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Abstract – Statistical Process Control (SPC) methods are extensively used in manufacturing contexts to monitor pro-
duction processes. This article illustrates their potential utility for monitoring the state of marine ecosystems, using
survey indicators. We exemplify the use of one SPC tool, the cumulative sum (CUSUM) control chart, to detect per-
sistent changes in the state of a system as new observations are collected, using simulated and real data. Practical
guidelines are given on how the chart parameters can be tuned to achieve an acceptable compromise between the ability
to detect anomalies quickly and keeping the risk of false alarms low. The common performance measures associated
with control charts depend on some key assumptions being met, and the potential impact of their violation is indicated.
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1 Introduction

Control charts are part of the statistical process control
(SPC) tools routinely used over decades to monitor man-
ufacturing processes and signal anomalies in performance
(Montgomery 1991; Whetherill and Brown 1991; Derman and
Ross 1997). A process has some inherent variability and is
said to be “in-control” as long as its output remains within
acceptable bounds. If an anomaly occurs, causing a shift in
quality beyond the baseline variability, the system is said to be
“out-of-control”. Control charts are graphical displays of some
summary statistic of the observed data (e.g. indicators) against
the order index of the sample (e.g. time), together with refer-
ence “marks” based on the in-control mean and variance, that
are designed to detect whether a worrisome change in process
output is indicated by the current data and action is required to
fix it. Since there are costs associated with both false alarms
and quality losses in commercial products, the charts’ param-
eters are tuned to achieve a desired trade-off between the risk
of false alarm and the ability to detect changes promptly.

The terms of the detection/decision problem in manufac-
turing contexts, as just outlined, should sound familiar to who-
ever is involved in monitoring the status of fish stocks or
marine ecosystems for advising managers. The latter typi-
cally expect that experts raise a timely signal when a wor-
risome change is occurring in marine resources, warranting
corrective action, while requiring that the alarm is based on
strong evidence. There are thus good reasons to believe that
the SPC tools are relevant for natural resources management
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(Scandol 2005). This paper aims to present the general prin-
ciples of control charts and to provide practical guidelines for
their application to fish stock indicators derived from survey
data. The focus is on the cumulated sum (CUSUM) chart (Page
1961), which is a running total of deviations from a reference
value.

There is an extensive literature on control charts, and they
are still a very active field of research. However, this paper
is not intended to discuss the current theoretical findings, but
simply to pursue awareness raising among marine scientists as
initiated by Nicholson (1984) or Scandol (2003). For that pur-
pose, only the “decision interval” (DI-CUSUM, also known as
“tabular”) form of the CUSUM is considered. That form is ad-
vocated in SPC textbooks (e.g. Hawkins and Olwell 1998) for
the type of data considered in the survey indicators context.
Control charts can be designed to monitor changes in mean
level (location charts) or in variance (scale charts) of process
outputs; explanations are only given for location charts here.

2 Method description

Suppose a suite of observations xi collected at time i =
1, . . . m and assume that their in-control mean μ and standard
deviation σ are known from a pilot study or for a reference
period. In the following, it is considered that the data are first
standardised through the transformation zi = (xi − μ)/σ. De-
viations from μ that will be monitored are then in units of σ,
which is convenient.

The decision-interval CUSUM works by recursively accu-
mulating positive and negative deviations separately with two
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statistics:

S +i = max
[
0, S +i−1 + zi − k

]

for positive deviations (“one-sided upper CUSUM”), and

S −i = min
[
0, S −i−1 + zi + k

]

for negative deviations (“one-sided lower CUSUM”), with
starting values normally set as S +0 = S −0 = 0. A CUSUM
chart is obtained by plotting these statistics against i. If mea-
surements tend to stay above the in-control mean, the upper
CUSUM S + develops an upward trend; likewise, the lower
CUSUM S − shows a downward trend if observations are con-
sistently below the mean.

The chart’s parameter k is usually called the reference
value, or the allowance, and is related to the size of the small-
est shift in the level of z that one is wishing to detect quickly.
Note that deviations smaller than k are ignored in the recur-
sions above. The decision rule is to declare an out-of-control
state whenever S + exceeds the decision interval h or S − falls
below –h. The values chosen for the parameters h and k, both
being measured in standard deviation units, determine the per-
formance of the control chart. There is no theoretical objec-
tion against setting different h–k pairs for upper and lower
CUSUM’s if changes in one direction matter more than in the
other. The CUSUM chart together with its k and h parameters
define an SPC monitoring scheme.

