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Abstract – Large uncertainties in catch data (officially-reported landings and discards) are undermining the ability
of scientific organisations to provide valid management advice based on the conventional approach of analytical stock
assessments. There is thus an urgent need to consider alternative tools that do not depend on long series of precise
age-structured catch data. This paper presents four fishery-independent assessment models developed under the EU
project FISBOAT (Fishery Independent Survey Based Operational Assessment Tools). It also reports on rudimentary
tests based on simulated data, using the same data sets and protocol as an evaluation study conducted by the US
National Research Council in 1997. The survey-based assessment models at hand are able to reliably capture the major
signal in biomass and recruitment, although they smooth out transient changes. However, they cannot provide absolute
abundance estimates, only relative values on an arbitrary scale. The survey-based approaches could provide more rapid
updates of the state of stocks than catch-based methods.
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1 Introduction

All stock assessment methods (whether they involve
surplus-production, delay-difference, stock-reduction, Collie-
Sissenwine or analytical dynamic pool models) currently used
by scientific organisations to advise fisheries managers on the
state of fish stocks require knowledge of total catches (com-
mercial and recreational, where appropriate) to estimate model
parameters and other quantities of management interest. Errors
in the input catch figures translate directly into similar errors
in stock abundance estimates (e.g., Quinn and Deriso 1999),
and if their magnitude varies from year to year the assessments
may not even reflect the relative changes in the state of the re-
source. When catch is also the basis of management control,
like in TAC (Total Allowable Catch) systems, there is often a
temptation for fishers or states to mis-report landings for tacti-
cal reasons, especially when catch quotas become very restric-
tive. Large unrecorded discards at sea by fishing vessels are
another problem. For over a decade the International Council
for the Exploration of the Sea (ICES) has repeatedly stated that
the deterioration of the catch data was threatening its ability to
provide managers with the type of advice they require to apply
the current policies.

One objective of the FISBOAT (Fishery Independent Sur-
vey Based Operational Assessment Tools) project was to
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develop and evaluate operational fishery-independent (i.e.
catch-free) assessment tools that were capable of alleviat-
ing these data problems. During the project six fishery-
independent (F-I) stock assessment methods were specifically
developed, or elaborated upon for use without fishery catch
data. Methods are here understood to mean both the mathe-
matical models and the procedures to estimate their parame-
ters. Four of these models can handle age-structured data (sur-
vey indices1) that are compatible with the selected test data,
and only this subset that went through a common testing pro-
cedure is discussed in this paper. Section 2 provides a concise
overview of each model, with comments on parameter esti-
mation and practical guidelines or caveats regarding its use in
assessment and advisory groups.

Although it was recognised that an authoritative evaluation
of the F-I methods should involve a simulation-testing eval-
uation framework (with operating model, harvest rule, etc.;
see Hillary 2009), the four methods were largely novel and
there was a need to understand their capabilities through a sim-
pler benchmarking approach before proceeding further. This
simpler testing exercise followed the same protocol, using
artificial data with known properties, as an evaluation study
conducted in the USA on catch-based (mostly age-structured)
assessment models (NRC 1998). Sections 3 and 4 recount the

1 Throughout this article we use the term “index” as a synonym for
survey CPUE.
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conditions and results of these preliminary probing tests car-
ried out on the four models. Section 5 concludes on the insight
gained during the project into the potential performance of the
F-I methods for assessment of stock status, and on some im-
plications for the European (ICES) advisory system.

2 Methods considered

The F-I methods presented in this section are intended to
estimate fish stock abundance, or trends thereof; one is stage-
structured (BREM), and three are age-structured (SURBA,
TSA and YCC).

2.1 Biomass random effects model (BREM)

Model description

The population dynamics are formulated as the difference
model from Hilborn and Walters (1992, p. 336):

Bt = Rt + gt−1Bt−1 (1)

where Bt is the total population biomass and Rt the recruitment
in biomass in year t. gt−1 is the net biomass growth rate: that
is, the balance between individual growth and total (natural +
fishing) mortality. Recruitment is assumed to follow a lognor-
mal distribution without any stock-recruitment relationship:

log Rt ∼ N(μR, σ
2
R).

Biomass growth is modelled by a random walk on the log-
scale, to reflect the assumption that total mortality, which is
part of g, does not vary wildly from year to year:

log gt = log gt−1 + ε
g
t ; εgt ∼ N(−0.5σ2

g, σ
2
g).

Thus, both recruitment Rt and biomass growth gt−1 are treated
as random effects with parameters μR and σ2

R, and g1 (growth
rate at t = 1) and σ2

g respectively. The negative mean –0.5σ2

is a bias-correction term for a lognormal distribution.
The observation model uses two indices, bt for total

biomass at time t (recruits included) and rt for recruits only.
Both are assumed to follow lognormal distributions with static
variance and catchability coefficient:

log bt ∼ N(log(qbBt), σ2
b)

log rt ∼ N(log(qrRt), σ2
r ).

