
P
le

as
e 

no
te

 th
at

 th
is

 is
 a

n 
au

th
or

-p
ro

du
ce

d 
P

D
F

 o
f a

n 
ar

tic
le

 a
cc

e
pt

ed
 fo

r 
pu

bl
ic

at
io

n 
fo

llo
w

in
g 

pe
er

 r
ev

ie
w

. T
he

 d
ef

in
iti

ve
 p

u
b

lis
h

er
-a

ut
he

nt
ic

at
ed

 v
e

rs
io

n 
is

 a
va

ila
b

le
 o

n 
th

e 
pu

b
lis

he
r 

W
eb

 s
ite

 

 1

Journal of Fluid Mechanics 
April 2009 ; Volume 624 : Pages 45-55 
http://dx.doi.org/10.1017/S0022112008004473  
© 2009 Cambridge University Press 
 
http://journals.cambridge.org/ 
 

Archimer 
Archive Institutionnelle de l’Ifremer 

http://www.ifremer.fr/docelec/ 

 

 

Available potential energy diagnosis in a direct numerical simulation of 
rotating stratified turbulence 

 
Guillaume Roullet1, * and Patrice Klein1 

 
 
1 Laboratoire de Physique des Océans UMR6523 (CNRS, UBO, IFREMER, IRD), Brest, France   
 
 
*: Corresponding author : G. Roullet, email address : Guillaume.Roullet@univ-brest.fr 
 

 
 
 
 
Abstract:  
 
Review of three studies devoted to the available potential energy (APE) leads to the proposal of a 
diagnosis for APE, well-suited for rotating stratified flows within the primitive equations (PE) framework 
in which anharmonic effects (due to large vertical displacements of isopycnals) are permitted. The 
chosen diagnosis is based on the APE definition of Holliday & McIntyre (J. Fluid Mech., vol. 107, 1981, 
pp. 221–225) and uses the background stratification of Winters et al. (J. Fluid Mech., vol. 289, 1995, 
pp. 115–128). Subsequent evaluation of the APE in a PE direct simulation (1/100°, 200 levels) of 
oceanic mesoscale turbulence indicates that anharmonic effects are significant. These effects are due 
to large vertical displacements of the isopycnals and the curvature of the background density profile. 
 
 
 
1. Introduction 
 
For quasi-geostrophic (QG) stratified rotating turbulent flows, characterized by small vertical 
displacements of isopycnals, Charney (1971) predicted that one third of the total energy is in potential 
form, in accordance with the energy equipartition principle. Such equipartition has been confirmed in 
numerical simulations of 3-D QG turbulence (Hua & Haidvogel 1986; McWilliams 1989). In these flows 
the APE diagnosis has a quadratic form based on the smallness of the isopycnal vertical 
displacements. There is no equivalent theory for the PE framework which allows flow regimes with 
large vertical displacements of isopycnals. Actually the potential energy is rarely used and in any case 
is never diagnosed in PE numerical simulations. This is because of the lack of an adequate APE 
diagnosis that would take into account the non-quadratic, or anharmonic, effects of APE, which 
requires to consider higher order terms. In this paper we review in section 2 some studies devoted to 
the definition of APE. Their synthesis allows us to propose a more accurate APE definition for the PE 
framework. Such diagnosis is used in section 3 to analyse the APE properties in a PE direct numerical 
simulation (DNS) and in particular the anharmonic effects. Conclusions are offered in the last section. 
 
 
2. A review on APE density 
 
2.1. The three definitions of the APE density 
 
The potential energy of a fluid parcel with density �(x, y, z, t) is ep(z, �) = �gz (with g the gravity 
constant). This energy is never diagnosed because it is neither quadratic nor linear in the perturbation. 

http://dx.doi.org/10.1017/S0022112008004473
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http://www.ifremer.fr/docelec/
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Figure 1. Graphical interpretation of the three APE densities in terms of areas, all based on
a reference stratification ρr(z) (thick line): Holliday & McIntyre’s APE (2.1) of a parcel ρ at
depth z is the sum of yellow and red areas, the basic APE (2.2) for the same parcel is the sum
of the blue, red and yellow areas and QG APE (2.5) is the yellow area whereas QG APE (2.6) is
the hatched area. (2.5) is based on the slope of the reference profile N2

r (zr) (thin straight line)
and (2.6) on the slope of the profile at z. Anharmonic effects (taken into account in (2.1) and
not in (2.5)) concern the red area.

