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Abstract:  
 
Using indicator time series for assessment and management requires methods for characterising 
recent time trends. We propose an approach where first the indicator time series is smoothed using a 
generalised additive model with optimal selection of the degree of smoothness. Second an 
intersection–union test is carried out using two test statistics which are the occurrence of the global 
maximum (or minimum) within the most recent years and the signs of the estimated annual first 
derivatives of the smoothed indicator times series during the same period, including years with missing 
data. The proposed test is applied to fish abundance indices for the North Sea, for which it is they are 
able to pick up changes happening during the last 3–5 years in contrast to linear regression and the 
Mann–Kendall test which find much fewer significant recent trends. An additional test for changes in 
trends using the second derivatives of the smoothed indicator time series provide early warnings for 
subsequent trends for certain species.  
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1. Introduction 

 
Population and community indicators have become an essential tool for the ecosystem 
approach to fisheries management. As reference points are not available for many indicators, 
reference directions rather than absolute reference values have been suggested to be more 
affordable for assessment purposes (Jennings and Dulvy, 2005; Rochet et al., 2005). Thus 
the direction of trend in an indicator over time is estimated and then compared to the 
reference direction expected for the indicator change under the impact of fishing or other 
drivers. Here we coin ‘trend’ a change in a given direction that persists over time. Several 
time horizons might be relevant to decide whether a change is sustained enough to be 
named a trend that can be compared to a reference direction. Long term trends over one or 
several decades have been suggested to be the most relevant to fisheries management (van 
Densen, 2001). However, shorter term trends over three to five years might be worth 
detecting as well, e.g. for short-lived ecosystem components or for economic indicators that 
respond on time-scales different from ecological ones. Both long- and short-term trends 
might be of interest for a particular assessment, the latter relative to longer term dynamics. 
For example, Caddy and Surette (2005) used three criteria regarding catch trends which had 
to be fulfilled for a species to be categorised as depleted: 1) a negative time trend in catches 
over the last five years; 2) an average annual decrease of more than 5% between peak 
catches and the average catch in the last 3 years; 3) recent catches less than 20% of peak 
catches. Moreover, detecting changes in trends could be useful as a warning signal that 
system dynamics are changing, suggesting that a management measure is taking effect or, 
on the contrary, that new management decisions have to be taken to reverse a trend 
departing away from a desirable direction.  
Many indicators are estimated quantities and thus are prone to various sources of 
uncertainty and/or variability. For example, survey-based estimates of fish population or 
community indicators are subject to random sampling variability (Trenkel and Rochet, 2003), 
but also systematic errors, possibly caused by particular environmental or survey design 
conditions in a given year (Poulard and Trenkel, 2007). For population indicators, coefficients 
of variations of 10-30% are not uncommon in many groundfish surveys (V. Trenkel 
unpublished data). The quantity estimated by the indicator might itself vary under the 
influence of various factors, many of which show random fluctuations. For example, 
population abundance will fluctuate randomly from year to year because year-class strength 
is partly determined by randomly varying environmental conditions. Long-term, recent and 
changes in trends need to be detected despite these sources of variability. 
A commonly used method for determining a trend in estimated indicator time series is fitting 
linear models and then using the sign of the slope for time if significantly different from zero 
(e.g. Nicholson and Jennings, 2004; Trenkel and Rochet, 2003). Alternatively non-parametric 
tests such as the Mann-Kendall test are used (e.g. Conover, 1971). These methods are 
suitable for determining long term time trends (>10 data points). However, they are less 
suitable for short term time trends as they lack power (Dulvy et al., 2005). Furthermore, time 
trends might not be linear, which reduces the power of many tests, and variability in 
estimated indicators can be as strong as to mask short term changes. 
In this paper we propose a method specifically designed to increase testing power for 
determining and characterising recent time trends in longer indicators time series. To avoid 
detecting spurious changes caused by outlying years or excessive sampling uncertainty, we 
do not employ the raw indicator time series but rather a smoothed version of it. The use of 
smoothed time series is common practice in environmental monitoring, e.g. water quality 
(Champely and Doledec, 1997; McLeod et al., 1991); phytoplankton (Nicholson et al., 1998), 
contaminants (Fryer and Nicholson, 1999) or birds (Fewster et al., 2000). Another advantage 
of smoothed time series is that the method can be applied even if data points are missing in 
a time series. The extreme points (maximum/minimum), slopes and accelerations of the 
smoothed time series are used to test for recent trends (first derivatives) and changes 
(second derivatives) in trends. Immediate management action would then be called for if a 
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recent time trend in the indicator in an undesirable direction was found. Preparation for future 
action might be advisable if deceleration (negative second derivative) of a stable indicator or 
a positive trend occurred. Thus characterisation of recent trends requires testing several 
hypotheses related to smoothed time series and its derivatives. To combine the tests of 
several statistics, we use intersection-union tests for which the global null hypothesis is 
rejected only if the null hypotheses for all test statistics are rejected (Casella and Berger, 
1990).  
The method is described in details in the next section and applied to North-Sea fish 
population abundance indices estimated from bottom-trawl survey data. If the method is 
responsive, the duration of the time period considered will impact test results, as might 
adding a data point. This is tested by considering different time spans and data periods.  
Method 
We assume that an indicator time series, for example a population abundance index has 
been estimated for the populations or community of interest (see Rochet and Trenkel (2003) 
for a review of indicators suitable for measuring the impact of fishing). Data from scientific 
surveys are commonly employed for estimating these indicators. The proposed method for 
detecting recent changes consists of five steps: 
Fit a smoother to the whole available indicator time series to obtain a smoothed series;  
Test whether smoother provides a satisfactory fit to the data, if yes proceed with 3., 
otherwise method is unsuitable for data; 
Calculate first and second derivatives for the smoothed time series for all years (including 
years with no data); 
Carry out parametric bootstrap of indicator time series to obtain resampled indicator time 
series and repeat steps 1.-3.; 
Carry out tests. 
The steps are described in details below. 
 