To ensure identifiability, the following constraints are im-
posed: qb = 1 and σ2

b = σ
2
r . Other constraints are possible,

e.g. larger CV for recruits’ survey.

Sensitivity and robustness issues

Convergence of the parameter estimation algorithm depends
critically on sensible starting values. The above mentioned
constraints allow parameter identifiability, but the effect of set-
ting qb = 1 is that biomass estimates can only be relative (not

absolute). In addition, the estimates of mean recruitment μR

and catchability for recruits qr are confounded to some de-
gree. This appears as a strong correlation between estimates.
Furthermore, the standard deviation of biomass growth σg is
only estimable if relatively large. Results of extensive simula-
tion studies exploring parameter confounding can be found in
Trenkel (2008).

Input and output

BREM only requires two series of survey indices in biomass,
one for the total population (adults + recruits) and one for
the recruits alone; splitting out the recruits can be based on
age readings but there are favourable cases where a reasonable
cut-off size may be identified by inspection of the length com-
positions. Knowledge of natural mortality M is not required
and occasional gaps in survey series are unlikely to affect the
estimation. An extension handling two series of indices per
category (e.g. acoustic and egg surveys) has been developed
(Trenkel 2007, 2008).

Seven parameters are estimated: B1 (biomass in year 1),
g1 (biomass growth in year 1), σg (standard deviation of
growth), μR (mean recruitment for normal distribution), σR

(standard deviation of recruitment), qr (catchability of recruits)
and σb (standard deviation of observation error for base nor-
mal). Plugging converged estimates into Eq. (1) yields esti-
mated time trajectories of relative total biomass and annual
recruitment. In addition, standard deviations are available for
biomass estimates based on the observed Fisher Information
matrix, but NOT the same way for recruitment estimates as
these are random effects, not real parameters.

Implementation issues

Parameter estimation by maximum likelihood is implemented
in AD Model Builder (Fournier 2005) using the random effects
module (Skaug and Fournier 2006). Run time for NRC set 1
(Sect. 3) was about 20 seconds. Run time does not increase
with the number of years, but depends on how good the starting
values are.

Relation to management indicators

Future recruitment could be predicted using the fitted lognor-
mal distribution, either as expected recruitment or by drawing
a random recruitment value from the distribution. The relation-
ship between model predictions and commercial quantities is
not obvious.

2.2 SURBA

Model description

The basis of SURBA is a simple survey-based separable
model of mortality. This model was first applied to Euro-
pean research-vessel survey data by Cook (1997, 2004), but
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it has a long history in catch-based fisheries stock assessment
(Pope and Shepherd 1982; Deriso et al. 1985; Gudmundsson
1986; Johnson and Quinn 1987; Patterson and Melvin 1996;
see Quinn and Deriso 1999 for a summary). An early version
of the current implementation was presented in Beare et al.
(2005).

The separable model used in SURBA assumes that total
mortality Za,y for ages a and y can be expressed as:

Za,y = sa × fy

where sa and fy are respectively the age and year effects of
mortality. This differs from the usual assumption in that total
mortality Z is the quantity of interest, rather than fishing mor-
tality F. Then, given Za,y, abundance Na,y can be derived as:

Na,y=Ry0 exp
(
−Za0,y0 − Za0+1,y0+1 − Za0+2,y0+2 − . . . − Za−1,y−1

)

where a0 and y0 = y − a + a0 are respectively the age and year
in which the fish measured as Na,y first recruit to the observed
population. Thus the abundance at each age and year of a co-
hort is given by the recruiting abundance Ry0 of the relevant
cohort modified by the cumulative effect of mortality during
its lifetime. Given assumed catchabilities qa,y,i for each index
(survey) i, estimated abundance indices can be derived as:

Îa,y,i = qa,y,iN̂a,y.

Parameters are estimated by minimising the weighted sum-
of-squares of differences between observed and estimated log
abundance indices,

S S Q =
∑

a,y,i

ωa,y,i

(
log Ia,y,i − log Îa,y,i

)2

where ωa,y,i are optional weighting terms. Corresponding SSQ
terms can also be included for biomass indices. All abundance
estimates are relative.

