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Abstract:  
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external flow is axisymmetric. This reduces the original four degrees of freedom to only two, so that 
the solution is expressed in quadratures. In particular, the scattering of antisymmetric dipoles 
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1 Introduction

Vortices have been recognized to be key elements in turbulent fluid motion at a

wide range of scales. The Coriolis force on rotating planets or the Lorentz force

due to magnetic field in plasmas makes large-scale flows anisotropic, quasi-two-

dimensional (e.g., the horizontal velocity of oceanic currents is much larger than

vertical velocity). Coherent, long-lived vortices and jets emerge naturally as a

result of self-organization of turbulent motion observed in such anisotropic me-

dia; they are well identified by the wavelet transform and Okubo-Weiss criterion,

e.g. [1]. Coherent vortices are very efficient in trapping passive tracers for long

times and transporting them over anomalously large distances. For this reason,

mutual interaction of isolated vortices, their stability and effects of background

currents have been intensively studied in the last decades as summarized in a

number of reviews [2–6].

Signatures of well-separated, nearly circular or elliptical, monopolar vortices

of both signs are common in geophysical flows. Two vortices of opposite sign

often form a self-propelling dipolar couple which provides anomalous transport

of scalar properties for especially long distances. They are easily excited in two-

dimensional flows and they appear to be the universal outcome of an external

forcing posessing a nonzero linear momentum [7–9].

Many theoretical studies of vortex couples in geophysical flows and plas-

mas have been essentially constrained by the β-effect which allows the perma-

nent form solutions only with zonal direction of propagation. In the traditional

quasigeostrophic approximation such steadily propagating solutions (modons as

labelled by Stern) have a dipolar structure with zero net angular momentum;

general solutions, including the axisymmetric rider, must also have a vanish-

ing angular momentum in order to be stationary, i.e. the azimuthal velocity of

the rider must change sign so that it is not a monopole [3]. However, zonally

propagating structures on the β-plane will not lead to any meridional transport.

The variation of the intensity ratio of partners and corresponding change
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in the path curvature of non-zonally propagating dipoles have been described

approximately by the well-known equation of the physical pendulum [10]. The

numerical investigation of the dynamics of equivalent-barotropic f -plane dipoles

which are steady solutions in the absence of the β-effect, demonstrated that they

remain coherent on a β-plane if dipoles are strong enough [11]. Thus, the β-effect

is not crucial for an intense dipole when the swirling velocity in the partners are

much higher than the Rossby wave speed as observed in the upper ocean. The

curved path of the vortex couple resulting from different strenths of companions

may originate from the formation process and be affected only slightly by the

β-effect as demonstrated in laboratory experiments [7].

The vortex evolution can be also strongly influenced by nonuniform back-

ground currents. However, the evolution of vortex dipoles in external flows have

received only little attention in literature. In particular, a horizontal strain

would either accelerate the dipole and form a head-tail structure, or separate

the partners, depending on the strain orientation [12]. Under the influence of

a radial flow from a point source (or sink), dipoles can separate, converge or

follow spiraling trajectories [13].

In the present study, we consider evolution of vortex couples in a horizontally

sheared nondivergent flow with constant potential vorticity. Vortex couples are

considered in the point vortex approximation that allows to express the solution

in quadratures for the case of axisymmetric external flow and analyze different

dynamical regimes explicitly for an external flow typical for a topographic cir-

culation around an isolated seamount [14]. The mathematical formulation is

presented in Section 2. The solution in the general form for arbitrary ratio of

point vortex intensities is described in Section 3. The behavior of a dipolar

couple approaching from the infinity is analyzed in Section 4. Discussion and

conclusions are in Section 5.
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2 Mathematical formulation

2.1 Potential vorticity equation

At the lowest order of approximation, quasi-two-dimensional dynamics of oceans,

planetary atmospheres and of plasmas in a magnetic field are governed by the

conservation of a material invariant Q in an equivalent-barotropic model [5]

∂tQ+ u∇Q = 0, (1)

Here t is time normalized by a time scale T , (x, y) are horizontal coordinates

normalized by a horizontal scale L, u is the flow velocity normalized by L/T .