 
2. Smoothing indicator time series 

 
To obtain smoothed indicator time series, generalised additive models (GAM) are fitted with 
year modelled by a thin plate regression spline (Wood, 2006). Thin plate regression splines 
are basis functions for estimating smooth functions of one or several covariables. Model 
parameters are estimated by penalised likelihood, where the penalisation term encapsulates 
the non-linearity ("wiggliness") of the smooth function of time (years). The wiggliness is 
measured by the integral of the second derivative of the non-linear function over the range of 
years. The weight of the penalty term in the likelihood function, called smoothing parameter, 
is estimated by generalised cross-validation (GCV) which minimises the squared prediction 
error following the methodology proposed in Wood (2006) and implemented in the mgcv 
package in the statistical software R (R Development Core Team 2007). Given that indicator 
time series might be short, it has to be noted that the rank of the model cannot be larger than 
number of observations minus one (n-1), which limits the form of the non-linear function for 
very short series, e.g. a linear function for three years. The resulting smoothed time series is 
the smoothest possible in terms of second derivatives, i.e. changes in local linear time 
trends, while still following the general time trend. Furthermore, the lag 1 autocorrelation of 
residuals is zero (Wood 2006). Thus the smoothed times series encapsulates the time trend 
while the residuals represent iid random sampling noise. The desired consequence is that 
the autocorrelation of the smoothed indicator time series is much higher than that of the raw 
time series.   
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3. Goodness-of-fit test 

 
The approach assumes that the difference between the observed and smoothed series is 
due to random sampling variability with no autocorrelation, i.e. the autocorrelation of 
residuals of the smoothed series is zero. Thus the model fitted to the indicator time series I 
with t as explanatory variable for year is 