This simple basis has been expanded considerably over re-
cent years, as the model has been road-tested in ICES assess-
ment working groups (and elsewhere) and modified where nec-
essary. The development is summarised in Needle and Hillary
(2007) and Beare et al. (2005), but in brief:

• Biomass indices can be used, as well as multiple age-
structured indices.
• The year-effect for the final year is set to the mean of the

previous three year effects, as the terminal year-effect can-
not currently be determined directly from the data.
• Age-structured indices are all back-shifted to the start of

the year, using the current estimate of Z. This allows them
to be compared directly, and ensures firstly, that abundance
indices refer to January 1, and secondly, that mortality es-
timates relate to the calendar year rather than the year be-
tween successive cruises of a given survey.
• Biomass indices are shifted forwards to spawning time be-

fore inclusion in the parameter estimation process.
• Index catchabilities and SSQ weightings can both be de-

fined by the user.
• Optionally, a smoothing term can be added to the SSQ

to penalise excessive inter-annual variation in estimated
year effects. The degree of smoothing is determined by a
user-defined variable λ.

• The reference age (that is, the age at which the age-effect s
is fixed to 1.0) can also be defined by the user.
• Estimated variances (and thereby confidence intervals) of

mean Z and recruitment are derived from the variance-
covariance matrix of the parameter estimates, using
the delta method. Variances estimates for abundance
and spawning stock biomass SSB are currently being
implemented.
• Retrospective runs can be generated automatically, with

the last year of data being moved back one year at a time
until half of the original time-series remains.
• A scan facility automatically runs assessments with a range

of choices for smoothing, the reference age, and catchabil-
ity on the first age, to evaluate model sensitivity to these
essentially ad hoc settings.

Sensitivity and robustness

The model is most sensitive to assumptions about catchability.
In particular, estimates of Z can be very different under dif-
ferent assumptions about catchability; SSB estimates are more
robust. Z estimates can be very uncertain in any case, and it
is not uncommon for there to be no significant evidence of
any changes in the levels of Z. Finally, the automated scan-
ning routine sometimes fails – values scanned over need to be
interactively defined in future.

Inputs and output

SURBA uses the Lowestoft VPA input format (Darby and Flat-
man 1994), and currently expects to see the full set of such
files – which means that dummy catch-based data files with
arbitrary values had to be set up to analyse the NRC datasets.
The inputs that are actually required for fitting the model are
age-structured indices, and (optionally) biomass indices. The
user can also define catchability and SSQ weightings for both
types of index, along with values for the smoother λ and the
reference age.

Both text and graphical outputs are provided by the pro-
gram. Text outputs include parameter estimates with variances,
mortality and relative abundance estimates, estimated vari-
ances for mean Z and recruitment, log residuals, stock sum-
maries (SSB etc.), results of retrospective and scan runs, and
goodness-of-fit statistics. Plots include exploratory raw-data
figures (such as catch curves), model fits and stock summaries,
residuals, and retrospective summaries.

Implementation issues

SURBA (currently Version 3.0) is implemented in Fortran-90
with NAG library minimisers and a Windows user interface,
in which diagnostic plots are automatically generated. The run
time for NRC set 1 on a 1.60 GHz, 512 MB RAM laptop was
6 s (standard), 40 s (standard + 15 retrospective runs), and
7 min 47 s (105-run scan).
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Relation to management indicators

Abundance estimates (and therefore biomass measures) are
currently generated by SURBA on a relative scale only, and
are usually plotted as mean-standardised values for ease of
comparison. Furthermore, SURBA provides estimates of total
mortality Z rather than fishing mortality F (although, given
the tentative nature of most natural mortality estimates, this
is true of catch-at-age methods also). Therefore SURBA can
be used to provide advice on relative trends in abundance and
total mortality, but not absolute levels. It is possible to gen-
erate pseudo-absolute abundance estimates by using a catch-
at-age VPA to estimate survey catchabilities-at-age using data
from some period in the past, and then applying these to recent
SURBA-derived relative population estimates to scale them to
a level commensurate with that indicated by catch data. How-
ever, this requires assumptions that there was a period when
catch data were reliable, and that the relationship between sur-
vey and fishery catchability has remained constant ever since,
and these can be hard to maintain. It is also possible, of course,
to produce F estimates by subtracting fixed M values from the
Z estimates produced by SURBA.

2.3 Time series analysis (TSA)

Model description

TSA, or “Time Series Analysis”, is a state space framework for
modelling a fishery. The initial implementation modelled com-
mercial catch-at-age data with survey indices-at-age used as
auxiliary information (Gudmundsson 1994). The framework
has since been extended to deal with a range of data sources
and applications (e.g. Fryer 2002; Gudmundsson 2004). Here,
the framework is adapted to model the indices-at-age from a
single survey. The state equations relate the log numbers-at-
age and total mortalities-at-age in year y to those in year y–1.
Log numbers-at-age in year y are given by:

log Na,y = log Na−1,y−1 − Za−1,y−1, a > 1

log N1,y ∼ N(μR, σ
2
R).

