Fisheries Research May 2009, Volume 97, Issue 3, Pages 263-269 <u>http://dx.doi.org/10.1016/j.fishres.2009.03.004</u> © 2009 Elsevier B.V. All rights reserved.

Genetic population structure of the Swordfish (*Xiphias gladius*) in the southwest Indian Ocean: Sex-biased differentiation, congruency between markers and its incidence in a way of stock assessment

D. Muths^{a,*}, P. Grewe^b, C. Jean^a and J. Bourjea^a

^a IFREMER Délégation Réunion, Rue Jean Bertho, BP60, 97822 Le Port, France

^b CSIRO Marine and Atmospheric Research, Castray Esplanade, Hobart, Tasmania 7000, Australia

*: Corresponding author : D. Muths, Tel.: +33 262 554 733, email address : Delphine.Muths@ifremer.fr

Abstract:

Genetic variation was surveyed at 11 microsatellite loci and at 517 bp of the mitochondrial control region to investigate the presence of genetic stock structure in swordfish (*Xiphias gladius*) in four proximal localities of the southwest Indian Ocean. One aim of this study was to serve as a preliminary examination for congruency of structure detected by these two genetic markers, prior to conducting a more comprehensive basin-wide survey of the Indian Ocean and nearby surrounding areas. Analyses of multilocus microsatellite genotypes and mitochondrial control region sequences both revealed a great homogeneity between samples. Genetic diversity detected at the regional scale was not significantly higher than detected at the local scale. Results suggest that the southwest Indian Ocean globally functions as a unique panmictic population. However, some discrete genetic differences appeared that could possibly indicate influence from a second genetic pool in the northern part of the Indian Ocean. This structure appeared to be sex-dependent with genetic differences higher among female than among male samples. This result may indicate a higher level of spawning area fidelity for females with a subsequent sampling bias tending to homogenise male genotypic distributions.

Keywords: Swordfish; Microsatellites; mtDNA; Population genetic; Indian Ocean

2

Introduction

3 The swordfish Xiphias gladius is one of the most widely distributed species of pelagic fish, commonly found in the tropical and temperate zones of the Atlantic, Indian and Pacific 4 5 Oceans. This species is heavily exploited by commercial fisheries worldwide, mainly by 6 drifting longline fisheries. Despite a constant increase of fishery effort, captures of swordfish 7 have decreased since 2000 in the Indian Ocean (Indian Ocean Tuna Commission, 2008). On 8 the basis of the 2008 stock indicators, the IOTC concluded that the recent catch level (about 9 319000 t from 2002-2006) have been around the current estimate of maximum sustainable 10 yield (31500 t, 80% confidence limits: 24500t-34400t) and is so in acceptable limits. While 11 the assessments indicate that the swordfish stock for the whole Indian Ocean is probably not 12 currently overfished, catch rate data from the southwest Indian Ocean suggest that overfishing 13 might occur in localised areas (IOTC, 2008). Consequently, management measures such as 14 quotas introduction may be considered for a sustainable exploitation. However, in the absence 15 of a clear definition of stock structure, determining the appropriate allocation of the resource will be impossible. In the case of quotas introduction, for example, the application of a unique 16 17 quota on a mixed population is unfavourable for the species and may lead to stock depletion, 18 whereas the application of several quotas on a unique population may penalize the fishing 19 activity (Avise, 1998). The artificial spatial scale of stock assessment and management must 20 match with the natural spatial scale of target populations (Francis et al., 2007). In this context, 21 improving knowledge on the population structure of swordfish is the first information needed 22 by managers for defining relevant management measures.

Resolving stock structure in a highly migratory species such as the swordfish presents unique and interesting challenges especially considering observed sexually dimorphic life history strategies. As a general rule, adult female swordfish migrate to temperate areas for

1 feeding during summer, then move to warmer waters for spawning. In contrast males appear 2 to remain more abundant in tropical regions and rarely undertake long distance migrations 3 observed for females (De Martini et al., 2000; Palko et al., 1981). Tag-recapture experiments 4 showed that even if some swordfish are able to undertake long-distance inter-ocean movements (at the scale of an ocean; Sedberry and Loefer, 2001; Takahashi et al., 2003), 5 6 20% of tagged swordfish are recaptured close to the point of release, revealing important 7 inter-individual plasticity in migrating behaviour and suggesting residency or homing 8 behaviour for some individuals within specific regions (Sedberry and Loefer, 2001). Thus, 9 considering dispersal of the swordfish, it may exist great disparities between the maximal 10 dispersal range (mainly linked with feeding behaviour) and the reproductive effective 11 dispersal range (more important in term of population replenishment and structure).

Genetic studies constitute an efficient mean to determine effective dispersal and 12 13 delineate stock boundaries (Palumbi, 2003), even for highly migratory species. For example, 14 whereas all tuna species possess similar high migration abilities, differentiation has been 15 detected at various scale: within an ocean basin for bluefin tuna (in Mediterranean; Carlsson 16 et al., 2004), both within and among oceans for the yellowfin tuna (Diaz-Jaimes and Uribe-Alcocer, 2006; Ely et al., 2005; Ward et al., 1997) and for the bigeye tuna (Alvarado Bremer 17 et al., 1998; Durand et al., 2005). On the other hand no differentiation was observed among 18 19 oceans for skipjack tuna (Ely et al., 2005). In the case of swordfish, structure appears quite 20 important with populations subdivided on oceanic and infra-oceanic scales, in the Atlantic 21 (Alvarado Bremer et al., 2005; Alvarado Bremer et al., 1996) and Pacific oceans (Lu et al., 22 2006; Reeb et al., 2000) and in the Mediterranean Sea (Kotoulas et al., 1995). In a general 23 way, swordfish structure has been less studied in the Indian Ocean. Some corridors seem to 24 exist between oceans but these appear to be constrained and delineated by equatorial boundaries. For example, swordfish appear quite similar between South-Indian and South-25 26 Atlantic oceans, as well as between South Indian and Pacific oceans (Chow and Takeyama,