        )(ˆ tfIEI       (1)   

The estimated smoothed time series is then Î  (step 1). Assuming I is normally distributed, its 
goodness-of-fit can be tested by comparing the scaled residual sum of squares of the fitted 
smoothed model to a χ2-distribution with n-p degrees of freedoms, where n are the number of 
data points and  p the number of parameters in  the fitted model (Wood, 2006). If the p-value 
of the test is smaller than some fixed level α, the smoothed model provides a better fit than a 
model consisting of the average value only. The smoothed indicator time series is then 
declared providing a satisfactory fit to the data (step 2). In the opposite case the smoothed 
time series does not give a better description than the mean. 
 
 
4. Calculating first and second derivatives 

 
As spline models are twice differentiable, first and second derivatives of the smooth 

series exist and can be calculated for every year of the time series using finite difference 
intervals. As eq (1) is a linear additive model, it can be written as the ordinary linear model 
(Wood, 2006)  

     X


q

i
ii tbIE

1
)(][      (2)   

where bi(t) is the value of the ith thin-plate regression spline basis function for the 
explanatory variable t and βi is the corresponding unknown model coefficient. X is the linear 
predictor matrix with the number of columns corresponding to the rank q of the thin-plate 
regression spline model and the number of rows to the number of observations; β is the 
vector of all model parameters. The local first derivatives of the fitted model can then be 
estimated as the difference between fitted values at t and t+δ divided by δ, where δ is a small 
value, e.g. 1e-7.  

     /ˆ)(X)(X/)(̂)(̂)(ˆ tttItItI    (3) 
Second derivatives are estimated by taking finite differences of estimates of first 

derivatives. For multi-normally distributed estimated smoothed indicator time series, the 
estimates of the first and second derivatives are both multi-normally distributed as they are 
linear functions of the smoothed indicator values. The distribution question has to be 
considered for any particular indicator time series.    

 
 

5. Parametric bootstrap 

 
To estimate the standard deviations of the estimated first and second derivatives, a 

parametric bootstrap is carried out. For this indicator time series are created by resampling 
each data point (year) ))(),((~)( ttINtI b   from a normal distribution with as mean the estimated 
indicator value for year t, I(t) and as standard deviation its estimated standard deviation σ(t). 
A separate GAM is then fitted to each bootstrap series I(1)b...I(T)b, b=1,...B, using the same 
degrees of freedom (degree of smoothness) as was found optimal for the original indicator 
time series. Subsequently for each bootstrap sample first and second derivatives are 
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calculated by year. This provides the distribution of first and second derivatives for each year 
for which the sampling variance can be calculated.  

 
 

6. Building hypotheses tests 

 
For describing recent temporal changes, the signs of the annual first derivatives of the 

smoothed indicator series and the location of the maximum or minimum are used to derive 
an intersection-union test (Casella and Berger, 1990). The null hypothesis in an intersection-

union test is a union of type H0 : 




 , where θ is the vector of parameters of interest 

and   the set of values allowed under the null hypotheses of each of the γ=1,…Γ tests. The 

alternative hypothesis is expressed as the intersection H1 :  




 c  with c

 the set of 

values of the individual alternative hypotheses.  
There is a recent significant decrease (increase) in the smoothed indicator time series 

if both conditions   

C1: the maximum (minimum) smoothed indicator value maxÎ  ( minÎ ) is not found within the 
most recent n years, and 

C2: all annual slopes 0ˆ tI  ( 0ˆ tI ), for t = T-n+1,…T  
are met, where T is the final year in the data. Condition C1 allows to integrate the 
perspective of the whole time series into the test, because in the case where the indicator is 
at its maximum in the most recent period, it seems most likely that the underlying process is 
fluctuating around a steady state and hence any temporary negative or positive trends are 
without consequence.  