Total mortalities are partitioned into fishing mortalities and
natural mortalities through Za,y = Fa,y + Ma. Natural mortali-
ties are assumed known and fishing mortalities evolve accord-
ing to the following model:

log Fa,y = Ua,y + Vy (2)

Ua,y = Ua,y−1 + N(0, σ2
U) with the constraint that

∑
a Ua,y = 0

Vy = Yy + N(0, σ2
V)

Yy = Yy−1 + N(0, σ2
Y).

Thus, log fishing mortality is separated into an age component
Ua,y and a year component Vy, both of which can evolve over
time. Finally, the state vector consists of the log Na,y, log Fa,y,
Ua,y, Vy and Yy.

The observation equations are given by:

log Ia,y = log qa + log Na,y + εa,y

where Ia,y are the indices-at-age, qa are the survey catchabili-
ties, and the εa,y are assumed to be normally distributed with
zero mean and standard deviation σI λa δa,y. The λa are ini-
tially taken to be unity, but can be adjusted later if the errors
associated with some ages are larger than for others. The δa,y
are also initially taken to be unity, but can be inflated to de-
crease the influence of outliers. It is assumed that the survey
takes place at the start of the year.

The model is fitted using the Kalman Filter, with the pa-
rameters μR, σR, σI , σU , σV , σY , qa, Ua,1 estimated by maxi-
mum likelihood. For identifiability, log q1, V1 and Y1 are taken
to be zero. For stability, some constraints must be put on the
qa: for testing on the NRC data sets, the qa (for a > 1) were
constrained to change log-linearly with age.

Sensitivity / robustness

Good starting values are crucial, but can be hard to find for a
new stock and survey, requiring some iteration and experience.
Once found, however, parameter estimates are robust to the
addition of further years of data.

The method works on the log scale, so zero indices must
be replaced by some small positive value. Unity was used for
the NRC data sets. This means that the method can only be
sensibly applied to those age classes where zero indices do
not often occur – typically the younger age classes. An option
would be to group older age classes into a single plus group,
but this has not yet been implemented.

Very large year classes can cause a problem, because they
can unduly dominate the parameter estimates associated with
recruitment (i.e. μR and σR). It is possible to reduce their im-
pact on these estimates, but this is done manually following
graphical inspection of standardised prediction errors.

Inputs and outputs

TSA requires survey indices-at-age. Although described above
for a single survey, the method can handle multiple surveys,
which do not need to overlap. Missing survey indices (and
missing years) are allowed. Natural mortalities-at-age are re-
quired to estimate (relative) fishing mortalities. If these are un-
available, F is replaced by Z in Eq. (2), and (relative) total
mortalities are estimated.

TSA estimates relative numbers-at-age and relative
mortalities-at-age with approximate coefficients of variation.
The estimates can not be combined across age classes (as there
are separate scaling factors for each age class), so it is not pos-
sible to estimate (relative) biomass. However, sensible proxies
for stock biomass can be constructed.

Implementation issues

TSA is written in Fortran 90, using NAG routines, but can be
called from R. However, stock-specific changes to the param-
eter constraints sometimes need to be made in the source For-
tran code, rather than in R. The run time for NRC data set 1
(Sect. 3) was about 30 s on a 1.8 GHz, 524 MB RAM laptop.
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Predictive ability

The method can predict both relative numbers-at-age and fish-
ing mortalities-at-age (with approximate coefficients of varia-
tion) as far into the future as required.

2.4 Year-class curve (YCC) method

Model description

A “year-class” curve is a plot of log indices against age for
a single year-class of a species. Marine fish caught in trawls
typically show nearly linear year-class curves for ages that are
fully selected. The usual model of mortality over time t, as-
suming no net migration to or from the stock, is considered:

Nt = N0 exp (−Zt) (3)

where Z is the instantaneous rate of total mortality. We now
assume that the indices I are a constant proportion of N, i.e. I =
qN for all ages included in the analysis, and that Z represents
an average value over time. Then, taking natural logarithms of
Eq. (3), restricting attention to one year-class, c, substituting
age for t, and adding a random error term, e, gives the basic
model for a year-class curve:

log Ia,c = log
(
I0,c
) − Z age + ea,c (4)

where I0,c is the index for age zero, a is the age-class, i.e. the
age in years as an integer index, while age is age in years as a
real number. e is assumed to be normally distributed with zero
mean and variance σ2

e . Additional linear terms may be added
to Eq. (4) to allow for varying selectivity of the survey trawl
with age, for survey-specific catchabilities, and/or for gradual
changes in Z over time. The latter is achieved using polynomi-
als in age and year with a minimum of additional parameters
so as to yield best precision of estimation with the available
data.