The performance of control charts is generally evaluated
in terms of their run length. A run is the number of sampling
events that elapse between the start of the monitoring and the
first alarm. The run length is a random variable whose prob-
ability distribution depends on the process and the chart pa-
rameters. Its expectation – called Average Run Length (ARL)
– is commonly used as a summary measure of performance.
The notation ARL(δ) is used to designate the ARL of an SPC
scheme for detecting a change of size δ (in σ units) occur-
ring in the process mean level. Thus, ARL(0) is the ARL of a
scheme when the process actually stays in-control all the time
(in-control, or IC ARL); yet, due to its inherent variability, an
alarm may be raised by chance alone when the chart is up-
dated with a new datum. In other words, ARL(0) is the aver-
age time until a false alarm is raised, which should ideally be
large. Conversely, if the mean of the process distribution shifts
from μ to μ + δ, due to an anomaly, the chart should detect
this quickly, implying a short ARL(δ). Note that the run length
distribution is often very broad and skewed, even when the
underlying processes is strictly gaussian, and it may be mis-
leading to only consider its mean. Therefore, the experts (e.g.
Luceño and Puig-Pey 2002) recommend to also look at other
percentiles, whenever the distribution can be computed. Run-
length distributions can be obtained by simulations (e.g. Jun
and Choi 1993) or by formal integration (e.g. Hawkins and
Olwell 1998) for various statistical distributions of the process
belonging to the exponential family. Chart parameters can be
tuned to achieve a desired compromise between a long ARL(0)
and a short ARL(δ) – i.e. low false alarm rate vs. fast de-
tection abilities. Procedures for tuning a CUSUM scheme are
explained hereafter in the section on practical guidelines.
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Fig. 1. Example of a DI-CUSUM control chart using simulated data.
A shift in process mean was supposed to occur starting from sam-
ple 11. S+ and S− are the upper (solid line) and lower (dashed line)
CUSUM. The horizontal dash-dot line indicates the decision limit h:
an alarm is triggered on taking sample 13 which causes the CUSUM
to trip that limit.

3 Example

Using simulated data will serve the purpose well. Let us as-
sume that the in-control mean of the fake process is 5 and ten
random samples are drawn from a normal distribution N(5,1).
From sample 11 onwards, an anomaly is supposed to cause a
shift in the mean to 6 and samples are drawn from N(6,1). A
value of 0.5 is adopted for the allowance k and the S statistics
are computed as new data occur. The CUSUM control chart
obtained after sample 15 is shown in Fig. 1. For illustration,
the decision limit h was set rather high (3) to guard against
false alarms (ARL(0) with these settings is about 120). Never-
theless, it can be seen that the upper CUSUM trips that limit
at sample 13, only two time steps after the occurrence of the
anomaly, which can be regarded as a good performance. Of
course, h could be reduced to speed up detection, but at the cost
of higher chance of false alarms. As can be seen on the figure,
an h smaller than 2.0 would have resulted in (false) alarms in
the earlier period although, by construction of the simulation,
the system was in control. It is important at this point to em-
phasise that “in-control” does not mean “perfectly stable”; in
that state, a system may vary due to random fluctuations, but
within limits that are considered to be natural in the judgement
of the assessor.

The case of the North Sea cod stock provides another ex-
ample, using real data. The case study considered in the FIS-
BOAT project used survey data from the International Bottom
Trawl Survey in the first quarter in 1985-2005. Experts agreed
to select the first ten years (1985-1994) as the reference pe-
riod, for computation of the in-control μ and σ. The indica-
tor shown in this example is the survey index of total abun-
dance (all sizes/ages of cod combined); it is log-transformed
to approach normality. Following the procedure described in
Sect. 5.1, the allowance k was set at 1.3 and the decision limit
h at ±1.0 (see Petitgas et al. 2009). The resulting control chart
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Fig. 2. DI-CUSUM of total-number indices of North Sea cod from
the International Bottom Trawl Survey. The decision limit was set at
–1 (dash-dot line) and an alarm might have been raised in 1999. The
graph is clipped at 2002 to improve legibility, as the lower CUSUM
plunges steeply until 2005.