In geophysical fluid applications such model describes a thin layer of homoge-

neous, incompressible fluid, strongly constrained by ambient rotation and by

stratification, overlying an infinitely deep layer of fluid at rest [6]. Then poten-

tial vorticity Q represents the ratio of absolute vorticity to the layer thickness

and it is conserved in each fluid parcel.

For small Rossby number and order unity Burger number, the velocity is

nondivergent in the leading order, so that the velocity and potential vorticity

are expressed by the streamfunction, ψ(x, y, t) normalized by L2/T

u(x, y, t) = k×∇ψ, Q = ∇2ψ − S, (2)

where k is the vertical unit vector, and the term S is the vortex stretching

related to changes of the layer thickness either due to localized topography

S(x, y), or due to geostrophic adjustment outside topography, where S = γ2Ψ.

Here γ = fL/Cg, the gravity wave speed, Cg, and the Coriolis parameter, f ,

are assumed to be constants. For the plasma case, ψ is proportional to the

electrostatic potential normalized by Te/e (Te is the electron temperature, e is

the electric charge of the ion), Cg =
√

Te/mi is the ion sound speed (mi is the

ion mass), and f = ωic is the ion cyclotron frequency [15].

In the limiting case of γ → 0, (1)–(2) describe pure two-dimensional in-
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compressible flows and they are valid for an arbitrary Rossby number. In both

models, the domain is infinite in horizontal directions.

2.2 Point vortex model

Following [16], we decompose the flow into a steady external part, U = k×∇Ψ,

and a vortical part uV = u − U which corresponds to localized vortices.

Assuming that the vortex dipole is represented by localized potential vor-

ticity anomalies with amplitudes κ1 and κ2, their self-induced drift affected by

the external flow is governed by the following equations

dx1

dt
= −∂yΨ(x1, y1) + κ2(y2−y1)ω(r12),

dy1
dt

= ∂xΨ(x1, y1) − κ2(x2−x1)ω(r12),

(3)

dx2

dt
= −∂yΨ(x2, y2) − κ1(y2−y1)ω(r12),

dy2
dt

= ∂xΨ(x2, y2) + κ1(x2−x1)ω(r12),

(4)

where r2i = x2

i + y2

i , r
2

12
= (x1 − x2)

2 + (y1 − y2)
2, and ω(r) is the rotation rate

of a point vortex, either in the equivalent-barotropic model, or in the 2D model:

ω(r) =
dψ

rdr
, ψ = −

1

2π
K0(γr), or ψ =

1

2π
ln r (5)

The system of ODE (3)-(4) conserves the Hamiltonian H [2]:

H = Ψ(r1) + qΨ(r2) + qκ1ψ(r12) = const, (6)

where q = κ2/κ1 while the components of linear momentum and the total

angular momentum, M , evolve due to the external flow:

ẋ1+qẋ2 = −∂yΨ(x1, y1)−q∂yΨ(x2, y2), ẏ1+qẏ2 = ∂xΨ(x1, y1)+q∂xΨ(x2, y2),

(7)

Ṁ = (y1∂x−x1∂y)Ψ(x1, y1)+q(y2∂x−x2∂y)Ψ(x2, y2), 2M = r2
1
+qr2

2
, (8)

Therefore, analytical solutions for point vortex evolution in an external flow

5



were found only in cases with additional symmetry considered in [13].

As one can see from (8), the total angular momentum is conserved M =

const when the external flow is axisymmetric and stationary on the f -plane,

U = −yΩ(r), V = xΩ(r), Ω =
dΨ

rdr
, (9)

where Ω is the external rotation rate and r2 = x2 + y2.

Conservation of total angular momentum in this case, added to the Hamilto-

nian conservation, allows a reduction from the original four degrees of freedoms

to only two and a general solution in quadratures.

3 Motion of a vortex dipole in the general case

3.1 Simple case of constant external rotation rate

When Ω = const, the solution is obvious in coordinates rotating with the angular

rate Ω: the distance between partners is known to remain constant r12 = const,

while the center of the dipole defined as xc = (x1+x2)/2, yc = (y1+y2)/2 moves

along circular trajectories with radius rq = r12(1 − q)/[2(1 + q)]. In particular,

equal vortices of the same sign (q = 1) rotate around each other (rq = 0), while

a dipole with opposite sign vortices (q = −1) propagates uniformly (rq = ∞)

with the speed U∞ = r12ω(r12).