Different series of survey indices are likely to estimate
year-class curves with different precision depending on the
season and area covered, on the precision of age-reading and
other practical aspects, and on how well the chosen model fits
the data. Weighting of different data sets to reflect their pre-
cision with respect to the chosen model is therefore desirable.
Cotter and Buckland (2004) suggest that the weighting esti-
mated for each index series f should be balanced with the
reciprocal of the estimated residual variance specific to that
survey computed after the model is fitted, i.e. ŵ f ∝ σ̂−2

f . They
describe how the method can be implemented using iteratively
weighted least squares (IWLS) taking into account the degrees
of freedom contributed by each survey to the estimates of each
parameter. Usually, 2 or 3 iterations produce stable values. Ad-
ditionally, using the survey specific residual variances, the rel-
ative precision of the different surveys can be compared using
F tests (Cotter 2001). Note that biased survey indices will pro-
duce biased weights (Quinn and Deriso 1999, p. 353). Surveys
that appear exceptionally precise should be scrutinised to see
whether biased sampling may be the cause, e.g. due to clus-
tering of observations in restricted times or places (Cotter and
Buckland 2004).

A year-class curve can be fitted repeatedly in a process
called forward validation that is designed to find the most re-
liable model for predicting next year’s indices. Starting from
an early year and proceeding forwards in the time-series, it
finds the differences between the predicted log indices and
the observed log indices for one year after the time domain
of the data used to fit the model. The preferred model is the
one whose mean difference is closest to zero, and for which
the mean square of the differences is lowest. This is merely a
simulation of a fish stock assessment working group making
predictions each year for the coming year, then checking them
when the outcome is known. Full details of available models,
survey weighting, and forward validation to find the preferred
model are given by Cotter et al. (2007).

Sensitivity / robustness

Catchability must be constant over time but may vary between
surveys since intercalibration factors are automatically fitted if
required. Changes to the design of a survey that might cause
a change in catchability (e.g. a different vessel or gear) can be
accommodated simply by treating it as a new survey and fitting
an extra intercalibration factor.

Only gradual changes of Z are allowed by using polyno-
mials in year to a maximum degree of 3. This is intended to
minimise the dangers of erroneously treating random measure-
ment errors as trends in the year-class signal over time. How-
ever, if sudden, real changes in Z actually do occur from year
to year, they might be overlooked.

Year-class curves can be fitted across surveys, or nested
within. Over- and under-fitting can both cause biased esti-
mates of parameters. Forward validation helps to eliminate
such models because they tend to be poor at predicting beyond
the observed domain. The AIC may also be used to help find
the best model.

Inputs and outputs

The basic input is a standard VPA-type tuning file (Darby and
Flatman 1994). YCC software operates on a flat file having
survey, age, year, time-of-year, indices etc., so such a file may
be used directly if preferred. Year-class curves are available
as plots over time, one per year class. These allow the fitted
model to be compared to the observed values to check that the
fit is credible. Relative recruitments, and Z over age by fleet
are also given, along with various other outputs.

No assumptions are made about natural mortality (M).
Fishing mortality (F) could be estimated if they were.

Implementation issues

Software written in R is available to fit year-class curves with
all the options described here. Diagnostics include prediction
and residual errors over time, age, and year class. Run times
are usually seconds but may increase to a minute or more when
there are many surveys, iterative re-weighting, and a long pe-
riod of forward validation. The model may fail to fit if there
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Table 1. Specifications of the simulated data sets (expanded from NRC 1998 for sets 1-5; set 6 without error in data added for this test). q
stands for catchability, M for natural mortality, Y/B for yield/biomass ratio as a proxy for fishing pressure.

Set Population Age at 50% Misreporting Survey q CV M Mean
trend selectivity rate survey q Y/B

1 Depletion Lower later 0.97–1.03 Constant 0.3 0.18–0.27 0.19
2 Depletion Lower later 0.68–0.72 Constant 0.3 0.18–0.27 0.12
3 Depletion Lower later 0.97–1.03 Higher later 0.3 0.18–0.27 0.12
4 Depletion Constant 0.97–1.03 Constant 0.3 0.18–0.27 0.21
5 Recovery Constant 0.97–1.03 Constant 0.3 0.18–0.27 0.07
6 2-way trip Constant 0 Constant 0.0 0.2 0.15

are more parameters than observed vectors of indices-at-age.
Missing values may either be omitted from the data set or
coded as negative indices.

Predictive abilities

Predictions one year ahead of observed data are carried out
routinely with forward validation. YCC produces tables of pre-
dicted indices-at-age for the year after the final observed year
together with prediction mean square errors.

Relation to management indicators

Predicted indices-at-age in terms of numbers may be converted
to weights per unit of effort-at-age using a matrix of weights-
at-age by year. These may in turn be converted to spawn-
ing stock biomass per unit of effort-at-age using a matrix of
maturity-at-age by year. The software allows users to insert
independent observed values for each year, if available. How-
ever, YCC offers no prediction of next year’s recruiting year
class.