The two conditions lead to the definition of null and alternative hypotheses for each 
sub-test. The corresponding hypotheses tests are described for the case of testing a 
decreasing recent time trend, the test for an increasing time trend is similar. The test is set 
up in a way that a recent decreasing time trend is declared significant if all null hypotheses of 
sub-tests T1 and T2 corresponding to conditions C1 and C2 are rejected (intersection 
condition).   
T1 Test on location of maximum  

H01 :  ,1max ˆ,,ˆˆ TnT III    and H11 :   ,1max ˆ,,ˆˆ nTIII    
H01 is rejected if the maximum value is not situated during the final n years. 
T2 Test for values of annual slopes  

H02 : 0
1





T

nTt

tI  and H12 : 0
1




 
T

nTt

tI  

Assuming a normal distribution for the estimates of the first derivatives, ),(~'̂ ttt INI  , where 
the standard deviation is estimated by bootstrapping, H02

t
 is rejected at the α level if 

Pz( ttI ̂/ˆ  >0) < α. Pz() is the standard normal distribution function. The null hypothesis for 
subtest T1, H02 is then rejected at the α level if all H02

t, t=T-n+1,..T, are rejected. The overall 
test level is also α, as the upper bound of the test level of the intersection-union test with sub-

tests T1 and T2 is  21,sup TT    according to theorem 8.3.5 in Casella and Berger (1990). 
The same theorem applies to each sub-test. For sub-test T2, where the estimated first 
derivatives are autocorrelated, the test level is the maximum test level value of n tests each 
of level α. Thus test level for sub-test T2 is also α, despite the autocorrelation. 

A second intersection-union test is carried out to determine if recent time trends have 
been accelerating, i.e. be getting more negative in case of a negative trend or more positive 
for a positive trend. In the case of no significant time trend, the test indicates whether a future 
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negative or positive trend might be expected. Thus, a recent negative (positive) trend has 
been accelerating or a stable situation has been degrading, if the condition 
C3: all annual second derivatives over the n recent years are strictly negative (positive) 
is fulfilled. For deceleration of trends the opposite conditions apply. The condition is 
translated into a test as follows 
T3 Test for acceleration of a negative recent trend or degradation of a stable situation 

H03 : 0
1





T

nTt

I  and H13 : 0
1


 t

T

nTt

I    

Again assuming that estimated second derivatives follow a normal distribution, H03 is 

rejected if Pz( 


T

nTt

tI
1

̂/ t̂≥ 0) < α; Pz() is again the normal distribution function.    

 
In all tests a common time span n is considered. The suitable value for n will depend 

on the expected changes and the question examined, but it should be at least three because 
the autocorrelation in derivative estimates would dominate the test result with two years only,  
and at most T/2 to characterize the recent trends relative to a significantly long past. 

 
 

7. Application to Southern North Sea fish 

 
The proposed tests were applied to log-abundance indices for 33 fish species and families 
(see taxa list in Table 1). These indices were calculated using International Bottom Trawl 
Survey (IBTS) data collected in the Southern North Sea (south of 57N) in January during the 
period 1983-2005 and stored in the DATRAS data base hold by the International Council for 
the Exploration of the Sea (ICES, 2001). Hauls of 30-mins duration were carried out using a 
stratified random design. All fish were weighted and a sub-sample or all were counted. A 
global abundance index and its variance were calculated using a random stratified estimator 
taking account of the surface swept by each haul and the total stratum surface.  

A classical population dynamics model used in wildlife management is  
N(t) = N(t-1) exp(r(t)), where N(t) is the population abundance index and r(t) the achieved 
population growth rate in year t. The model is linearised by log-transformation   
ln(N(t)) = ln(N(t-1)) + r(t). Thus the local slope of the linear regression of ln(N(t)) on time is 
the annual population growth rate r(t). The indicator considered is then ln(N(t)) and its 
temporal changes indicate changes in the underlying population dynamics.  