1 2000; Lu et al., 2006), more similar between neighbouring oceans than from the southern to 2 the northern parts of the same ocean. While most of these genetic studies on the swordfish 3 conducted up until now have involved only one genetic marker, conclusions based on nuclear 4 and mitochondrial DNA data seemed concordant such as observed differentiation in Atlantic 5 Ocean versus the Mediterranean Sea (Alvarado Bremer et al., 2005). However, genetic 6 structure defined in the Indian Ocean with two kinds of markers showed some discrepancies. 7 Indeed, Jean et al. (2006)'s study failed to show population differentiation on the basis of 8 microsatellite data in the southwest Indian Ocean in agreement with what could be suspected 9 for a species displaying a high capacity of migration. On the other hand, Lu et al. (2006) 10 showed with mitochondrial sequences also obtained in the southwest Indian Ocean that gene 11 flow between adjacent populations appeared to be quite reduced or even absent. Even if the 12 uniparental inheritance of mtDNA tends to accentuate genetic differences among population 13 compared to nuclear genes, it does not capture the entire genetic history that is fundamental in 14 the case of defining population structure as required for fisheries management. As such 15 differences in conclusions can have drastic impact on stock assessment, it is imperative to 16 determine whether these differences are due to sampling area, sample size, or to genetic marker discordance. 17

18 In order to further examine and clarify whether nuclear and mitochondrial markers are 19 useful and complementary for swordfish stock discrimination, we examined variation at 20 eleven DNA microsatellite loci and compared that with analysis of mitochondrial haplotype 21 data (517-bp of the control region or d-loop). A total of 337 samples was examined from four 22 different sites of the southwest Indian Ocean. The major objective of this study was to provide 23 preliminary support in the form of a pilot study for using both DNA microsatellite and 24 mtDNA markers to further assess population genetic structure of Indian Ocean swordfish in a global context (i.e. the Indian Ocean and its connections with the neighbouring oceanic 25 26 basins) in an effort to assist better management of this important commercial species.

2

Materials and methods

3 **Biological materials**

4 Swordfish were sampled from four localities in the southwest Indian Ocean, 5 respectively in fishery statistical square around the islands of Glorieuses (11°S, 46°E), 6 Seychelles (5°S, 56°E), Reunion (21°S, 56°E) and in the south of Madagascar (31°S, 43°E), 7 respectively called GLO, SEY, RUN and MADA (Figure 1). Muscle tissue biopsies from a 8 total of 337 swordfish were collected onboard commercial fishing vessels between February 9 2005 and May 2006. Tissues were stored in ethanol 90% or in 20% Dimethylsulfoxide 10 (DMSO) saturated salt solution (Dutton, 1996) and frozen until DNA was isolated. All the 11 swordfish sampled were measured (LCK = Length from Cleithrum to Keel, *i.e.* fish length 12 without head and caudal fin) and sexed (Table 1).

13

Genetic analysis

14 Total genomic DNA was extracted using DNAeasy Tissue Kit (Qiagen) following the 15 manufacturers instructions. A 517 base pair (bp) fragment representing a small section of the 16 mitochondrial d-loop of control region was amplified by PCR using the primers defined by 17 Alvarado Bremer (1996; L15998: 5'-TACCCCAAACTCCCAAAGCTA-3'; H235: 5'-18 TGAATTAGGAACCAGATGCCA- 3'). Reactions were performed in 25 µl containing 1X 19 PCR buffer, 2 mM MgCl₂, 20 µM of each dNTPs, 0.5 µM of each primer, 0.5 U of Advantage 20 Polymerase Taq (Ozyme), 25 ng of genomic DNA. Cycling parameters were 93°C for 3 min, 21 followed by 35 cycles of 93°C for 40 s, 60°C for 50 s, and 72°C for 40 s and a final 22 elongation at 72°C for 2 min. PCR products were purified and sequenced on an ABI 3100 23 sequencer (Macrogen Inc.). Sequences were run forward and reverse. They were checked and 24 edited using Chromas version 1.6 (McCarthy, 1997) and aligned using ClustalW (Thompson *et al.*, 1994) in BioEdit Sequence Alignment Editor (Hall, 1999). Sequences were submitted
 to GenBank (Accession number EU202452-EU202642).

3 Eleven microsatellite loci were used, eight from Reeb et al. (2003: Xg-55, Xg-56, XG-66, Xg-75, Xg-144, Xg-166, Xg-379 and Xg-396) and three newly developed loci (D2A, D2B 4 5 and C8, with D2A and D2B linked loci on the same sequences). For isolation and 6 characterization of these 3 new DNA microsatellite primers, first was total genomic DNA 7 isolated from a single individual and then sent to Genetic Identification Services in California 8 for development of four libraries enriched for sequences containing microsatellite repeats. 9 Each library was enriched for the presence of a specific tetra repeat motif: CAGA, CATC, 10 TAGA or TGAC. Sequences from these four enriched libraries were analysed for the presence of repeats and primers were designed for a few promising loci using Oligo software 6.8 11 12 (Molecular Biology Insights, Inc). Once primer pairs were chosen (Table 1), a CAG tag (5'-CAGTCGGGCGTCATCA-3'; see Schable et al., 2002) was added to the 5' end of one of 13 14 each primer pair depending on which gave the least amount of secondary structure. This tag 15 allows the use of a third primer in the PCR (CAG) that is fluorescently labelled for detection 16 on the ABI capillary and gel based genotyping systems (Boutin-Ganache et al., 2001). An additional sequence (GTTTC) was added on the other primer of each pair to promote a-tailing 17 18 of the fluorescent strand. These 3 microsatellite loci were amplified using AmpliTaq Gold 19 (Applied Biosystems, Inc.) in 50µL reaction using standard 1.5mM MgCl₂. Cycling was kept 20 standard with one hold at 95°C for 12 minutes followed by 40 cycles of (94°C/15sec denature; 21 then 50°C/30sec anneal; and 72°C/ 1minute extension) followed by a final extension at 72°C 22 for 20 minutes. The 8 loci from Reeb et al. were amplified using the same PCR reaction for 23 mtDNA, but with Red Gold Star DNA Polymerase (EuroGenTec), and using cycling parameters described in FitzSimmons et al. (1997). Amplified fragments were separated on an 24 25 ABI Prism 3100 genetic analyser. Alleles were scored using a co-migrating size standard (Genescan500, Applied Biosystems, Inc.) and identified using GeneMapper4 (Applied
 Biosystems Inc.).