is shown in Fig. 2. The lower CUSUM gives a clear signal that
stock abundance is decreasing from 1999 onwards (the steep
dive continues to 2005). The upper CUSUM only shows tran-
sient and inconsequential fluctuations. The state of stock in-
dicated by the CUSUM is consistent with assessments carried
out by ICES (e.g. 2003), based on catch-at-age analyses, which
show that the spawning stock has consistently been below the
limit reference point since 1999. However, due to arguments
about misreporting of catches and about potential biases due
to the inclusion of commercial catches per unit effort in the
analyses, it is only in 2001 that ICES advised a closure of the
directed fishery. Perhaps, consideration of the survey data in
the formal framework of control charts might have permitted
strong corrective action to be advised earlier.

4 Software

Attached to this paper on-line are two scripts in the R lan-
guage (R Development Core Team 2005), developed for the
purpose of the EU project FISBOAT, which may help readers
to implement a CUSUM monitoring scheme:

• CusumTutorial.r is generic, for exploring CUSUM charts
with “free-format” time series vectors;
• FBCusumCharts.R is designed to automate the produc-

tion of standard tables of results for the FISBOAT report
(“traffic light template”), with input from the standard case
studies files (the data must comply with a specific format
with standard names etc.).

Both use a set of functions stored in the separate file Cusum-
Funcs.r that must be sourced into the user’s R workspace (on

first use) as instructed in the scripts. The scripts are meant to
be run in a stepwise fashion (select a line or a block and sub-
mit to R console) and are amply commented to guide the user.
The scripts only use basic R commands and do not require any
special library.

FBCusumCharts.R proposes to run CUSUM monitoring
schemes on a set of indicator time series so as to construct a
table of CUSUM alerts with set risks of false and non- alarms.
The top part of the script deals with each indicator in turn.
Note that a logarithm transformation is applied to the Survey
and Recruit indices (Cols. 5 and 6 of data sets); the agreed
reference period for each case study is “hard-wired” but can
be edited if needed; an indication of an appropriate value for
the allowance k, based on the mean deviation from the refer-
ence mean outside the reference period, is proposed but is not
coded as a default value. Once the full set of indicators has
been processed, the bottom part of the script gathers the indi-
vidual resnam.# objects to produce the table of alarms (signed
CUSUM values above h or below –h) and the table of CUSUM
parameters and saves them to files.

This implementation includes functions to compute in-
control or out-of-control ARLs and run length distributions of
one-sided CUSUM for normal data without auto-correlation,
adapted from a Fortran code by Gan (1993) found on the
StatLib JQT archive (http://lib.stat.cmu.edu/). They have been
checked against the values tabulated in various SPC textbooks
and articles, and the results compare well.

5 Practical guidelines

5.1 CUSUM design: tuning the chart parameters k
and h

With fisheries survey data, the task is usually to analyse
time series of one or several indicators of population status
(control variables). Often, only one value per indicator and per
year is available (individual data), sometimes with the preci-
sion on the indicator in each year. We distinguish two phases:
Phase I for defining the in-control (IC) state; and Phase II for
designing the CUSUM to signal changes from the in-control
state with desired performance.

Phase I

The task in Phase I is to set the IC or reference process
parameters μ and σ. This is a critical phase in that the values
adopted for these parameters will condition signals from the
analysis. Normally, this is an experimental phase where the
state of the system is closely checked, many measurements are
taken and scrutinised, to retain only those that can be safely
assumed to correspond to a well behaved process. In our case,
we will often start with existing data collected in the past, and
Phase I will essentially consist in the definition/choice of an
in-control (or reference) period, and then using the data in the
selected years to estimate in-control parameters μ and σ. The
IC period can be defined on various criteria, including an in-
spection of patterns in the times series (“eyeballing”). How-
ever, it is best defined collectively, on expert knowledge, as

http://lib.stat.cmu.edu/
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the period in which the population was in a satisfactory state
and/or showing satisfactory dynamics. Thus, the IC period
may not necessarily comprise consecutive years. Sensitivity to
the IC period should be analysed and the IC period may be
also re-defined a posteriori. This is consistent with the itera-
tive and rejection procedures described in SPC textbooks (e.g.
Montgomery 1991).