3 Testing procedure

3.1 Data sets

In the absence of a better alternative at the time, we re-
sorted to the suite of data sets concocted for the US National
Research Council rounds of tests during 1997. One advantage
is that the outcome has been published (NRC 1998), enabling
the performance of other methods to be compared with that of
the methods considered by that committee (which all made use
of catch and/or catch-at-age data). The data were generated by
an age-structured model, where a 15-age population was pro-
jected over some 40 years but data for only the last 30 years
were retained. Details of the data generation are given in Chap-
ter 5 and Appendix E of the NRC report, and the main features
are summarised in Table 1. Each data set is a single replication
of a combination of stochastic processes2. A special comment

2 The report of the 2007 Methods WG (ICES CM 2007/RMC:04,
Sect. 2.1.2) may leave the impression that the test data were not cor-
rupted with noise. We point out that the NRC sets 1-5 did include
various elements of noise, with perhaps the most relevant for this test
being a random lognormal error on the survey indices at age with a
30% CV. Only set 6 was “clean”.

applies to data set 3, which involves a change in survey ves-
sel (and a near doubling of survey q), a feature that was not
explicitly disclosed to the FISBOAT analysts initially and was
a clear violation of a basic assumption in their methods; how-
ever, given the knowledge of a step change in q, all methods
are able to deal with this situation and most authors repeated
the analysis later with each period treated as a distinct survey
(run labelled “set 3.2” hereafter), which resulted in improved
performance. Also note that data set 5 simulates a case with
very low exploitation rate (Yield/Biomass ratio in Table 1).

Since some NRC sets are rather tough, a “clean” set (la-
belled # 6) was added where survey q has been strictly con-
stant, and indices at age measured without error. This was
also generated with an age-structured model comprising 15
age groups, and twenty years of data were output. This set
was mostly intended to check that the methods’ code worked
properly.

The data sets were circulated to methods’ authors in ad-
vance of a project workshop. The main information provided
was the matrix of survey indices by age and year. Weights at
age, natural mortality (average for the NRC sets, where M var-
ied randomly) and a maturity ogive were also provided in case
methods needed these data, but no information about catches
and effort by the fishery was given. Of course, the “true” (simu-
lated) population states were only known to the coordinator. It
was proposed that analysts focus on the following outputs for
comparisons: time series of recruitment (preferably in num-
ber); time series of total biomass and, if possible, of total num-
bers; optionally, time series of spawning stock biomass (SSB).

3.2 Performance metrics

The intention behind selecting the NRC test sets was that
comparisons might be possible with the performance of catch-
based assessment methods as documented in the NRC report.
Since the latter methods are deemed to provide absolute es-
timates of key management variables, the NRC Committee
chose to evaluate the methods based on relative error statistics
(i.e. [(estimated – true)/true], both estimates and truth being
in absolute value). For F-I methods, however, a clear mes-
sage from all authors was that these could only provide esti-
mates of relative trends in population variables, and thus the
statistics above could not be used. Alternatively, the follow-
ing performance metric involving relative values was consid-
ered: for each quantity of interest, the time series of estimates
and of true values were first normalised by subtracting their
respective means and dividing by their standard deviations
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Table 2. Performance statistics (3 metrics) of the fishery independent (F-I) stock assessment methods.

Set
Method 1 2 3.1* 3.2* 4 5 6

Root-mean-square of normalised deviations for recruits and biomass
BREM 0.559 0.435 0.775 0.744 0.540 0.548 0.001

Recruits SURBA 0.481 0.466 0.752 0.725 0.462 0.495 0.121
TSA 0.556 0.441 0.747 0.486 0.536 0.039
YCC 0.504 0.781 0.621 0.542 0.722 0.461 0.361
BREM 0.207 0.211 0.805 0.524 0.194 0.197 0.012

Biomass SURBA 0.402 0.500 0.930 0.892 0.434 0.564 0.031
YCC 0.182 0.187 0.869 0.347 0.135 0.146 0.152

CV (in %) on recruits and biomass estimates (average over years)
BREM 62.3

Recruits SURBA 18.7 21.7 22.7 15.5 20.7 18.1 3.0
TSA 13.4 18.8 15.9 16.8 16.2 0.05
YCC 44.2 10.5 10.3 15.3 11.0 8.4 23.5
BREM 46.3 54.6 39.9 69.2 12.1 37.0 14.4

Biomass TSA ** 9.5 11.7 11.2 11.9 10.9 0.04
Relative error (in %) in depletion rate (biomass in final year / in year 1)***

BREM –22.6 –3.9 193.1 121.2 15.7 40.6 1.0
Biomass SURBA –30.8 31.4 80.2 77.6 –39.8 –20.0 –5.0

YCC –20.1 42.5 137.9 –3.5 2.0 32.7 0.3

Notes * 3.1: set 3 assuming a single consistent survey; 3.2: survey split in two (before/after change in vessel); ** CV of geometric-mean stock
number over ages; *** Results in boldface meet NRC ± 25% criterion.

which gives a common scaling; the square root of the mean
squared deviation between the normalised estimates and the
normalised truth was taken as the summary statistic (kind of
root mean square error, RMSE). Although this statistic is not
readily interpretable to gauge the performance against standard
criteria, it enables fair comparisons between the F-I methods.