3 Statistical analyses

4 Mitochondrial DNA

5 Genetic variation among mitochondrial sequences was estimated as follow: for each 6 population, the haplotype (H_d) and nucleotide (π) diversities, Tajima's (1989) D statistic and 7 Fu's (1997) F statistic were examined using the DNAsp 4.0 software (Rozas et al., 2003). Tajima's D and Fu's F statistics test for departures from equilibrium between mutation and 8 9 drift; significantly negative values indicate population expansion or selective influence. Fu's 10 F statistics is more sensitive to recent demographic expansion (Fu, 1997). Pairwise genetic 11 distances (ϕ_{st}) were estimated between samples using Arlequin 2.000 (Schneider *et al.*, 2001). 12 In all cases, critical significance levels for multiple testing were corrected using a sequential 13 Bonferroni procedure (Rice, 1989). An AMOVA (Analysis of molecular variance; Excoffier 14 et al., 1992) was performed using Arlequin 2.000 (Schneider et al., 2001). DNAsp 4.0 (Rozas et al., 2003) was also used to estimate the nearest-neighbour statistic, Snn (Hudson, 2000). 15 16 Snn is a measure of how often the 'nearest neighbours' (in sequence space) are from the same 17 locality (in geographical space). Snn varies from 0 to 1: under 0.5, it is assumed that 18 populations are in panmixia, and values closer to 1 indicate that populations are differentiated. 19 Snn is particularly suitable when haplotype diversity is large (Hudson, 2000). Neighbour-20 joining trees, based on Kimura-2 parameter distance (Kimura, 1980), were constructed using 21 the Mega 2.1 software (Kumar et al., 2001).

22

Microsatellites

Allele frequencies, genetic diversity for each population, and genetic differentiation between populations were estimated from microsatellites following classical population estimators implemented in the Genepop 3.4 software (Raymond and Rousset, 1999). Values

1 estimated include the mean number of alleles per population (*Nall*), and the observed (*Hobs*), 2 and expected (Hnb) heterozygosities (Nei, 1987). In addition, allelic richness (Rs) was 3 estimated using Fstat 2.9.3.2 (Goudet, 1995). The null hypothesis of independence between 4 loci was tested from statistical genotypic disequilibrium analyses using Genepop 3.4 5 (Raymond and Rousset, 1995). Deviations from Hardy-Weinberg equilibrium were examined 6 for each population, at each locus, by calculating Wright's fixation index F_{is} as estimated by 7 Weir and Cockerham's (1984) using the same software. Departure from Hardy-Weinberg 8 equilibrium was then tested using exact tests. Overall levels of genetic differentiation were 9 analysed by calculating the estimator θ of the Wright's F_{st} Statistic (Weir and Cockerham, 10 1984) for each locus, and differentiation was then tested using exact tests for the null 11 hypothesis of identity of allelic distributions across populations. Effective population size 12 (Ne) were estimated using changes in microsatellite allele frequencies with the software programme NeEstimator (Peel et al., 2004). This software gave point estimation of Ne using 13 14 linkage/gametic disequilibrium (Hill, 1981). NeEstimator was not used to estimate the actual long-term inbreeding effective population size but to compare Ne estimates as relative 15 16 effective population sizes between samples. AMOVA analysis were performed using 17 Arlequin 2.000 (Schneider et al., 2001). A correspondence factorial analysis was performed 18 on genotype frequencies with the Genetix 4.0 software (Belkhir et al., 2000). To determine if 19 the samples belonged to one or more populations, data were also analysed using the software 20 Structure (Pritchard et al., 2000) which uses iterative computation process to infer the most 21 likely number of populations (K) represented in the total sample. For this analysis, an 22 admixture model assuming independent allele frequencies was used and three replicates were run (each with 1.10^5 burn-ins and 5.10^5 iterations) at K values from 1 to 4. 23

1 **Results**

2

Genetic diversity and demographic stability

3 Mitochondrial DNA

A total of 117 variable sites, constituting 240 haplotypes was detected among the mtDNA control region sequences (517 bp) for the 337 swordfish sequenced. Compiling with Reeb *et al.*' (2000)s dataset previously published in GenBank (Accession number AF199616-AF200183), it appears that all these haplotypes belong to clade I with a divergence intra-clade lower than 1% (compared to a divergence between clades higher than 2.5%).

9 A similar high level of genetic diversity was encountered in each locality (Table 2). 10 Mean haplotype diversity (H_d) and mean nucleotide diversity (π) were of the same order of 11 magnitude between localities, with H_d near from 1, and π near from 0.02. Tajima's D and 12 Fu's F values were negative but not significant (D = - 1.6 and F = - 2), except for Fu's 13 statistics in RUN locality.

14 Microsatellites

15 Mean number of alleles and allelic richness were of the same order between the four 16 localities respectively varying from 14.3 to 17.5 and from 13.3 to 14.6 (Table 1), with each 17 time the lowest value in RUN and the highest value in GLO. The GLO population had the 18 highest number of private alleles at 16 versus a range of 3 to 9 in the three other localities). Ne 19 estimates varied from a low of 277 in RUN to 879 in GLO (Table 2). No loci were in 20 disequilibrium (p < 0.001) over the whole dataset, supporting the independent assortment of 21 alleles at different loci. Heterozygote deficiencies were highly significant in all samples with 22 values ranging from a low of 0.079 for GLO to 0.176 for RUN (Tables 2 & 3).

23

Population structure

24 Mitochondrial DNA

1 Pairwise ϕ_{st} estimates between localities are presented in Table 4. Mean value of ϕ_{st} 2 was weak (= 0.01) with only one of the six values significant, between SEY and RUN 3 samples. The two highest ϕ_{st} values were observed in the SEY sample. Interestingly, an 4 AMOVA across the four samples demonstrated a small and non-significant Φ_{ST} value (0.005, 5 p = 0.15). When hierarchical AMOVA analysis were undertaken with grouping schemes in 6 agreement with significant pairwise ϕ_{st} estimates on the localities (*i.e.* SEY sample isolated 7 from the three others or RUN sample isolated from the three others), more than 99% of the 8 variance was observed within the samples ($\Phi_{ST} < 0.002$, p > 0.05) with a non-significant 9 variance associated with the partition in two groups ($\Phi_{SC} < 0.001$, p > 0.05). To further test 10 samples homogeneity, the nearest-neighbour statistic (Snn) was calculated on the mtDNA 11 control region sequences. The test revealed a non-significant association between sequence similarity and geographical location (Snn = 0.288, p = 0.13). A neighbour-joining tree based 12 13 on average pairwise distances estimated from the 517-bp mtDNA sequences between samples is presented in Figure 2. Samples from the four localities appeared well mixed. Adding our 14 15 sequences to Lu et al. (2006)'s Indian Ocean sequences previously published in GenBank (Accession number DQ076502-DQ076643), pairwise ϕ_{st} estimates revealed no more 16 differentiation. This could be due to the low sampling size of Lu et al. (2006)'s samples (four 17 times lower than ours) or to shorter length of our sequences (517 pb against 819 pb). 18