A better quantity to use is the APE density proposed by Holliday & McIntyre (1980)
that measures the potential energy with respect to a reference state

ea(z, ρ) =

∫ z

zr(ρ)

g(ρ − ρr(z
′)) dz′, (2.1)

where ρr(z) is the density profile of this reference state and zr(ρ) is its inverse map-
ping. Physically, zr(ρ) is the equilibrium depth of a parcel of density ρ. (2.1) includes
two terms. The first one, gρ∆z (with ∆z = z − zr(ρ), the vertical displacement of the
isopycnals), is the work of the gravitational force (see Holliday & McIntyre 1980) and
the second,

∫ z

zr(ρ)
ρr(z

′)g dz′, is the work of the pressure force due to the background

stratification. A graphical interpretation of this APE is given in Fig. 1 as the sum of the
red and yellow areas. It is actually the area delimited by the curve zr(ρ) and the hori-
zontal and vertical lines emanating from the point (z, ρ). This APE definition requires
no assumption on ∆z. One important constraint for this definition is that zr(ρ) must
exist for any ρ-value present in the fluid and therefore the reference state should span the
interval [min(ρ), max(ρ)]. As noted by Holliday & McIntyre (1980), this APE density is
not quadratic in the perturbation because it includes higher order corrections, namely
anharmonic terms, but it has the essential property of being definite positive as long as
the reference profile is stable.

A more basic expression for the APE density is

eW (z, ρ) = gρ∆z (2.2)

that retains only the gravitational force term of the APE expression (2.1). It was used
by Winters et al. (1995) to obtain volume integrated APE. This basic APE is the sum of
the blue, red and yellow areas on Fig. 1. If ρb(z) is a volume-preserving rearrangement
of ρ(x, y, z) (as in Winters et al.) then the two APEs yield the same domain integrated
value

Ea[ρ] =

∫

V

ea(z, ρ(x, y, z, t)) dV =

∫

V

eW (z, ρ(x, y, z, t)) dV (2.3)

However, if one is interested in the local APE density, then only (2.1) is valid because
the additional work of the pressure force (blue area on Fig. 1), at leading order in ∆z,
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cancels out the gravitational force (the sum of red, yellow and blue areas on Fig. 1) and
transforms the linear form (2.2) into the definite positive form (2.1) while preserving
(2.3). The Hamiltonian approach (§ 2.2) provides the unifying framework.

A further simpler and classical expression for the APE is the one that uses , for a fixed
density, a Taylor series expansion of (2.1) in ∆z = z − zr(ρ) (assuming the smallness of
∆z), that is

ea(z, ρ) = −g

(
1

2
∂zρr∆z2 +

1

6
∂2

zzρr∆z3

)
+ O(∆z4) (2.4)

The second order term involves the density gradient and the third order one the curvature
of the reference density profile. If only the second order term is retained (2.4) yields the
QG APE density (Pedlosky 1987) that is quadratic and reads

eQG(z, ρ) =
1

2
ρ0 [Nr(zr)∆z]

2
(2.5)

where ρ0 is the constant density associated with the Boussinesq assumption, and N2
r (zr) =

−ρ−1
0 g∂zρr(zr) is the square of the Brunt-Väisälä frequency of the reference stratifica-

tion. The right triangle approximating the QG APE is the yellow area on Fig. 1 where
the hypothenuse is given by the local slope N2

r (zr) of the profile. (2.1) turns out to be
the finite amplitude form of (2.5) and therefore a more accurate definition of APE when
∆z is large. Conversely, expanding (2.1) in ∆z, at fixed z, yields the QG APE density
written for the density perturbation ∆ρ = ρ − ρr(z)

e∗QG(z, ρ) =
1

2
ρ0

[
g∆ρ

ρ0Nr(z)

]2

(2.6)

(hatched right triangle on Fig. 1). For a non uniform reference profile (2.5) and (2.6)
differ. In particular, the slopes of the triangles are different. (2.5) is associated with
the Lagrangian view (fixed ρ) whereas (2.6), the most customary, is associated with the
Eulerian view (fixed z).