3.2 Integrability of vortex motion in the general case

In the general case of an external flow with differential rotation, we can choose a

reference frame such that Ω → 0 and Ψ → 0 at infinity (r → ∞). The trajectory

of the dipole center is described by

ẋc = −
y1Ω(r1) + y2Ω(r2)

2
−

1 − q

2
(y2 − y1)ω(r12), (10)
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ẏc =
x1Ω(r1) + x2Ω(r2)

2
+

1 − q

2
(x2 − x1)ω(r12). (11)

Here the time scale T is chosen such that κ1 = 1.

Using the variables rc = (x2

c + y2

c )1/2 and θc = atan(yc/xc), the system

(10)-(11) can be rewritten as

ṙc = −
y1Ω(r1) + y2Ω(r2)

2
cos θc +

x1Ω(r1) + x2Ω(r2)

2
sin θc + U sin(θc − θ12)

(12)

rcθ̇c =
x1Ω(r1) + x2Ω(r2)

2
cos θc +

y1Ω(r1) + y2Ω(r2)

2
sin θc + U cos(θc − θ12).

(13)

where U(r12) = (1− q)r12ω(r12)/2 is the drift velocity due to vortex interaction

inside the dipole, and the angle θ12 characterizes its orientation θ12 = atan((y2−

y1)/(x2 − x1)): when θ12 = θc the self-induced drift velocity is in the azimuthal

direction, when θ12 = θc ± π/2 the self-induced drift is in the radial direction

(see Fig.1).

Using the expressions x1 = xc − r12

2
cos θ12, x2 = xc + r12

2
cos θ12, y1 =

yc −
r12

2
sin θ12, y2 = yc + r12

2
sin θ12, we obtain

ṙc = Ueff sin(θc − θ12), θ̇c =
Ω(r1) + Ω(r2)

2
+
Ueff

rc
cos(θc − θ12), (14)

r2
1

= r2c +
r2
12

4
−rcr12 cos(θc− θ12), r2

2
= r2c +

r2
12

4
+rcr12 cos(θc− θ12), (15)

where Ueff = U + r12(Ω(r2) − Ω(r1))/4 includes the additional effect of differ-

ential rotation in the external flow. For vortices of unequal strength (q 6= 1),

the conservation of the angular momentum allows one to express the relative

angle θc − θ12, r1 and r2 in terms of rc and r12, via

−(1 − q) cos(θc − θ12) =
2M

rcr12
−

1 + q

rcr12
(r2c +

r2
12

4
), (16)

1 − q

2
r2
1

= −q(r2c +
r2
12

4
) +M,

1 − q

2
r2
2

= r2c +
r2
12

4
−M, (17)
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while the Hamiltonian provides a supplementary relation to simplify r12 via

qψ(r12) = H− Ψ(r1) − qΨ(r2). (18)

Finally, the system (14) can be integrated in the form

θc = −

∫ r0

rc

[
Ω(r1) + Ω(r2)

2Ueff sin(θc − θ12)
+

cot(θc − θ12)

rc
]drc. (19)

setting as initial values, θc = 0 at rc = r0.

3.3 Special case of co-rotating vortices

In the case of co-rotating vortices, q = 1, and their center rotates in the external

flow with only slight variations of rc which can be estimated from (17)–( 18)

r2c+
r2
12

4
= r2

0
+

1

4
, ψ(r12) = ψ(1)+2Ψ(

√

r2
0

+ 1/4)−Ψ(|rc−r12|)−Ψ(rc+r12),

(20)

The horizontal scale is chosen equal to the initial distance between vortices when

r1 = r2 =
√

r2
0

+ 1/4.