19 *Microsatellites*

Pairwise multilocus θ values between localities are presented in Table 4. Mean value of θ was weak (= 0.02) with all the non-null θ values involving either SEY or GLO samples. Only one significant θ value was observed among six sample site comparisons. This was between SEY and GLO and was likely due to significant differentiation observed at 5 of the 11 loci tested. An AMOVA across the four samples demonstrated a small and non-significant ϕ_{ST} value (0.000, p = 0.510). When hierarchical AMOVA analysis were undertaken with

1 grouping schemes in agreement with significant pairwise θ values between localities (*i.e.* SEY 2 or GLO sample isolated from the three others), more than 99% of the variance was observed 3 within the samples ($\Phi_{ST} < 0.001$, p > 0.05) with a non-significant variance associated with the partition in two groups ($\Phi_{SC} < 0.001$, p > 0.05). The analysis made with Structure suggested 4 that the highest likelihood of obtaining such data was to consider that only one population 5 (K = 1) existed. The likelihood decreased when estimates were made with one population to 6 7 two (over three independent simulations: LnP(D) for K = 1 and K = 2 were -14217 and 8 -14536, respectively) providing some evidence against subdivision. A correspondence 9 factorial analysis was performed on genotype frequencies. Results of this multivariate 10 analysis are presented on Figure 3; 81% of genetic variance was synthesized by the two first 11 axis (respectively 39.3% and 31.7% by axis 1 and axis 2). Some groupings seem to exist in 12 accordance with sampling locality, mainly due to the segregation of SEY against GLO on the first axis, whereas these two samples appeared opposed to MADA and RUN on the second 13 14 axis. However the distribution of individuals along the axes showed a great disparity and a 15 high degree of superposition.

16 Sex-dependant analysis

17 As sex identification was available for each swordfish, some statistics were reestimated, for males and females, of each locality or of all localities. Levels of genetic 18 19 diversities of both markers were of the same order within each sex category. Allelic richness 20 was however always higher for female than for male but not in a significant way. Pairwise ϕ_{st} 21 estimates between sex categories within each locality were weak. The previous significant 22 value found between SEY and RUN disappeared (probably because of the very small number 23 of females in RUN locality (n = 6)). Noteably, the previous pairwise multilocus θ value found between SEY and GLO was still significant indicating that significant differences were only 24 due to females ($\theta = 0.01$, p < 0.001), as males from SEY and GLO showed no significant 25 26 differences (see Table 5). Other pairwise differentiation involving females from GLO were significant (*i.e.* with males from GLO or with females from MADA; see Table 5). In a global way, all pairwise differentiation values involving females were higher than the same values estimated between males. Two hierarchical AMOVA (one on mtDNA data, the second on microsatellites) were undertaken with partitioning in two sex groups. More than 99% of the variance was observed within the samples ($\Phi_{ST} < 0.001$, p > 0.05) with a non-significant variance associated with the partition of the two sex groups ($\Phi_{SC} < 0.001$, p > 0.05).

7

8 **Discussion**

9 This study aimed to yield results on two different levels. The first aim was to evaluate 10 genetic differences between swordfish sampled in four distinct localities of the southwest 11 Indian Ocean (SWIO). An other aim was to examine the amount of congruency between the 12 two genetic marker types used to examine the population structure and its implication in the 13 case of a regional swordfish multi-stock assessment program.

14

Genetic structure of the swordfish in SWIO

15 The analysis of mitochondrial sequences of <u>X. gladius</u> has revealed a very high level 16 of mitochondrial diversity (nearly all individual displayed a distinct haplotype) as well as a 17 high microsatellite polymorphism (some loci showing up to 40 alleles). Both markers showed 18 a great genetic homogeneity between the four samples. Snn statistic as well as results obtained 19 with the software Structure pointed out the existence of a unique pool of genes. In the same 20 way, analysis of molecular variance mainly failed to find a genetic structure among the four 21 localities sampled in the SWIO. The very high levels of genetic diversity and the lack of 22 differentiation detected at a large spatial scale (*i.e.* about 2000 miles from North to South of 23 the sampling area) is thus well in agreement with the assumption of a large population size 24 that is not very sensitive to genetic drift (De Woody and Avise, 2000). This last point agrees 25 with Tajima's D and Fu's F statistics that indicate these samples appear demographically

stable. The hypothesis of a large effective population size that do not fluctuate greatly over time is easily understandable for swordfish with fecundities of several millions of eggs per female (Palko *et al.*, 1981). Such a finding is also in agreement with the hypothesis of long range dispersal typical of large pelagic fishes (Waples, 1998).

5 Results obtained from both mtDNA and microsatellites are consistent with the idea 6 that swordfish of the SWIO belong to a single unique panmictic population. However, some 7 weak differentiation seems to exist within the SWIO, and thus despite the important within-8 sample diversity that has been noticed to considerably reduce the ability of detecting between-9 samples structure, either on mtDNA data (Charlesworth, 1998) or on microsatellites studies 10 (Hedrick, 1999; O'Reilly et al., 2004). Jean et al. (2006)'s study failed to demonstrate genetic 11 structure of swordfish within the SWIO; increasing the sample size and the number of 12 microsatellites loci (three times more samples, two times more microsatellites, between Jean 13 et al. (2006)'s study and our) has thus permit to display heterogeneity within swordfish of the 14 SWIO. The punctual estimation of effective population size (that is the spawning proportion 15 of adults) tends to show higher values in the two northern localities (GLO and SEY), in 16 parallel with higher allelic richness. This could be in agreement with the hypothesis of a 17 reproductive aggregation in this northern zone (Mejuto *et al.*, 2006) whereas the two southern 18 areas might better represent transition zones between feeding and spawning areas or feeding 19 regions. Some swordfish collected in these northern localities (in GLO or SEY) could thus 20 belong to a second genetic pool. The significant heterozygote deficits observed in all localities 21 could partly be the signature of a Wahlund effect and could confirm the, more or less 22 pronounced, influence of a second genetic pool. This is also in agreement with Lu et al. 23 (2006)'s study which showed the existence of differences between swordfish sampled in the 24 Indian Ocean (in this case, between north of Madagascar and other northern sampling sites). 25 Swordfish within a locality may thus be a mixture from one dominant genetic pool and a 26 second less influent one, with various level of homogeneity depending on the swordfish

1 behaviour, and thus explaining the weak structure observed. These results contrast with those 2 obtained in Atlantic (Alvarado Bremer et al., 2005) that support the homogeneity between 3 spawning and feeding grounds, either in North and South Atlantic.