We define anharmonic effect by

eanh(z, ρ) = ea(z, ρ) − eQG(z, ρ) (2.7)

(red area on Fig 1) and at leading order in ∆z it is proportional to ∆z3 and to the curva-
ture of the reference profile, ∂2

zzρr, (see (2.4) and (2.5)). Using e∗QG in (2.7) instead of eQG

would give an anharmonic effect with opposite sign and a slightly different magnitude.
The choice of (2.1) was validated by Shepherd (1993) and Bannon (2003) who further-

more explored the role of the pressure forces with the help of the Hamiltonian formalism
as described in section 2.2. Then the only question to address is the choice of the refer-
ence stratification. This point is discussed in sections 2.3 and 2.4. The next issue will be
to determine how (2.5) differs from (2.1) in a highly ageostrophic regime that exhibits
large isopycnal deviations and therefore to quantify the importance of the anharmonic
effects. These effects, shown by the red area on Fig. 1, are quantified in section 3.

2.2. Hamiltonian formalism

We follow in this section some ideas developed in Shepherd (1993) to better understand
the role of the pressure force. Prior to the APE definition, two density functionals are
introduced: the total potential energy

Ep[ρ] =

∫

V

ρ(x, y, z, t)gz dV (2.8)
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and a Casimir which, for a rest state, reduces to a functional of the density

C[ρ] =

∫

V

fr(ρ) dV, (2.9)

where fr(ρ) is a function defined on the reference state (see Morrison 1998, for a good
introduction on Hamiltonian fluid dynamics). This Casimir is chosen so as to cancel the
linear contributions in the perturbation. The total APE then reads

Ea[ρ] = Ep[ρ] − Ep[ρr] + C[ρ] − C[ρr], (2.10)

which is also named the potential part of the pseudo-energy. In order for the Casimir to
have no impact on the global form of energy, i.e. C[ρ] = C[ρr], ρr(z) must be a volume-
preserving rearrangement of ρ(x, y, z). This sets a strong constraint on the reference
profile. In this case, the introduction of the Casimir only modify the APE local form.
Shepherd (1993) gives an extensive review of the various APE associated with the various
set of fluid dynamics equations. Applied to the case of stratified rotating incompressible
flows, hydrostatic or not, the Casimir reads

fr(ρ) = −pr(zr(ρ)) − ρgzr(ρ), (2.11)

where pr(z) is the hydrostatic pressure associated with the reference stratification. Hence,
the APE density reads

ea(z, ρ) = ρgz − ρgzr(ρ) − pr(zr(ρ)) + pr(z), (2.12)

recovering readily (2.1). The two first terms of the right-hand side of (2.12) give (2.2), the
two next terms correspond physically to the work of the pressure force. The cancellation
of the linear component by the Casimir is illuminating in (2.12): indeed, at leading order
pr(z)− pr(zr) ∼ −ρg(z − zr(ρ)). To summarize: eW is the work of the gravity force, eQG

and e∗QG include the leading order term of the pressure forces work and ea includes the
exact work of pressure forces (Fig 1).

2.3. Choice of the reference stratification

The choice of a reference stratification ρr(z) in (2.1) is a priori arbitrary provided that
zr(ρ) exists for any ρ-value present in the fluid. Incidentally, the use of the customary
horizontally averaged profile ρ̄(z) is not in general possible because parcels at surface may
have density less than the surface mean density ρ̄(z = 0) (which is the minimum value for
the reference stratification). However, if we want APE to be the maximal potential energy
that can be extracted from a given mass field in an adiabatic way, then, the reference
stratification must be the so-called background stratification ρb(z) (Lorenz 1955). It is
basically the flat stratification obtained by an adiabatic rearrangement of the parcels.
Therefore, a reference profile is univocally associated with any given state, though at the
expense of a highly implicit fonction. For the case of an incompressible equation of state,
this function is simply a sorting of parcels on their density (Winters et al. 1995). The
background stratification ensures that the Casimirs contributions globally vanish and
that (2.3) holds. It is worth noting that other reference stratifications could be used, but
then APE would loose its simple physical interpretation. For a forced-dissipative flow,
the concept of background stratification still makes sense because it can be defined in
terms of statistical properties of the density (cf. §2.4) and not in terms of an adiabatic
transformation.