4 Evolution of an antisymmetric vortex dipole

In the case of antisymmetric dipole (q = −1), the integrals (16)–(18) are sim-

plified into

− cos(θc − θ12) =
M

rcr12
, r2

1
= r2c +

r2
12

4
+M, r2

2
= r2c +

r2
12

4
−M, (21)

ψ(r12) = ψ(1) + Ψ(r1) − Ψ(r2). (22)

where the horizontal scale is chosen equal to the distance between vortices at

infinity r0 → ∞ where θ12 = π/2 and H = qψ(1). M represents the opposite

horizontal offset of the dipole center at infinity.
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4.1 Topographically induced external axisymmetric flow

Further we consider an example of external flow around an axisymmetric topo-

graphic feature with S = D(r), localized inside the radius rD. This external

flow has uniformly null potential vorticity (Γ = 0), and, for r ≤ rD, its stream-

function Ψ is obtained from

∇2Ψ = D(r), Ω(r) =
1

r2

∫ r

0

D(r′)r′dr′ (23)

and for r > rD by the inversion of the Helmholtz operator in the equivalent-

barotropic model (with continuity of streamfunction at r = rD) :

(∇2 − γ2)Ψ = 0, Ψ = −ΩDK0(γr),Ω =
γΩD

r
K1(γr), ΩD =

rDΩ(rD)

γK1(γrD)
,

(24)

where Kj is the modified Bessel function of the j-th order, and where Ω(rD)

is given by (23). For 2D incompressible flows, the stramfunction for r > rD is

obtained by the inversion of the Poisson operator

∇2Ψ = 0, Ψ = ΩDln(r), Ω =
ΩDr

2

D

r2
, ΩD = Ω(rD)r2D. (25)

4.2 Zero angular momentum

In the particular case where M = 0, considerable simplification occurs:

cos(θc − θ12) = 0, so that θ12 = θc + π/2 when the dipole propagates towards

the plane center or θ12 = θc − π/2 when the dipole propagates away from the

center. In this case r12 = 1 does not change as seen from (22) since r2 = r1 =
√

r2c + 1/4. Then, the effective drift velocity is Ueff = U = γK1(γ)/2π and the

integral (19) simplifies into

θc(rc) =
1

U

∫

∞

rc

Ω(
√

r2 + 1/4)dr. (26)

9



Then, the minimum value of rc is zero and if rD < 1/2, we obtain from (24)

that the dipole center passes the plane center at the angle

θ0 =
2πΩD

K1(γ)

∫

∞

0

K1(γ
√

r2 + 1/4)
dr

√

r2 + 1/4
= 2π2ΩDF (γ), (27)

where the coefficient F only slightly depends on γ: F → 1 when γ → 0 and

F ≈ 1.1 when γ = 1 because both U and Ω in (26) decrease when γ increases.

After the dipole passes the plane center, the angle changes by −πθ0/|θ0| (to

remain in [−π, π]), and its subsequent values are, as the dipole moves away

from the center from the plane center (see Fig.2).

θc(rc) = θ0(1 −
π

|θ0|
) +

1

U

∫ rc

0

Ω(
√

r2 + 1/4)dr. (28)

Thus, at infinity, the dipole propagates at the angle θ0(2 − π/|θ0|), which can

take any value in [−π, π], depending on the flow parameters. In particular, the

dipole returns back in the original direction if |θ0| = π/2 + kπ, k = 0, 1, 2...

4.3 Non-zero angular momentum

When M < 0, and considering that the dipole drifts towards the plane center

from x → +∞ (that is θc ∼ 0 and θ12 ∼ π/2 at least initially), equation (21)

and the initial conditions indicate that cot(θc − θ12) < 0. Therefore, the self-

interaction of the vortices described by the second term in (19), contributes

to an increase in angle θc as rc decreases. Conversely, for M > 0, this self-

interaction induces an increase in angle θc decreases as rc decreases. In both

cases, the external rotation, described by the first term in (19), results either

in an additional increase of the angle θc for cyclonic rotation Ω > 0 or in an

additional decrease of the angle θc for anticyclonic rotation Ω < 0, as long as

sin(θc − θ12) remains negative and Ueff > 0 (assuming that r1 ∼ r2).

