 0·40 4·79 0·84 5·53 0·22 3·25 0·50 3·15 0·46 3·25 0·01 1·92 0·53 1·86 0·26 1·91 0·29 0·91 0·04 0·92 0·08 0·93 0·52 
20:2n-6 0·22 0·00 0·24 0·02 0·25 0·03 0·23 0·06 0·28 0·02 0·26 0·01 0·27 0·01 0·27 0·03 0·27 0·03 0·28 0·02 0·33 0·03 0·33 0·03 
20:3n-6 0·17 0·02 0·12 0·06 0·13 0·01 0·16 0·02 0·16 0·06 0·18 0·03 0·19 0·05 0·19 0·04 0·18 0·07 0·18 0·04 0·23 0·10 0·22 0·10 
20:3n-3 0·07 0·00 0·09 0·03 0·08 0·00 0·12a 0·05 0·17b 0·05 0·16b 0·01 0·27ab 0·02 0·23a 0·04 0·29b 0·04 0·40 0·06 0·45 0·07 0·48 0·09 
20:4n-6 0·49a 0·02 0·54a 0·16 0·38b 0·08 0·49 0·10 0·41 0·02 0·42 0·09 0·26 0·10 0·30 0·05 0·24 0·12 0·18 0·04 0·17 0·09 0·17 0·09 
20:4n-3 0·58 0·06 0·59 0·07 0·66 0·04 0·49 0·00 0·52 0·15 0·52 0·06 0·47 0·03 0·39 0·05 0·45 0·05 0·34 0·04 0·34 0·39 0·35 0·05 
20:5n-3 6·06 0·42 6·40 0·85 5·02 0·37 4·87 0·93 4·58 0·03 4·34 0·72 2·83 0·55 3·06 0·29 2·56 0·76 1·41 0·24 1·34 0·05 1·55 0·74 
22:1n-9 0·62 0·08 0·31 0·08 0·42 0·03 0·22 0·10 0·29 0·93 0·26 0·03 0·20 0·15 0·11 0·02 0·28 0·12 0·10 0·15 0·09 0·03 0·14 0·04 
22:1n-11 4·83 0·66 4·73 1·05 5·35 0·51 2·62 0·60 2·91 0·15 2·78 0·46 1·65 0·31 1·46 0·28 1·62 0·40 0·27 0·12 0·30 0·05 0·33 0·09 
22:5n-3 1·31 0·10 1·37 0·10 1·51 0·11 1·10 0·07 1·06 0·08 1·25 0·15 0·80 0·17 0·63 0·10 0·69 0·41 0·36 0·1 0·32 0·17 0·45 0·09 
22:6n-3 10·80 1·00 12·40 2·79 10·60 2·05 9·74 2·32 8·85 0·63 11·00 2·67 5·75 1·77 6·54 0·82 6·02 2·58 3·11 0·5 3·15 1·15 3·52 1·82 
24:1n-9 0·56a 0·08 0·40b 0·04 0·41b 0·04 0·56a 0·03 0·40b 0·07 0·35b 0·08 0·40a 0·04 0·38a 0·04 0·32b 0·03 0·29 0·02 0·29 0·03 0·35 0·06 
                         
Saturates 28·32a 1·05 28·17a 0·81 26·23b 0·90 28·02 1·86 26·24 1·22 26·06 0·57 24·02a 1·32 25·84b 1·24 23·27a 0·97 21·52 0·78 22·22 0·77 21·91 0·93 
Monoenes 34·93 1·46 32·65 3·61 35·82 1·92 32·24 3·36 32·75 2·93 30·33 4·07 33·48 2·43 31·47 1·09 32·84 3·41 32·64 0·96 31·71 1·97 32·42 3·35 
n-3 HUFA1 18·82 1·48 20·85 3·59 17·87 2·38 16·32 3·14 15·18 3·26 17·27 3·44 10·12 2·49 10·85 1·23 10·01 3·73 5·62 0·81 5·60 1·61 6·35 2·75 
n-6 HUFA2 0·88 1·13 0·09 0·11 0·76 0·06 0·88 0·11 0·85 0·22 0·86 0·11 0·72 0·15 0·76 0·13 0·69 0·19 0·64 0·07 0·73 0·18 0·72 0·20 
tr = trace value < 0·05. 1Calculated excluding 18 C atoms n-3 series. 2Calculated excluding 18 C atoms n-6 series. 
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Table 5. Effects of the feeding regimen on the muscle FA profile of PL (% FAME) in fish 
sampled at the end of trial (January). Values are the means and standard deviations of 10 fish.  
Different superscript letters in each row indicate significant differences among dietary 
treatments (P<0·05, SNK).  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Calculated excluding 18 C atoms n-3 series. 
2Calculated excluding 18 C atoms n-6 series. 
3Calculated taking into account all n-3 and n-6 FA series. 