4 Moreover, examination of these populations indicates that there are some sex-biased intra-sample differences, that could also explain heterozygote deficits. For example, males in 5 6 GLO differ from females of the same area and the genetic differences found between SEY 7 and GLO was in fact only due to females. This species is known to migrate to temperate areas 8 for feeding and then move to warmer waters to reproduce (Palko et al., 1981): differences in 9 the level of genetic structure observed when only males or females are involved could thus be 10 the signature of a more pronounced homing behaviour depending on sex (Keeney et al., 2005; 11 Lee et al., 2007). In the present case, higher values for females indicate that they might 12 present a higher fidelity to their reproduction areas than males (Prugnolle and de Meeus, 13 2002). A lower fidelity by males, means that the male fish are supposed to swim around more 14 and are caught randomly with less structure when they are caught. This is supposed to 15 homogenise the nuclear genetic signal for both sexes, and so the differentiation between 16 females might be higher with the mtDNA. Actually it is not the case. So it could mean that a 17 sampling biased exist, maybe without enough homogeneity in sampling periods. The 18 sampling is not yet sufficient to deal further with sex-biased differences but open a very 19 interesting perspective of research. Conclusions based solely on genetic data would be an insufficient method of defining population structure, without the light of some basic 20 21 biological informational framework based on reproductive, feeding, and migrating strategies.

Congruency of molecular markers in a perspective of stock 22 23 assessment

24 Many genetic studies have shown discrepancies in conclusions when using different 25 markers types (Lemaire et al., 2000; Nielsen et al., 2006; Pogson et al., 1995). In such cases,

1 result disparities may partly be explained by differences in mutation rates and in sensitivity to 2 forces that promote population differentiation. Using two genetic markers was our initial 3 option to limit errors, as 'drawing conclusions from single genealogies can be problematic as 4 each is only a single point in the space of all possible genealogies' (Wakeley, 2003). In the 5 present study, both markers seemed to support similar conclusions in the pattern of genetic differentiation. Despite the high genetic diversity levels and the consequent limits of 6 7 interpretation both markers indeed showed a global pattern of panmixia within a unique 8 population at the scale of the SWIO influenced by a putative second differentiated population 9 in the equatorial region of the Indian Ocean. The putative existence of a second pool in a 10 restricted area of the SWIO is important as this region is supposed to be more affected by 11 stock declines due to high fishing pressures (IOTC, 2008). The existence of a distinct stock 12 have first to be confirmed; but, if it is really the case, genetic data will provide a key 13 information in the aim of swordfish stock assessment in Indian Ocean as decision have to be 14 taken separately for each stock. This encourages further research. Sampling a more extensive 15 area (within the Indian Ocean and neighbouring oceanic basins) may permit estimates of the 16 number of independent gene pools of swordfish, their geographic boundaries, and the level of exchanges between them. The existence of a second putative spawning aggregation in the 17 western part of the Indian Ocean as well as the specificity of bias due to dimorphic population 18 19 patterns observed in the different sexes also warrants further investigation. Finally, a pertinent 20 strategy for dealing with veracity of conclusions requires a good temporal sampling strategy 21 that is replicated samples over a two to three year time frame to fully describe population 22 dynamics for species like the swordfish that has the migratory potential to demonstrate high 23 levels of gene flow (Waples, 1998). Temporal samples will also permit effective estimates of population size with higher precision (Fraser et al., 2007) and help to challenge questions 24 25 about overfishing.

1 The present study permits analysis of genetic structure observed in X. gladius in the 2 SWIO and to address conclusions of previous studies (Jean et al., 2006; Lu et al., 2006). Our 3 results also underline the necessity of compiling biological data to genetic information to 4 examine swordfish stock structure. Stock estimates clearly require further investigations by 5 increasing the spatio-temporal sampling, both within Indian Ocean and with the neighbouring 6 oceanic basins.. As underlined by Francis et al. (2007) in the fourth of their Ten 7 commandments for ecosystem-based fisheries scientists, 'continuing to rely on traditional 8 stock assessments that either ignore or artificially delineate the true spatial structure of fish 9 populations is clearly a recipe for disaster'. A project of this scale would provide much insight 10 and constitute an excellent database for the CTOI and management authorities for both 11 present and future management of swordfish fishery in the Indian Ocean.

12

13

Acknowledgements

We would like to thank L. Gagnevin and K. Vital (CIRAD-3P) for their help in the laboratory work, P. Bach (Institut de Recherche pour le Développement), Alicia Delgado (Instituto Español de Oceanografía) and the Seychelles Fishing Authorities for their help in collecting effort. Funding for this project was provided by program DEMOSTEM-STRADA IFREMER.

19

20 Bibliographie

Alvarado Bremer, J., Mejuto, J., Gomez-Marquez, J., Boan, F., Carpintero, P., Rodriguez, J.,
Vinas, J., Greig, T., Ely, B., 2005. Hierarchical analyses of genetic variation of samples from
breeding and feeding grounds confirm the genetic partitioning of northwest Atlantic and
South Atlantic populations of swordfish (*Xiphias gladius* L.). J Exp Mar Biol Ecol 327, 167182.

Alvarado Bremer, J., Mejuto, J., Grei, T., Ely, B., 1996. Global population structure of the
swordfish (*Xiphias gladius*) as revealed by analysis of the mitochondrial DNA control region.
J Exp Mar Biol Ecol.