The statistical distribution of ln(N(t)) can be found by first considering the distribution of 
N(t). Trenkel and Rochet (2003) analysing bottom trawl data similar to here found that both 
lognormal and Gamma distributions were appropriate for describing the distribution of 
numbers per haul and as a result for the abundance index N(t). This is a general feature in 
bottom trawl data. Hence taking logarithms will result in ln(N(t)) being approximately normally 
distributed and justifies assuming normal distributions for the estimates of first and second 
derivatives of the smoothed indicator series.     

Recent trends in ln(N(t)) and changes in trends were tested using the proposed tests. 
For comparison, linear models were also fitted and two non-parametric Mann-Kendall tests 
(one for strictly increasing and one for strictly decreasing trends) was carried out. A one-
sided test level of α=0.05 was used in all cases. To explore the impact of the chosen time 
horizon, the number of years considered was varied between n=3 and n=5, corresponding to 
recent time trends over the period 2004-2006 and 2002-2006 respectively. To investigate the 
capacity of the proposed method to pick up changes and guide management action from 
year to year, recent trends were also calculated for a reduced time series obtained by shifting 
the time series, i.e. considering recent trends during the period 2003-2005.  

For 25 out of 33 species did the GAM model provide a satisfactory fit for the data series 
1983-2006 (for 28 species for the shorter period 1983-2005), as shown by small p-values 
(≤0.05) for the χ2-tests (Table 1). Using the intersection-union test for trends (T1 & T2), 11 
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species with recent positive and seven with recent negative population growth rates were 
identified, compared to none for the Mann-Kendall test and one decreasing and one 
increasing with linear regression. In addition, for Hypperoplus lanceolatus, linear regression 
indicated a significant decreasing trend over the last three years of the series, while no 
intersection-union test could be carried out for this species due to lack of explanatory power 
for the GAM model. Visual inspection of figure 1 indicated that the population has probably 
been stable over the most recent years. If a test level of α=0.1 had been used, linear 
regression would have indicated significant trends for two additional species, the 
intersection-union test for six additional and the Mann-Kendall test still for none (table 2). The 
test for changes in trends (T3) showed for one species (Callionymus lyra) that although no 
increasing or decreasing trend was yet detectable, local slopes were decreasing (Table 1, 
solid arrows).      

When increasing the time horizon considered to five years (period 2002-2006), both 
linear regression and the Mann-Kendall test picked up more changes, one increasing and 
four decreasing (Table 1). The Mann-Kendall tests indicated three additional decreasing taxa 
(Ammodytidae, Limanda limanda and Scomber scombrus); all cases had a single high value 
in the early part of the recent period.  For three of the cases where linear regression and 
Mann-Kendal test agreed, Chelidonichtys gurnardus, Merlangius merlangus and 
Microstomus kitt, the intersection-union was not significant, as the null hypothesis T1 
(maximum during period) was not rejected. The case of Scomber scombrus is the only case 
with opposite results. The Mann-Kendall test detected a significant increase while the 
intersection-union test found a decrease. This species is characterised by a particularly large 
interannual variability in ln(N) estimates (Figure 1), which seems to be not well represented 
by the smoothed index. There was no significant consistent acceleration or deceleration over 
the five year period for any of the species.          

The proposed method seemed to be responsive, as when shifting the time series 
(removing the last year 2006) before fitting GAM models and then testing for trends over the 
period 2003-2005, the number of species with short term increasing trends was 16 instead of 
11, including three species for which no test could be carried out for the later series (Table 
2);  seven species were found to decrease which were not the same as for the longer period 
in four cases. Both linear regression and the Mann-Kendall test did not reveal any significant 
recent trends. The test for changes in trends (T3) revealed a deceleration of an increasing 
trend for five species. One species with no time trend over the period (Gasterosteus 
aculeatus) showed an increase in the local slopes. This second test for changes in slopes 
allowed for two species to anticipate subsequent time trends when one year of data was 
added (period 2004-2006). The increase in slope indicated by the significant test for 
Gasterosteus aculeatus for the period 2003-2005 become a significant increasing trend for 
the period 2004-2006. Similarly for Trisopterus minutes, where a significant increasing trend 
during the first period turned into a significant decreasing trend one year later, as indicated 
by the significant deceleration over the first period. 