The biomass depletion rate, that is the estimate of biomass
in the final year divided by that in the first year, as consid-
ered in the NRC tests should in principle be the same when
based on absolute or relative estimates and was also retained
as an indicator for comparisons (for those FI methods yielding
biomass estimates), together with the NRC mild criterion that
the relative error compared to the true rate should be within
± 25%.

As a further comparison, the estimation CVs for recruit-
ment and biomass obtained for each data set were tabulated
for those methods that could provide them.

4 Results of methods comparisons
across simulated data sets

The relative performance of the F-I methods is summarised
in Table 2 for each of the performance metrics described
above. Graphical comparisons of the trajectories of estimates
vs. the truth (both normalised) are also shown to gain more de-
tailed insight into the behaviour of each method (Figs. 1 and 2).

The first thing to note is that most methods did very well
with the clean set 6 (only YCC showed some inconsequential
deviations for recruitment estimates), which is reassuring: this
validation test indicates that there is no inherent defect in the
rationale of these methods, nor in the computer code.

These methods essentially behave as smoothers for noisy
indices, and may miss quick transient changes in stock abun-
dance. However, in their expected usage to evaluate “current”
stock state by comparing present and historic estimates, none
would have caused managers to be misled about the situation
of the stock and actions to take in the last decade of the time
series. For recruitment, the position of weak or strong year-
classes is generally correct, although there are cases of either
over-smoothing or over-reaction to the signal in the survey.

Like most VPA tuning methods, these F-I methods make
the strong assumption that survey q (by age or stage) is con-
stant over time, and it is unsurprising that estimates were badly
biased in the tests with set 3.1, where the large step change in
q was ignored. In normal circumstances, the assessors would
be aware of such marked changes in the survey procedure and
would adjust the treatment of their data accordingly, as exem-
plified by the runs redone as 3.2. Nevertheless, this test high-
lights the fact that F-I methods are strongly dependent on the
quality of the survey, notably the consistency of the survey pro-
tocol, as they use no other source of information which might
counterbalance poor survey data. In reality, year-on-year vari-
ations in survey design (e.g. due to weather or logistic con-
straints) or gear rigging are common, and users of F-I methods
should be alert that they must take them into account, however
benign they may first appear.

In contrast, the test indicates no particular problem with set
5, a case with very low exploitation rate (F � M) which may
cause poor convergence of VPA based methods.

Overall, based on inspection of summary statistics and pat-
terns in the plots, all the methods tried in this test performed
quite similarly and could be used interchangeably, depending
on availability and familiarity with the software. There is a
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Fig. 1. Comparison of normalised series of biomass estimates across methods and datasets.

small practical advantage in favour of BREM which does not
require extensive age compositions. Moreover, TSA does not
(yet) provide biomass trajectories, and the plots of SURBA es-
timates show occasional wiggliness in some batches of years.

It is not straightforward to compare the performance of
the F-I methods with those of the tuned catch-based methods
applied to the same data in the NRC tests, since estimates from
the latter are not available in tabular form. Coarse compar-
isons with the biomass trajectories plotted in Appendix I of
NRC (1998) indicate that catch-based methods tended to con-
sistently over- or (most often) under-estimate stock abundance
relative to the truth, whereas F-I estimates wander about the
true trajectory. Note in passing that with set 5, all catch-based
methods under-estimated the true absolute biomass by a con-
siderable amount, but may have preserved the relative trend.
More direct, albeit not necessarily easier, comparisons can be
made with the estimates of depletion rate for those NRC runs
where only the survey data (not the commercial CPUE series
not considered here) were used for tuning. F-I methods, no-
tably BREM, perform comparatively well and were generally
outperformed only by the most highly parameterised catch-
based methods.

It must be kept in mind that this evaluation is contin-
gent on, among other things, scenarios where the error in

observation of the indices has a CV of 30%, a value consid-
ered reasonable for well-behaved surveys. If the methods are
applied to survey data with larger errors, across the series or in
specific years, their reliability in advisory contexts will obvi-
ously be poorer. In addition, the evaluation is based on a single
replication of a stochastic data generation, and a proper evalua-
tion would require summarising over many replicates (Hillary
2009). We note, however, that our protocol is the same as the
one adopted by the NRC.