- 1 Alvarado Bremer, J.R., Stequert, B., Robertson, N.W., Elv, B., 1998. Genetic evidence for
- 2 inter-oceanic subdivision of bigeye tuna (Thunnus obesus) populations. Mar. Biol. 132, 547-3 557.
- 4 Avise, J.C., 1998. Conservation genetics in the marine realm. J Hered 89, 377-382.
- 5 Belkhir, k., Borsa, P., Goudet, J., Chikki, L., Bonhomme, F., 2000. GENETIX 4.02, logiciel 6 sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations,
- 7 Interactions CNRS UMR 5000, Université de Montpellier II, Montpellier (France).
- 8
- Boutin-Ganache, I., Raposo, M., Raymond, M., Deschepper, C., 2001. M13-tailed primers 9 improve the readability and usability of microsatellite analyses performed with two different
- 10 allele-sizing methods. Biotechniques 31, 24-28.
- 11 Carlsson, J., McDowell, J.R., Diaz-Jaimes, P., Carlsson, J.E.L., Boles, S.B., Gold, J.R.,
- 12 Graves, J.E., 2004. Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna
- 13 (Thynnus thynnus) population structure in the Mediterranean Sea. Mol Ecol 13, 3345-3356.
- 14 Charlesworth, B., 1998. Measures of divergence between populations and the effect of forces 15 that reduce variability. Mol Biol Evol 15, 538-543.
- 16 Chow, S., Takeyama, H., 2000. Nuclear and mitochondrial DNA analyses reveal four 17 genetically separated breeding units of the swordfish. J. Fish Biol. 56, 1087-1098.
- 18 De Martini, E., Uchiyama, J., Williams, H., 2000. Sexual maturity, sex ratio, and size
- 19 composition of swordfish, Xiphias gladius, caught by the Hawaii-based pelagic longline
- 20 fishery. Fishery Bulletin 98, 489-506.
- De Woody, J., Avise, J., 2000. Microsatellite variation in marine, freshwater, and andromous 21
- 22 fishes compared with other animals. J Fish Biol 56, 461-473.
- 23 Diaz-Jaimes, P., Uribe-Alcocer, M., 2006. Spatial differentiation in the eastern Pacific 24 vellowfin tuna revealed by microsatellite variation. Fish Sci 72.
- 25 Durand, J., Collet, A., Chow, S., Guinand, B., Borsa, P., 2005. Nuclear and mitochondrial
- DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna 26
- 27 (Thunnus obesus) populations, and their admixture off southern Africa. Mar Biol 147, 313-28 322.
- 29 Dutton, P., 1996. Methods for collection and preservation of samples for sea turtle genetic 30 studies. In: Memorandum, N.T.s (Ed.), Proceedings of the International Symposium on Sea 31 Turtle Conservation Genetics, pp. 17-24.
- 32 Ely, B., Vinas, J., Alvarado Bremer, J.R., Black, D., Lucas, L., Covello, K., Labrie, A.V.,
- 33 Thelen, E., 2005. Consequences of the historical demography on the global population 34 structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus 35 albacares) and the skipjack tuna (Katsuwonus pelamis). Evol Biol 5, 19.
- Excoffier, L., Smouse, P., Quattro, J., 1992. Analysis of molecular variance inferred from 36
- 37 metric distances among DNA haplotypes: application to human mitochondrial DNA 38 restriction data. Genetics 131, 479-491.
- 39 FitzSimmons, N.N., Limpus, C.J., Norman, J.A., Goldizen, A.R., Miller, J.D., Moritz, C.,
- 40 1997. Philopatry of male marine turtles inferred from mitochondrial DNA markers. 41 Proceedings of the Natural Academic of Science 94, 8912-8917.
- 42 Francis, R., Hixon, M., Clarke, M., Murawski, S., Ralston, S., 2007. Ten commandments for
- 43 ecosystem-based fisheries scientists. Fisheries 32, 217-233.
- 44 Fraser, D.J., Hansen, M.M., Ostergaard, S., Tessier, N., Legault, M., Bernatchez, L., 2007.
- 45 Comparative estimation of effective population sizes and temporal gene flow in two 46 contrasting population systems. Mol Ecol 16, 3866-3889.
- 47 Fu, Y., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking
- 48 and background selection. Genetics 147, 915-925.
- 49 Goudet, J., 1995. FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86,
- 50 485-486.

- 1 Hall, T.A., 1999. BioEdit : a user-friendly biological sequence alignment editor and analysis
- 2 program for Windows 95/98/NT. Nucleic Acid Symposium Series 41, 95-98.
- 3 Hedrick, P.H., 1999. Perspective: Highly variable loci and their interpretation in evolution
- 4 and conservation. Evolution 53, 313-318
- 5 Hill, W.G., 1981. Estimation of effective population size from data on linkage disequilibrium.
- 6 Genetic Research 38, 209-216.
- Hudson, R.R., 2000. A New Statistic for Detecting Genetic Differentiation. Genetics 155,
 2011-2014.
- 9 IOTC, 2008. IOTC. Report of the Eleventh Session of the Scientific Committee. (1-5
- 10 December, 2008). IOTC (Indian Ocean Tuna Commission), Victoria, Seychelles, p. 166.
- Jean, C., Bourjea, J., Jouen, E., Taquet, M., 2006. Stock structure of the swordfish (*Xiphias gladius*) in the Southwest Indian Ocean: a preliminary study. Bull Mar Sci 79, 521-526.
- 13 Keeney, D.B., Heupel, M.R., Hueter, R.E., Heist, E.J., 2005. Microsatellite and mitochondrial
- 14 DNA analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in
- 15 the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Mol Ecol 14, 1911-1923.
- Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions
 through comparative studies of nucleotide sequences. J Mol Evol 16, 111-120.
- 18 Kotoulas, G., Magoulas, A., Tsimenides, N., Zouros, E., 1995. Marked mitochondrial DNA
- 19 differences between Mediterranean and Atlantic populations of the swordfish, Xiphias
- 20 gladius. Mol Ecol 4, 473-481.
- Kumar, S., Tamura, K., Jakobsen, I., Nei, M., 2001. MEGA2: Molecular Evolutionary
 Genetics Analysis software. Bioinformatics 17, 1244-1245.
- Lee, P.L., Luschi, P., Hays, G.C., 2007. Detecting female precise natal philopatry in green turtles using assignment methods. Mol East 16, 61, 74
- 24 turtles using assignment methods. Mol Ecol 16, 61-74.
- 25 Lemaire, C., Allegrucci, G., Naciri, M., Bahri-Sfar, L., Kara, H., Bonhomme, F., 2000. Do
- 26 discrepancies between microsatellite and allozyme variation reveal differential selection
- between sea and lagoon in the sea bass (*Dicentrarchus labrax*)? Mol Ecol 9, 457.
- 28 Lu, C., Chen, C., Hui, C., Tzen, T., Yeh, S., 2006. Population genetic structure of the
- 29 swordfish, *Xiphias gladius* (Linnaeus, 1758) in the Indian Ocean and the West Pacific
- inferred from the complete DNA sequence of the mitochondrial control region. Zool Stud 45,269-279.
- 32 McCarthy, C., 1997. Chromas, Version 1.41. Griffith University, Brisbane.
- 33 Mejuto, J., Garcia-Cortes, B., Ramos-Cortelle, A., 2006. An overview of research activities
- 34 on swordfish (Xiphias gladius) and the by-catch species caught by the Spanish longline fleet
- 35 in the Indian Ocean. IOTC.
- 36 Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.
- 37 Nielsen, E.E., Hansen, M.M., Meldrup, D., 2006. Evidence of microsatellite hitch-hiking
- 38 selection in Atlantic cod (Gadus morhua L.): implications for inferring population structure in
- 39 nonmodel organisms. Mol Ecol 15, 3219-3229.
- 40 O'Reilly, P.T., Canino, M.F., Bailey, K.M., Bentzen, P., 2004. Inverse relationship between F
- 41 and microsatellite polymorphism in the marine fish, walleye pollock (*Theragra*
- *chalcogramma*): implications for resolving weak population structure. Mol Ecol 13, 17991814.
- 44 Palko, B., Beardslay, G., Richards, W., 1981. Synopsis of the biology of the swordfish,
- 45 *Xiphias gladius* Linnaues. NOAA Technical Report NMFS Circular 441 FAO Fisheries 46 synopsis, 2-15.
- 47 Palumbi, S.R., 2003. Population genetics, demographic connectivity and the design of marine
- 48 protected areas. Ecological Applications 13, 146-158.
- 49 Peel, D., Ovenden, J.R., Peel, S.L., 2004. NeEstimator: software for estimating effective
- 50 population size. Molecular Fisheries Laboratory, Queensland Department of Primary
- 51 Industries, Australia.