Phase II

In Phase II, the task is to design (or tune) the CUSUM
scheme to signal a specified deviation from the IC mean with
a desired performance, i.e. this is where the chart parameters k
(allowance) and h (interval) are determined. The choice of k is
based on the magnitude of the shift δ in the mean that makes “a
meaningful impact” on the system, resulting in out-of-control
state. The value of h determines whether an alarm is raised or
not (an alarm is triggered when the CUSUM plot crosses the
horizontal line at h, or at -h or +h for a two sided CUSUM).
The rationale for choosing h is primarily based on minimis-
ing the risk of false alarm, but the ability to promptly detect
shifts that matter should also be preserved. Setting h, once k
is chosen, involves run-length (RL) considerations. Once the
indicator series is standardised, a four-step procedure is sug-
gested for tuning the monitoring scheme:

1. Define the allowance parameter k. If δ is the shift of inter-
est (in standard deviation units), there is a broad support
in the literature for setting k at half the value of that shift
(formal demonstration in Chap. 6 of Hawkins and Olwell
1998), and this rule can be safely adopted. The “meaning-
ful” shift δ can be set after analysing the deviations from μ
outside the IC period. For instance, the shift to be detected
can be set to a percentile of these deviations or to their
mean. For fish population indicators based on surveys, k
will generally take a value between 0.5 and 1.5; too small
values of k should be avoided (Hawkins and Olwell 1998,
p. 33).

2. Define the decision parameter h. Using published tables or
our R software with a zero value for the shift δ, search for
an h that gives desirably large IC ARL(0) given k, and thus
a low risk of false alarm. Larger values of h (and k) lead to
larger ARLs.

3. Check the IC run- length distribution. Because the RL dis-
tribution may be quite skewed (Fig. 3), consideration of the
average RL alone may be misleading and, using the func-
tion arldis.f in our R scripts, the full distribution of the in-
control RL should be checked. For example, if k and h are
chosen to aim for a “large” IC ARL of 100, and a “small”
value of 10 samples or less for the 25th percentile is ob-
served, it is likely in the actual application of the scheme
that more false alarms will occur than the large ARL(0)
would indicate. In such cases, h should be increased.

4. Check the OC ARL. The h value arrived at in the previous
steps may have provided a reasonable bound on the proba-
bility of false alarm, but you then need to ascertain that the
scheme is able to quickly detect the shifts you are inter-
ested in, i.e. that its out-of-control ARL is small enough.
Return to the ARL tables or software with a value of 2k for
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Fig. 3. Example of an in-control run length (RL) distribution show-
ing its typical skewness and long “tail”. The parameters h and k were
set at the same values (in standard deviation units) as for the CUSUM
chart in Figure 1. An average of 120 (= ARL(0), dashed vertical line)
is expected with these settings; yet, the chance of a false alarm occur-
ring within 36 samples or less is 25%.

the shift δ, and check that the OC ARL(δ) corresponding
to the envisaged h is adequately small. In general, it is pos-
sible to find values of k and h such that the OC ARL does
not exceed 3 years.

As pointed out in the introduction, the basic challenge of using
and tuning SPC schemes is to find an acceptable compromise
between the risk of false alarm and the ability to detect shifts
that matter in the state of the system, and it is often necessary
to iterate through these 4 steps to arrive at that compromise.
The notions of “meaningful impact”, “acceptable risk” and
“desired performance” are very much policy issues and have
to be decided in partnership with managers and stakeholders.

5.2 Assumptions and effects of violations

The main assumptions underlying the statistical properties
of CUSUM charts are:

(i) that the monitored variable has a distribution from the ex-
ponential family; in particular, the run length characteris-
tics commonly tabled in textbooks or computed with our
R software are only valid for normally distributed data;

(ii) that the in-control process parameters are known rather
than estimated; and

(iii) that the time series of residual variation is not auto-
correlated.