5 Conclusion

Although rudimentary, and awaiting further evaluation in
full-fledged management strategy evaluation simulations, this
exercise indicates that the F-I methods developed for this
project are promising in terms of usefulness and reliability as
bases for management advice.

Their main advantage, and indeed their raison-d’être, is
that they are not subject to uncertainties in the commercial
catches which have caused growing concern and controver-
sies about scientific advice based on VPA approaches in recent
years. Moreover, the dependence on catch data is the main rea-
son for the current one-year delay between “data year” and
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Fig. 2. Comparison of normalised series of recruitment estimates across methods and datasets.

“assessment year”, which attracts criticism by managers that
response from scientists to their requests is too slow. Clearly,
survey-based methods can resolve this timeliness issue, as up-
dated information on stock state is generally available in a
matter of days after a survey is completed, although some over-
head is still needed for data auditing, construction of the to-
tal area index when this involves more elaborate treatments
than just aggregating samples, and mostly for age reading for
those FI methods requiring detailed age compositions. Another
bonus with all the methods reviewed here is that their fitting
procedures do not require prior knowledge of the natural mor-
tality coefficient M, which is a crucial ingredient in many other
assessment methods and perhaps the most challenging param-
eter to estimate (M may still be needed for derived quantities,
such as extracting fishing mortality F if management specif-
ically needs it). Finally, it can be seen as an advantage that
the methods reviewed have few if any “tuning knobs” to fiddle
with.

Evidently, there are a few drawbacks. In particular, it is
not possible to estimate absolute stock size (overall or for spe-
cific ages): all abundance estimates are relative, with an ar-
bitrary scaling coefficient (= survey q) between actual and
estimated abundance. In itself, this is not necessarily an is-
sue, and examples might easily be found in many areas where

decisions of utmost importance to society are made in response
to relative indicators. The problem with fisheries manage-
ment in Europe merely arises because, decades ago, scientists
successfully sold the idea that they had the skills to deliver ad-
vice in absolute terms and the “system” has been built-up on
these premises. One consequence is that managers were never
educated to make use of alternative flows of information, such
as relative indicators coupled with reference points based on
past states (if only as a cross-check of the traditional advice).
More seriously, scientists have never formalised and evaluated
an advisory process based on such information, although many
critics argue that allegedly absolute VPA estimates are effec-
tively relative since they are scaled by input M’s which are
guessed rather than known. However, this is mostly a problem
with the advisory system and it should not count against the
performance of the F-I methods per se. If any survey-based
approach is to be used as a management tool, there needs to
be a clear idea of the management framework in which such a
tool would be used. In other words, reference points for mor-
tality and biomass would need to be redefined on the basis of
total mortality and relative biomass, respectively.

A more inherent limitation of F-I methods is that they only
use one source of information, and are thus critically depen-
dent on the quality of survey protocols and data. Perceived
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year-on-year changes in abundance, and ensuing effects on ad-
vised management decisions, are likely to be very fragile to
inconsistencies in the conduct of surveys (dates, geographi-
cal coverage, gear, etc.), and the best professional standards
must be adhered to in order to reduce biases. When survey pro-
grammes are directed at groups of species (e.g. IBTS, the Inter-
national Bottom Trawl Survey programme in the North Sea),
the design tries to achieve a compromise between the needs
of various species, and there are often populations whose dis-
tribution is only partially covered; this potential bias has to
be borne in mind when candidate species are selected for ap-
plication of F-I methods (and in any case when interpreting
the results for advice). Finally, despite the complaint by pay-
masters that surveys are by far the most costly item in the as-
sessment process, the implication of basing management on
F-I approaches may well be that more, rather than less, invest-
ment in surveys is required notably for those where the pre-
cision of indices is near the limit of acceptability. Although
gaps in survey data do not technically impede estimation with
the methods reviewed, it is obvious that the quality of assess-
ments degrades quickly when gaps occur frequently, and that
the “current” state of stocks cannot be appraised in those years
when data are missing. As a rule, surveys should be annual to
be usable safely in the deplorably polemical context of fish-
eries management.

Although the F-I methods seem promising, we do not
propose that they should replace the conventional assessment
methods in all cases. They are designed primarily to fill a
gap, where catch data are incomplete or too unreliable and
catch-based assessments are not feasible or too uncertain for
acceptance by stakeholders. We strongly suggest, however,
that they be used alongside catch-based methods to validate
their results. For example, differences in estimates may be an
indication that catches were misreported or natural mortality
misspecified in the standard model. The technical and institu-
tional implications of using F-I methods in fisheries manage-
ment are further discussed in Cotter et al. (2009).
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