- 1 Pogson, G.H., Mesa, K.A., Boutilier, R.G., 1995. Genetic Population Structure and Gene
- 2 Flow in the Atlantic Cod Gadus morhua: A Comparison of Allozyme and Nuclear RFLP
- 3 Loci. Genetics 139, 375-385.
- 4 Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using
- 5 multilocus genotype data. Genetics 155, 945-959.
- 6 Prugnolle, F., de Meeus, T., 2002. Inferring sex-biased dispersal from population genetic 7 tools: a review. Heredity 88, 161-165.
- 8 Raymond, M., Rousset, F., 1995. GENEPOP (version 1.2): a population genetics software for
- 9 exact tests and ecumenicism. J Hered 86, 248-249.
- 10 Raymond, M., Rousset, F., 1999. GENEPOP (version 1.2): population genetics software for
- 11 exact tests and ecumenicism. Journal of Heredity 86, 248-249.
- 12 Reeb, C., Arcangelli, L., Block, B., 2000. Structure and migration corridors in Pacific
- populations of the swordfish *Xiphias gladius*, as inferred through analysis of mitochondrial
 DNA. Mar Biol 136, 1123-1131.
- 15 Reeb, C.A., Arcangeli, L., Block, B.A., 2003. Development of 11 microsatellite loci for
- population studies in the swordfish, *Xiphias gladius* (Teleostei: Scombridae). Mol. Ecol.
 Notes 3, 147-169.
- 18 Rice, W., 1989. Analyzing tables of statistical tests. Evolution 43, 223-225.
- 19 Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X., Rozas, R., 2003. DnaSP, DNA 20 polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496-2497.
- 20 polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496-2497.
- 21 Schable, N., Fischer, R., Glenn, T., 2002. Tetranucleotide microsatellite DNA loci from the 22 dollar sunfish (*Lepomis marginatus*). Mol Ecol Notes 2, 509-511.
- 23 Schneider, S., Roessli, D., Excoffier, L., 2001. Arlequin (v 2.0): Software for population
- 24 Genetics Data Analysis. Genetics and Biometry Laboratory, Department of Anthropology,
- 25 University of Geneva, Geneva.
- 26 Sedberry, G., Loefer, J., 2001. Satellite telemetry tracking of swordfish, Xiphias gladius, off
- the eastern United States. Mar Biol 139, 355-360.
- 28 Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA
- 29 polymorphism. Genetics 123, 585-595.
- Takahashi, M., Okamura, H., Yokawa, K., Okazaki, M., 2003. Swimming behaviour and migration of a swordfish recorded by an archival tag. Mar. Freshwater Res. 54, 527-534.
- 32 Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity
- 33 of progressive multiple sequence alignment through sequence weighting, positions-specific
- 34 gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673-4680.
- 35 Wakeley, J., 2003. Inferences about the structure and history of populations: coalescents and
- intraspecific phylogeography. In: Uyenoyama, R.S.a.M.s (Ed.), The Evolution of Population
 Biology Cambridge University Press, Cambridge, pp. 193-215.
- Wanlas D.S. 1008 Senarating the wheat from the sheft netterns of constitution diffe
- 38 Waples, R.S., 1998. Separating the wheat from the chaff: patterns of genetic differentiation in
- 39 high gene flow species. J Hered 89.
- 40 Ward, R., Elliott, N., Innes, B., Smolenski, A., Grewe, P., 1997. Global population structure
- 41 of yellowfin tuna, *Thunnus albacares*, inferred from allozyme and mitochondrial DNA 42 variation Fish Bull 95 566 575
- 42 variation. Fish Bull 95, 566-575.
- 43 Weir, B.S., Cockerham, C.C., 1984. Estimating F-statistics for the analysis of population
- 44 structure. Evolution 38, 1358-1370.