 
 

8. Discussion 

 
We proposed and applied a first intersection-union test for detecting and characterising 

recent time trends and a second test for changes in trends. In contrast to the two classical 
methods, the proposed approach includes the uncertainty of indicator estimates. For the 
case study of North Sea fish, the intersection-union test was able to pick up far more 
changes than both a linear regression and a Mann-Kendall test, in particular for a short time 
horizon of three years; unsurprisingly the difference was less when the most recent five 
years were considered. This confirms the well known fact that both linear regression and the 
Mann-Kendall test have little power to detect trends in short time series. The investigations of 
trends over five years bring up the question whether for the intersection-union test the time 
horizon should be the same for both test statistics (T1 and T2) and what time horizon to 
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choose for the second test (T3). For the location of the maximum (T1) it might be more 
suitable to consider a shorter period than for local slopes (T2). Thus the choice of n for each 
sub-test should be carefully considered and adapted to the particular case study keeping in 
mind that the aim is to test recent trends in the light of the whole available time series. 
Alternatively one could consider recent values with respect to a reference level derived from 
additional information. For example, if the indicator of interest was population abundance, 
some measure of desirable abundance could be used. It might also be informative to 
compare recent levels to pre-fishing or early-fishing levels or any other benchmark, using for 
example the approach by Rosenberg et al. (2005) who estimated 19th century cod 
population levels based on historic catch-per-unit effort data.  

The test for changes in recent trends (T3) was intended to allow to determine current 
changes in underlying dynamics, i.e. acceleration or deceleration, which would become 
detectable trends only in the future and thus to add a degree of anticipation to the diagnosis 
as suggested by Buckland et al. (2005). In the application to Southern North Sea fish 
species,  significant results for this second test were mainly found when considering three 
years time horizons. When comparing changes in trends found for the period 2003-2005 with 
actual trends for 2004-2006, in two cases (Trisopterus minutes and Gasterosteus aculeatus) 
was a significant change in local trends followed by a significant trend. In three other cases 
(Agonus cataphractus, Arnoglossus laterna and Platichthys flesus), a deceleration in trend 
was not yet reflected in the smoothed time series when the additional year was added. 

When fitting a smoother to the indicator time series, we simultaneously estimated the 
optimal degree of smoothing. In the past before the methods developed by Wood (2006) 
were available, many authors have used empirical rules for fixing the degree of smoothing 
which were selected based on visual (Fewster et al., 2000) or theoretical considerations 
(Fryer and Nicholson, 1999). We believe that using a statistical criterion for optimal 
smoothness makes the resulting smoothed time series more objective as it avoids any 
arbitrary user decisions. Nevertheless, in the presence of large interannual variability, either 
due to true population variations, e.g. variable recruitment, or high sampling variability, the 
smoothed series will hopefully reflect the long term trends but might not well represent the 
most recent years. Indeed, the goodness-of-fit test we carried out indicates the global 
suitability of the GAM model compared to a simple linear model represented by the mean, 
not its local fit at the end of the time series. For example, for Enchelopus cimbrius it might be 
argued that the smoothed series did not describe well the time trend in the final years. In 
contrast, for Scomber scombrus or even Trachurus trachurus estimated indices varied widely 
around the smoothed indices (Figure 1). Both species are pelagic and form large schools, 
hence they are difficult to sample reliably using a bottom trawl as done by the IBTS survey. 
Thus for these two species it is probably the indices that are unsuitable for a short term 
analysis rather than an indication of failure of the proposed approach.     