To our knowledge, the APE definition of Holliday & McIntyre (1980) - i.e. (2.1) - has
never been diagnosed in models of rotating stratified turbulence. The central goal of this
paper is therefore to study the properties of (2.1) in a DNS of a turbulent flow with
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the choice ρr(z) = ρb(z). Before, let us further explore the properties of this background
stratification.

2.4. The background stratification

By definition, the background stratification ρb(z) is the density field associated with a
given state ρ(x, y, z, t) that minimizes the potential energy under adiabatic displacements
of parcels. Under the incompressible assumption, the background stratification is also
the cumulative probability density function (pdf) of the density as shown below. Let us
introduce the following two cumulative pdfs: the volume V (ρ) occupied by parcels lighter
than ρ

V (ρ) =

∫

ρ′<ρ

dV ′, (2.13)

and V (z) the volume of water above depth z

V (z) =

∫

z′>z

dV ′. (2.14)

The derivatives of each of these function ∂ρV and Σ(z) = −∂zV are respectively the pdf
of the density weighted by the volume and the surface of the ocean at depth z. Since the
function V (z) is monotonic, its inverse mapping z(V ) exists. Composing z(V ) and V (ρ)
yields to the inverse mapping of the background stratification

zb(ρ) = z(V (ρ)) (2.15)

which is the cumulative pdf of the density. Using the chain rule yields

∂zb

∂ρ
(ρ) = −Σ(z)

−1 ∂V

∂ρ
(ρ), (2.16)

which is the density pdf weighted by the thickness, that simplifies, in the case of a domain
with a flat bottom, into

N2
b (zb(ρ)) = −

gΣ0

ρ0
[∂ρV (ρ)]−1 (2.17)

where the surface Σ0 = Σ(z) is independent of z. Therefore, in practice, computing
N2

b (zb(ρ)) amounts to compute the density pdf ∂ρV (ρ).

3. Model results

3.1. Description

Numerical simulations of a nonlinear baroclinic unstable flow in a zonal β-plane channel
(1000 km long, 3000 km wide and with a depth of 4000m) centered at midlatitudes (f =
10−4 s−1), have been performed with the Primitive Equations code ROMS (see details in
Klein et al. (2008)). The simulation used in this paper has a 1 km horizontal resolution,
corresponding roughly to 1/100◦ resolution, and 200 vertical levels concentrated at sea
surface whose thickness is exponentially increasing with depth. The simulation, forced
by a linear restoring (50 days) of its mean zonal state to a prescribed climatological
state (Fig. 2), is integrated until the statistical equilibrium is reached (600 days from the
original zonal state triggered by a small random noise). Upper layer dynamics is further
explored by Klein et al. (2008).

3.2. Background stratification

Fig. 2 highlights that the horizontally averaged density profile, ρ̄, is very different from
the background density profile, ρb, in the upper layers but the two coincide in the abyss.



6 G. Roullet and P. Klein

−1000

−500

0

25 25.5 26 26.5 27 27.5 28
−4000

−3000

−2000

−1000

density (in kg.m−3)

z 
(in

 m
)

−1000

−500

0

0 20 40 60 80
−4000

−3000

−2000

−1000

N/f

z 
(in

 m
)

Figure 2. (Left) Vertical profiles (with a zoom in the upper layers) of: the horizontally aver-
aged density ρ̄ at the equilibrium (blue), and of the horizontally averaged climatology density
ρclim (green) and their associated background profiles ρb, (red) and ρbclim (cyan) (Right) N/f
(dimensionless) profiles associated with the different density profiles (identified by their color).
The increase of N/f at surface associated to ρ̄ is an evidence of the restratification process at
play in this run.
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Figure 3. Left: thin iso-contours of APE ẽa(z, zb) superimposed on the joined-pdf of the APE
(log scale in color) expressed as a function of z and zb. Right: zoom on the upper-right corner
with relative importance of the anharmonic effects eanh/ea (iso-contours every 0.1, dashed for
negative values, thick for 0 value) superimposed on the same colored pdf. Isocontours are solely
determined by ρb(z), whereas colors result from the 3D oceanic turbulent simulation. When
looking at constant zb (i.e. on a given isopycnal), the joined-pdf provides the pdf of the depth
z of this isopycnal: for instance the zb = 400 m isopycnal spreads from roughly 800 m depth to
the surface.