 

  CTRL  33VO  66VO  VO 
FA %  Mean SD  Mean SD  Mean SD  Mean SD 
14 :0  0·62 0·20  0·57 0·51  0·54 0·24  0·23 0·07
16:0  18·4a 1·22  17·50ab 1·19  16·50b 0·96  13·2c 0·38
16:1n-7  1·06 0·36  0·80 0·12  0·70 0·17  0·76 0·23
16:2  0·30a 0·15  0·25ab 0·12  0·23b 0·00  0·22b 0·00
16:3  0·34 0·00  0·20 0·14  0·36 0·06  0·16 0·13
16:3 n-3  1·76 1·43  0·62 0·48  1·12 1·01  0·81 0·33
16:4  0·30 0·07  0·29 0·10  0·39 0·09  0·42 0·07
17:0  0·38 0·13  0·30 0·17  0·34 0·04  0·26 0·14
18:0  10·10 1·24  8·42 0·75  10·20 1·12  8·44 0·69
18:1n-9  7·59a 0·14  9·33b 0·02  10·20b 0·06  13·40c 0·08
18:1n-7  1·84 0·41  1·66 0·62  1·54 0·92  0·82 0·61
18:2n-6  7·26a 0·74  10·90b 1·42  14·20c 0·92  23·30d 1·79
18:3n-3  0·45a 0·26  2·29b 0·18  4·88c 0·41  10·20d 1·11
18:4n-3  0·31 0·25  0·29 0·29  0·30 0·11  0·29 0·11
20:0  0·27 0·00  0·16 0·03  0·26 0·00  0·30 0·13
20:1n-9  2·42a 0·25  1·67b 0·20  1·09c 0·18  0·57d 0·27
20:2 n-6  0·40 0·14  0·44 0·30  0·65 0·26  0·80 0·60
20:3n-6  0·54 0·44  0·38 0·20  0·41 0·08  0·68 0·06
20:3n-3  0·53a 0·48  0·24a 0·21  0·34a 0·12  0·87b 0·19
20:4n-6  0·94 0·05  1·15 0·07  0·87 0·28  0·65 0·08
20:4n-3  0·43 0·43  0·51 0·20  0·57 0·14  0·53 0·18
20:5n-3   7·08a 0·64  7·52a 0·44  6·32b 0·42  3·72c 0·19
22:1n-11  0·68 0·38  0·40 0·31  0·37 0·28  0·36 0·29
22:5n-3  1·93a 0·07  2·05a 0·15  1·64b 0·22  1·23c 0·20
22:6n-3    29·00a 3·62  27·80a 3·26  21·40b 2·06  12·60c 0·52
24:1n-9  0·76 0·24  0·52 0·25  0·59 0·07  0·41 0·18
       
Saturates  29·77a 1·75  26·95b 0·55  27·84ab 1·94  22·43c 0·95
Monoenes  14·35a 0·83  14·38a 0·73  14·49a 0·84  16·32b 0·33
n-3 HUFA1  38·97a 3·39  38·12a 3·17  30·27b 2·62  18·95c 0·78
n-6 HUFA2  1·88 0·79  1·97 0·68  1·93 0·47  2·13 0·96
n-3/n-6 ratio3  4·34a 0·33  3·16b 0·09  2·19c 0·06  1·15d 0·02
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Figure 1 
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Figure 4 
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