We applied the proposed test for recent time trends using a classical false detection 
rate of α=0.05. However, as Field et al. (2004) pointed out, the costs of restoring a 
deteriorated population compared to taking overcautious measures are unequal. Hence they 
advocate much higher α-levels in trend tests. Transferring this principle to the test proposed 
here means that it might be better to detect too many than too few changes, but given the 
sensitivity of the proposed union-intersection test, using larger α-levels does not seem to be 
warranted. However, as the p-values for the linear regression tests showed (Table 1), α-
levels of more than 0.1 would have to be used to make linear regression as sensitive as the 
proposed method.         

Evaluation guidelines for the suitability of a metric as an ecological indicator often 
include prescriptions about the required power of the indicator to detect a certain degree of 
change over a specified number of years, for example a 20% change in ecological condition 
over a 10-year period with 90% confidence (Kurtz et al., 2001). While measurement of 
pollutants might be precise and hence the power of monitoring data to detect small changes 
satisfactorily high, population indicator estimates derived from annual sampling surveys are 
generally imprecise leading to large interannual variability which can drown trends. Sampling 
for marine species is particularly affected by this problem, due to large survey areas, small 
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scale as well as large scale temporal and spatial variability and generally low sample sizes. 
For example, for population metrics such as mean length in the population, Trenkel and 
Rochet (2003) found that tests using Western IBTS survey data had a power of 0.8 for 
detecting a significant linear change over a four year period for 15 out of 25 tested fish 
populations only. Similarly for community mean length, use of IBTS data provided tests with 
a power of less than 0.1 to detect a linear 0.2 cm change per year within five years 
(Nicholson and Jennings, 2004). In contrast, Hughes et al. (1998) found that with their index 
of biological integrity of a river fish assemblage they could detect a 8% year-to-year 
difference with a testing power of 0.8. Thus short term linear trend tests have proven to be 
rather blunt instruments for informing fisheries management decisions. We expect that the 
proposed tests have higher testing power for the same α-level compared to linear regression, 
thus making indicators more useful for fisheries management (Rice, 2000; Rice and Rochet, 
2005). Incidentally this suggests that the absolute power of an indicator is not a property of 
the indicator itself but rather depends on the statistical method used for detecting changes 
over time. 

One possible solution to the problem of high signal-to-noise ratios in marine population 
and community (state) indicators is to use them only for monitoring long term changes, and 
rely on hopefully more precisely estimated pressure indicators, e.g. fishing effort, and 
response, e.g. fishing quota, for short term assessment and management as suggested by 
Jennings (2005). The proposed method could then be applied to detect recent trends in 
pressure indicators. However, few firm direct links between pressure and response indicators 
and resulting states have so far been established (but see Link et al. 2002). Thus in order to 
assess how the exploited ecosystem is doing, it still seems a good idea to monitor short term 
changes of the system as well. The capacity to take timely management actions based on 
population indicators (Trenkel et al., 2007) crucially depends on the availability of methods 
for rapidly and reliably detecting short term changes. The proposed tests hopefully allow to 
fill this gap in the field of fisheries management but also in other fields where indicators are 
used for monitoring and management. In other fields data collection might be on longer or 
shorter time scales than the annual level in the case study presented here, which changes 
the meaning of short term trends but not the applicability of the method.    
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Tables 

 
Table 1. Test results for recent trends and changes in trends over a three or five year period 
in population growth rates in Southern North Sea fish (α=0.05) using linear regression (LR), 
Mann-Kendall test (MK) and intersection-union test (IU). p-values for χ2-test for GAM model 
fit to entire time series and for linear regression. Significant time trends (T1 & T2): decreasing 
(), increasing () or stable. Changes in time trends (T3): decelerating trend (d) or negative 
second derivatives (); positive derivatives (). 
 