However, when vertically integrated, these two profiles yield the same mass. Furthermore
the background stratification (ρb) is close to the one (ρ∗b) calculated from the climatolog-
ical state (Fig. 2). There is no physical necessity because the forcing is basically diabatic
and so may modify the background stratification. This property is due to the particular
choice of forcing that drives continuously the density toward the climatology.
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Figure 4. Left: snapshot at surface in the central region of the jet of APE density ea/ρ0

(in m2.s−2). Right: relative importance of the anhharmonic effects, eanh/ea (dimensionless),
estimated from (2.1) and (2.7).

3.3. Statistical properties of APE

Because zr(ρ) is monotonic, the APE density can be expressed in terms of either (z, ρ)
or (z, zb) using a composition, namely ẽa(z, zr) = ea(z, ρr(zr)) with

ẽa(z, zb) =

∫ ρb(zb)

ρb(z)

(z − zb(ρ
′))g dρ′. (3.1)

The structure of the APE for a fluid parcel in the parameter space (z, zb) is sketched
by the isocontours on Figure 3a. The zero contour is along the diagonal. In the vicinity
of the diagonal ẽa(z, zb) is locally quadratic in the transverse direction, which means
that anharmonic effects vanishes along the diagonal (Fig. 3b) and that the APE matches
the QG APE. For large vertical displacements (|∆z| = |z − zb|) APE deviates from a
harmonic potential, which is the signature of the anharmonic effects.

The joint pdf of the APE from the ocean turbulent eddy field (superimposed in col-
orscale on Figure 3) has been computed by scanning every model grid-cell, associating
with each the pair (z, zb(ρ)), then counting the number of grid-cells with a given (z, zb(ρ)).
We have a total of 6×108 grid cells in the simulation domain. Below 500m the pdf peaks
around the main diagonal with a small transverse width. For upper layers, above 500m,
the pdf peak well deviates from the diagonal with deviation increasing as z tends to 0.
This deviation illustrates the anharmonic effects in the numerical simulation due to the
large ∆z. These effects are important (locally 70% of the total APE) at the surface where
relatively dense water outcrop, corresponding to vertical displacements of up to 800m.
Interestingly, they are also important below the thermocline, at 600 m depth, where they
exceed 70% of the total APE. The sign of anharmonic effect at 600m depth (Fig. 3b) is
directly related to the convexity of the background profile (Fig. 2).

3.4. APE in the physical space

At fixed z, APE is a functional of density only and at leading order is captured by the
QG-like expression (see (2.5) or (2.6)). However, deviations from a purely QG APE are
not so small (Fig. 4b) and reach 50% where density anomalies are large. Anharmonic
effects are negative (positive) in the south (north) part of the domain where the vertical
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Figure 5. Zonal mean snapshots in the central part of the channel of ρ (a in kg.m−3), θ (b in
m.s−1), θ − θclim (c in m.s−1) and eanh/ea (d, dimensionless).

displacements of the isopycnals are small (large). This is consistent with the isocontours
of (Fig. 3b) that displays a small negative region in the upper right and a positive region
in the upper middle. At deeper level, anharmonic effect continues to be of the same order
as at the surface. It is only below 800 m depth that anharmonic effect drops to few
percent and so that APE can be considered as the square of the density anomaly.

To further investigate how APE varies on the vertical we define an equivalent pertur-
bation for the APE density

θ=̂
∆z

|∆z|

√
2ea

ρ0
(3.2)

that can be either positive (∆z > 0) or negative (∆z < 0), and that can be compared
with the QG perturbation

θQG = Nb(zb(ρ))[z − zb(ρ)]. (3.3)

With these definitions, APE densities read ea = ρ0θ
2/2 and eQG = ρ0θ

2
QG/2.

On a zonal mean section, APE has nothing common with density, though it is com-
pletely related to it. On one hand density (Figs. 5a) reflects the structure of the mass
field, with classical features: a thermocline, outcropping of isopycnals, meridional gra-
dient. On the other hand, θ reflects the primary source of energy of the flow linked to
the density anomalies (Fig. 5b). Indeed, both the minimum and the maximum of θ lo-
cated at depth on the south and north flank of the jet are associated with Ertel PV
extrema (not shown) leading to a strong meridional PV gradient that is responsible for
the persistency of the baroclinic instability conditions. These extremas are sustained by



APE diagnosis in a DNS of Rotating Stratified Turbulence 9

 

 