1Tables2Table 1

Table 1. Characteristics of 3 new microsatellite loci of Xiphias gladius. Repeat motif

3 is derived from the sequenced clone

Locus	GenBank	Repeat	Primer (5'-3')
D2A	not yet	(CCT)6	F-5'-CAGTCGGGCGTCATCACTCAAACTGAGACTTTCCAAGTAATCCT-3'
	available		R-5'-GTTTCACTTCCAGCCAAACTCTTGTTCGT-3'
D2B		(CAGT)8	F-5'-CAGTCGGGCGTCATCAAAGCAACAACATTGTCTTCTG-3'
			R-5'-GTTTCTGGCGTGAACGTGGCTCAATCC-3'
C7		(CTAT)22	F-5'-CAGTCGGGCGTCATCACCTTCAATGTAGAGATGGCAGG-3'
			R-5'-GTTTCAAATGTCGGTGGAGCTGTGGACAGA-3'
T S Cleithrui each san C informat diversity number of 44 heterozy	Yable 2. Mair ampling inf m to Keel in pples. Genetic dive ion are: num (π) , Tajima of alleles (<i>N</i> individuals), gosities (Net	a character formation a cm, \pm S rsities a aber of ha a's D an <i>all</i>), allel numbe i, 1987)	eristics of the four samples of <u>X. gladius</u> . In are: sample size (N), mean length of fish (Length from Standard Deviation) and proportion of females estimated within re given for each markers successively. For mtDNA data, uplotypes per population (h), haplotype diversity (H_d), nucleotide d Fu's F statistics. For microsatellites, information are: mean tic richness (Rs as estimated for a common minimal sample size r of private alleles, unbiased (H_{nb}) and observed (H_{obs}) and effective size estimates (Ne). Significant values are noticed
by *n < 1	$0.05 \cdot ***n <$	< 0.001	
0y P <	0.05, p<	. 0.001.	

		GLO	MADA	RUN	SEY
Sampling	N Mean length (cm)	105 73 7 + 19 0	100 90 1 +9 4	65 87 2 +21 5	67 75 2 + 18 4
Sumpting	Prop. of females	0.47	0.67	0.13	0.58
	h	90	90	59	60
Mitaahandrial	Hd	0.997	0.997	0.997	0.996
divorsity	π	0.020	0.019	0.021	0.019
uiveisity	Tajima's D	-1.54	-1.45	-1.74	-1.41
	Fu's F	-1.52	-1.84	-2.54*	-2.04
	Mean Nall	17.5	16.0	14.3	15.2
	Mean Rs	14.6	13.7	13.3	14.2
Microsatellites	Private Nall	16	8	3	9
diversity	Hnb	0.784	0.780	0.776	0.771
	Hobs	0.720***	0.667***	0.640***	0.658***
	Ne estimate	879	585	277	506

Table 3. Mono - and multi-loci estimates of the fixation index F_{is} within each locality of <u>X. gladius</u>. Tests of significance were performed with Genetix 4.0 (Belkhir *et al.* 2000), *p < 0.05; ***p < 0.001. Allele size range (in base pairs) and number of alleles per locus are also given.

			Monolocus Fis			
Locus	Size range	Nall	GLO	MADA	RUN	SEY
X55	79-191	47	0.149***	0.330***	0.405***	0.170***
X56	115-159	20	0.025	0.110***	0.064	0.094*
X66	110-140	12	0.094*	0.115***	0.150***	0.080
X75	142-276	53	0.031	0.332***	0.343***	0.182***
X144	151-172	8	-0.005	0.033	0.076	0.140
X166	120-144	9	-0.007	0.079	0.078	0.048
X379	100-142	15	0.020	-0.013	0.099	0.127*
X396	107-137	9	0.182***	0.326***	0.381***	0.300***
D2A	287-296	4	0.079	0.048	0.064	0.230***
D2B	142-202	16	0.044	-0.007	0.019	0.060
<i>C</i> 8	136-240	28	0.223	0.131	0.164	0.221
			Multiloci average Fis			
			0.079***	0.146***	0.176***	0.148***

9	Table 4. Pairwise values of genetic differentiation in <u>X. gladius</u> localities. Pairwise ϕ_{st}
10	values obtained from the mtDNA sequences dataset are above the diagonal with test of
11	significance performed with Arlequin 2.0 (Schneider et al., 2001). Multiloci Weir and
12	Cockerham's (1984) θ values obtained from the microsatellite dataset are below the diagonal
13	with tests of significance performed with Genetix 4.0 (Belkhir <i>et al.</i> 2000). $*p < 0.05$; $***p < 0.05$
14	0.001.

	GLO	MADA	RUN	SEY
GLO		0.000	0.000	0.001
MADA	0.001		0.001	0.001
RUN	0.000	0.000		0.003*
SEY	0.005***	0.002	0.003	

Table 5. Pairwise microsatellite multiloci θ values of genetic differentiation between males and females swordfish with tests of significance performed with Genetix 4.0 (Belkhir *et al.* 2000) *p < 0.05 ; ***p < 0.001. Differentiation between females of two localities are below the diagonal (light grey), between males above the diagonal (dark grey) and between males and females from a same locality on the diagonal. Samples size are noticed into brackets.

		Males			
		GLO (57)	MADA (15)	RUN (31)	SEY (26)
s	GLO (49)	0.005***	0.005	0.005*	0.001
ale	MADA (33)	0.005	0.000	0.006	0.000
em	RUN (6)	0.009	0.000	0.010	0.005
F	SEY (25)	0.013***	0.004	0.006	0.003

9

10

11

1 Figures

2 Captions:

3 Figure 1. Geographic location of the four IOTC fishery statistical square (5° x 5°)

4 wherein <u>*X. gladius*</u> were sampled for this study.

5 Figure 2. Neighbour-joining tree based on pairwise number of differences between 6 haplotypes of <u>X. gladius</u> from the four localities of the southwest of Indian Ocean. Samples 7 are respectively represented by black squares for Glo, grey circles for Mada, white squares for 8 Run and white triangles for Sey.

Figure 3. Correspondence factorial analysis, performed on genotype frequencies of <u>X.</u>
 gladius. Each point represents a given individual whose symbol corresponds to its sampling
 locality.

12

Figure 1. Geographic location of the four IOTC fishery statistical square $(5^{\circ} \times 5^{\circ})$ wherein *X*. *gladius* were sampled for this study, in the vicinity of Glorieuses (GLO), in south of Madagascar (MADA), around Reunion island (RUN) and in Seychelles (SEY).

Figure 2. Neighbour-joining tree based on pairwise number of differences between haplotypes of *X. gladius* from the four localities of the southwest of Indian Ocean. Samples are respectively represented by black squares for Glorieuses, grey circles for Madagascar, white squares for Réunion and white triangles for Seychelles.

Figure 3. Correspondence factorial analysis, performed on genotype frequencies with Genetix 4.0 (Belkhir *et al.* 2000). Each point represents a given individual whose symbol corresponds to its sampling locality.