The effects of violating these assumptions are all in the same
direction: the in-control ARL(0) experienced in practice is
shorter than the value computed for the perfect case, i.e. the
chances of false alarms are larger than expected (e.g. Sect. 3.7



B. Mesnil and P. Petitgas: Aquat. Living Resour. 22, 187–192 (2009) 191

in Hawkins and Olwell 1998; Jones et al. 2004; Lu and
Reynolds 1999; Reynolds and Stoumbos 2004). Smaller values
of k (also large h) enhance the robustness to non-normality, but
increase the impact of estimating the reference μ and σ from
the data. An encouraging note: even though a CUSUM tuned
with a given k is optimal for detecting shifts of 2k standard de-
viations, its performance remains high for actual shifts that are
‘not too far’ (Hawkins and Olwell, p. 54).

Time series of population indicators from surveys are of-
ten short (< 20 years) with marked variations and sometimes
show correlation or trend. It is advised to check the distribu-
tion of the indicator variable as well as its correlation in time.
It may be necessary in some cases to transform the variable
into a Gaussian or to detrend the time series. Short series im-
ply that data for the reference period are even shorter, and we
use noisy data to estimate the IC process parameters. Since all
departures from the assumptions will result in effective RLs
being very different (in general shorter) than values publicised
for the “clean” case, an ad hoc remedy is to take relatively
large h values. A conservative advice is to use (k, h) parame-
ters giving large IC RLs: ARL > 20 years and 25th percentile
of RL distribution > 10 years. When some deviations from μ
outside the reference period are large in comparison to σ, it
may be telling that the variance has changed or that the indi-
cator variable is skewed. In that case, starting Phase II with a
large value of k is advisable. When the value of h is small in
comparison to an increasing (decreasing) CUSUM deviation,
it is likely that there is auto-correlation in the indicator time
series.

5.3 Strengths and weaknesses

Control charts have been in operation in many branches of
industry since the 1930’s and their statistical bases have been
thoroughly investigated in a large body of literature (the refer-
ences below are just a tiny sample). Applications have been
extended to environmental surveillance (e.g. Manly 2001),
biomedicine (e.g. Chang and McLean 2006), clinic tests, pub-
lic health (e.g. Starks and Flatman 1991). The strenghts in
these domains are that the in-control state is well defined (of-
ten with reference to agreed norms), the monitoring involves
numerous samples taken at high frequency through rigorous
sampling designs, and measurement errors are often small.

In contrast, this defines the weaknesses in fisheries appli-
cations. The main limitation is our poor ability to characterise
the reference state of fisheries (or of ecosystems) with survey
data that just span the recent decade(s) in a background of large
variability compounded by substantial sampling variance. The
IC state is “estimated” based on a finite set of existing data,
without possibility of replication, instead of being determined
through planned experiments (industry) or with reference to
norms (pollution, health). However, the reference state does
not imply perfect stability and the process may show substan-
tial variability even when deemed well behaved. The goal of
control charts is to pinpoint those events where the state of the
system deviates beyond the domain of its inherent variability.

The CUSUM approach does not presume the nature of
the change (linear, trend or otherwise) and treats positive and
negative deviations equally. The CUSUM chart is best suited

to detecting small persistent changes. Anomalies in the sys-
tem can take the form of shifts in the mean and/or changes
in the variance of the distribution. Specific control charts can
deal with both situations. It is common to combine location
and scale charts to enhance the detection performance for
both small and large shifts (Reynolds and Stoumbos 2004).
Hawkins and Olwell (1998, p. 67) suggest an approximation
to obtain scale charts with individual data, which can be plot-
ted together with location charts.

Moustakides (1986) demonstrated that, among the SPC
schemes that have similar in-control ARL(0), the CUSUM
scheme has the smallest expected time until a change is de-
tected when it occurs. This is the basis of the rationale for tun-
ing the chart, with priority given to achieving large ARL(0).
The emphasis on low risk of false alarm, combined with the
charts’ property of filtering natural variability out, has some
practical advantage in our application to fisheries manage-
ment: casting assessment noise straight into fisheries regula-
tion has been damageable to the credibility of scientists, so
a method that explicitly aims at avoiding this is welcome, at
least in the ICES context of advising the EU annual manage-
ment scheme.

Lastly, the biggest advantage of a CUSUM monitoring
scheme is that it is very simple to implement, using a variety
of indicators individually or in combination. Yet, it provides
a formal and statistically sound framework to monitor the sta-
tus of systems (e.g. fish stocks or ecosystems) in a transparent
way.
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