−8

−6

−4

−2

0

2

4

z 
(in

 m
)

k
10

0
10

1
10

2

−3500

−3000

−2500

−2000

−1500

−1000

−10
2

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

z 
(in

 m
)

k
10

0
10

1
10

2

−3500

−3000

−2500

−2000

−1500

−1000

−10
2

Figure 6. Left: APE horizontal spectrum (isocontours of log
10
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a balance between the forcing feeding them and the baroclinic instability relaxing them.
One interesting feature is that when the climatology contribution is substracted from θ,
the resulting field (Fig. 5c) displays chimney-like vertical structures of APE whose depth
extension attains 1000m and with a width less than 100km. This indicates the strong
impact of the mesoscale turbulence on the APE.

Fig. 5d reveals that APE is larger than its QG counterpart in the first 300m below the
surface (except for an area very close to the surface in the southern part of the domain).
On the other hand it is smaller than its QG counterpart between 300m and 700m. Again
these positive and negative deviations of APE from its QG-expression, that attain more
than 50%, are consistent with the isocontours of Fig. 3b that display, on the average, a
positive value above 300m and a negative value between 300m and 700m. This means
that the amplitude and sign of these anharmonics effects are entirely determined by the
background density profile and mostly by its curvature as discussed in section 2.1.

3.5. APE in the spectral space

The definition of θ proposed in (3.2) also allows the computation of the APE spectra at
different depths.

ea(k, z) =
1

2

∫ 2π

0

|θ̂|2k dϕ (3.4)

where θ̂(k, ϕ, z) is the horizontal Fourier transform of θ(x, y, z) in polar coordinates.
Fig. 6a shows the distribution of APE in a spectral space. For a given horizontal scale,
the maximum of APE is at surface, because of the surface intensified nature of the
turbulence. APE at submesoscale (k > 50) is also intensified at surface but decreases
rapidly with depth. More precisely, in the upper 100 m, APE isocontours are straight
and inclined, indicating that the decay of APE is exponential (because the vertical scale
is a log-scale). This exponential decay of surface dynamics is well captured by the surface
quasi-geostrophic (SQG) theory. A small exponential decay is also present at the bottom
due to a bottom trapped dynamics analog to the SQG dynamics. Below the thermocline,
APE decreases rapidly with k, indicating a QG regime. These results are in accordance
with the results of Klein et al. (2008) that reveal a k−2 spectrum slope for the density
near the surface instead of a k−4.5 spectrum slope in the abyss.

The anharmonic effects have a relatively simple structure in the (k, z) space (Fig. 6b).
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They are mostly negative for large k and positive for smaller k in the upper layers. Again
this is consistent with the isocontours of Fig. 3b. Indeed, the Burger number being close
to one in this simulation (Klein et al. 2008), small horizontal structures have also a
small vertical extension, allowing only small vertical displacements of the isopycnals.
The opposite is true for the larger scale structures. Fig. 3b, on the other hand, reveals
that anharmonic effects in the upper 300m are negative (positive) in the upper right
(middle) part where small (large) displacements of the isopycnals are allowed. Below the
thermocline, the QG APE is too large, i.e. anharmomic effets are negative, at all scales.
Below 1000 m, anharmonic effects are negligible.

4. Conclusion

We have confirmed that the APE density as defined by Holliday & McIntyre (1980)
takes into account terms that are missing from the basic and the QG Pedlosky (1987) def-
inition of APE. As such it is the more appropriate within the framework of the primitive
equations. This remains true even with the hydrostatic assumption relaxed. Like every
APE, it is based on reference density profile. We have shown that not every profile suits.
Following Lorenz’s (1955) physical interpretation of APE, we used the background den-
sity profile obtained by an adiabatic rearrangement of the parcels. We have shown that
for an incompressible equation of state, this profile is the cumulative pdf of density. This
property allows for the computation of the background stratification in a more complex
geometry. Using these results we have estimated the APE density in a DNS of a rotating
stratified turbulent flow that uses a PE model. To our knowledge, such estimation in
a PE simulation has never been done before. The estimated APE density significantly
departs from its QG counterpart because of the strong isopycnal displacements. But this
is essentially the curvature of the background density profile that determines the ampli-
tude and the sign of the departures of APE from its QG counterpart, which are called
the anharmonic effects. These anharmonic effects are significant principally within the
upper oceanic layers.
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