 1984-
2006 

2004-2006 2002-2006 1984-
2005 

2003-2005 

Scientific name Chi2 
p-
value 

LR 
p-
value 

LR
 

MK IU 
 

LR 
p-
value

LR MK IU Chi2 
p-
value 

LR 
p-
value 

LR MK IU  

Agonus cataphractus 0.001 0.06    0.52    0.001 0.45   d 
Arnoglossus laterna 0.051 0.51    0.15    0.049 0.18   d 
Buglossidium luteum 0.039 0.64    0.14    0.040 0.6   d 
Callionymus lyra <0.001 0.92    0.81    <0.001 0.66    
Chelidonichthys gurnardus 0.001 0.07    0.03    0.002 0.28    
Clupea harengus <0.001 0.42    0.01    <0.001 0.17    
Echiichthys vipera 0.052 0.40    0.24    0.020 0.068    
Enchelyopus cimbrius 0.002 0.19    0.35    0.002 0.81    
Engraulis encrasicolus <0.001 0.31    0.42    <0.001 0.96    
Ammodytidae <0.001 0.96    0.11    <0.001 0.96    
Gobiidae 0.07 0.66    0.12    0.071 0.67    
Gadus morhua <0.001 0.68    0.39    <0.001 0.81    
Gasterosteus  aculeatus  0.002 0.64    0.1    0.002 0.34   
Hippoglossoides platessoides <0.001 0.32    0.045    <0.001 0.31    
Hyperoplus lanceolatus 0.07 0.002     0.19    0.073 0.82    
Limanda limanda <0.001 0.69    0.09    <0.001 0.06    
Liparis liparis 0.02 0.22    0.36    0.023 0.52    
Melanogrammus aeglefinus 0.06 0.55    0.94    0.027 0.06    
Merlangius merlangus <0.001 0.03    0.003    <0.001 0.11    
Microstomus kitt <0.001 0.06    0.017    <0.001 0.10    
Myoxocephalus scorpius 0.02 0.16    0.46    0.022 0.31    
Platichthys flesus <0.001 0.8    0.89    <0.001 0.27   d 
Pleuronectes platessa <0.001 0.30    0.45    <0.001 0.35    
Pomatoschistus spp 0.08 0.45    0.26    0.068 0.44    
Raja clavata 0.062 0.14    0.83    0.064 0.99    
Scomber scombrus <0.001 0.25    0.19    <0.001 0.25    
Scyliorhinus canicula 0.01 0.03    0.59    0.013 0.75    
Solea solea 0.005 0.93    0.76    0.007 0.69    
Sprattus sprattus 0.004 0.67    0.42    0.004 0.4    
Trachurus trachurus <0.001 0.8    0.324    <0.001 0.78    
Trisopterus esmarkii 0.027 0.31    0.55    0.014 0.39    
Trisopterus luscus 0.058 0.87    0.94    0.061 0.16    
Trisopterus minutus 0.005 0.68    0.44    0.005 0.069   d 
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Table 2. Number of species for recent trend tests over a three or five year period in 
population growth rates in Southern North Sea fish using linear regression (LR), Mann-
Kendall test (MK) and intersection-union test (IU) and test level α. Direction of significant time 
trends: decreasing (), increasing () or stable ().  
 

 
2004-2006 
α=0.05 

2004-2006 
α=0.1 

2003-2005 
α=0.05 

2002-2006 
α=0.05 

Trend direction LR 
 

MK IU LR MK IU LR 
 

MK IU LR 
 

MK IU 

 2 0 7 4 0 12 0 0 7 4 7 6 

 30 33 7 28 33 1 33 33 5 28 25 10 

 1 0 11 1 0 12 0 0 16 1 1 9 

 
 
   
Figures 

 
Figure 1. Time series of ln-abundance of some fish species in the Southern North Sea based 
on IBTS bottom trawl data. The continuous line is a generalised additive model (GAM) fit. 
The broken lines are 95% confidence bands for this fit based on a parametric bootstrap of 
annual indicator estimators. Full species names in table 1. 
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