The radial distance rc reaches a minimum value rm when θc approaches the value

θm = θc(rm) where sin(θc − θ12) = 0 and cos(θc − θ12) = M/|M |. Note that
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|θc−θm| is proportional to |rc−rm|1/2 in the vicinity of rm, so that sin(θc−θ12)

is proportional to |rc−rm|1/2, and the singularity in (19) is integrable. This fast

change of the angle in the vicinity of rm corresponds to the finite angle change

by −πθ0/|θ0| when the dipole center crosses the plane center in the case M = 0

(see above). When rc = rm we see from (21) that rmr12 = |M |, and the value

of rm can be found from (22)

ψ(
|M |

rm
) − ψ(1) = Ψ(|rm +

M

2rm
|) − Ψ(|rm −

M

2rm
|). (29)

again since the vortices are aligned radially.

The ratio rm/|M | → 1 when either |M | → 0 or |M | → ∞ as in both cases the

right-hand side (hereafter RHS) of (29) vanishes. The RHS of equation (29) can

be calculated from equation (24). When MΩD > 0, the RHS of (29) is negative

so that rm < |M | and the distance between partners has increased from that

at infinity (here r12 > 1). When MΩD < 0, the RHS of (29) is positive so

that rm > |M | and the distance between partners has decreased (r12 < 1). The

solutions to (29) for γ = 1 and rD = 0.5 are shown on Fig.3. For large range of

values of Ω(rD), there exists a discontinuity of the curve rm(M) ; this result is

confirmed and illustrated by Fig.4 which shows an abrupt change in rm when

M decreases and reaches the value indicated on the second plot of Fig.3. This

abrupt change in rm indicate the existence of trapped regime when the dipole

remain in the vicinity of the seamount to be investigated in a subsequent paper.

After the dipole has reached the point of closest approach of the seamount,

sin(θc−θ12) becomes positive and the dipole moves away from the plane center,

along a trajectory, symmetric with respect to the θc = θm axis in the phase

plane (rc, θc) (indeed cos(θc − θ12) does not change sign). Therefore, far from

the plane center, the dipole direction approaches θc = 2θm which is inversely

proportional to Ueff .
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5 Conclusion

This study of the evolution of a point vortex dipole in an axisymmetric flow

shows that the motion is integrable, due to the conservation of the Hamito-

nian and of the angular momentum, which reduces the original four degrees

of freedom problem to only two. Thus, the general solution is expressed in

quadratures.

For example, we consider the evolution of an antisymmetric dipolar dipole,

similar to mushroom-like currents observed in the ocean [9]. For dipoles with

zero angular momentum moving towards the center of the plane, the intensity

of dipole does not change and its center passes the plane center at some angle

proportional to the external rotation rate and inversely proportional to the

dipole propagation speed. When the dipole has non-zero angular momentum,

it approaches from infinity with an offset from the radial direction. In the

vicinity of the plane center, the dipole intensity increases for one sign of the

offset and decreases for the other sign of the offset, depending also on the sign

of the external rotation. Correspondingly, the dipole center reaches a minimum

distance from the plane center, which is either larger or smaller than the offset

value. Therefore, farther from the plane center, the dipole may propagate in

any direction, with a large sensitivity to the flow parameters (see Fig.5).

For oceanic applications, this investigation can be generalized for a two-layer

configuration when dipolar partners in different layers are coupled (the heton

model [17]).
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Figure 1: The one and half layer modelisation and the polar system of coordi-
nate.
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Figure 2: Inflexion of the trajectory of the dipole when it passes the center for
different value of Ω(rD) = −0, 13 and −0, 25 (M = 0, rD = 0.45 and γ = 1).
The circle represents the position of the seamount, the solid lines link the two
point vortices positions for different times and the dots correspond to the center
of the solid lines (this convention is used for all others trajectories figures).
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Figure 3: The minimum value of the distance rc between the dipole center and
the plane center with respect to M for Ω(rD) = −0, 03 and −0, 25
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Figure 4: Trajectories of the dipole for M = −2, 25 and M = −2, 24 (the time
interval is 1)
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Figure 5: The diversity of dipole trajectories for slightly different initial offsets
(from top left to bottom right, decreasing offsets)
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