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Abstract:  
 
We analyse the linear stability and nonlinear evolutions of circular hetons under the quasi-geostrophic 
approximation. We compare results obtained with a three-layer model and with a model based on a 
continuous density stratification. Though the models also differ by the vertical boundary conditions, 
they show a remarkable similarity in the stability properties of the hetons (threshold values of vortex 
radius for baroclinic instability, dominant modes, growth rates, etc.), and in their nonlinear evolutions 
(spatial reorganization of potential vorticity by nonlinear processes, end-states of the simulations). The 
hetons prone to baroclinic instability often break into two hetons drifting in opposite directions, and in 
more hetons, for wider initial structures. In both models, instability is quite sensitive to the vertical gap 
between the opposite-signed vortices: as it increases, the instability decreases and shifts to lower 
azimuthal modes. Finally, though modes l ≥ 2 (i.e. elliptical and shorter wave deformations) prevail in 
most of the parameter space, the mode l = 1 perturbation (a vertical tilt of the vortex column) exists for 
hetons with small vertical gaps. Such perturbations are concentrated vertically near the gap, and can 
only be evidenced in the continuously stratified model. 
 
 

1. Introduction 
 
Vortices, which are long-lived coherent structures, abound in the oceans where they play an important 
role in momentum, heat and tracer fluxes. The vortices which were most intensively studied originally 
were the Gulf-Stream rings (see a review of these studies in Robinson (1983)). Indeed, the mixed 
barotropic-baroclinic instability of this intense eastward jet leads to the formation of large vortices 
(called rings) via the occlusion of its meanders. Though the warm-core and cold-core Gulf-Stream 
rings were observed most often, deep anticyclones of Sargasso Sea water were found to form in 
conjunction with cold-core rings (Bane, O’Keefe & Watts (1989)) and to propagate away from the Gulf-
Stream as coherent, baroclinic vortex pairs. The characteristic horizontal size of these dipoles is 
between 150 and 250 km. Baroclinic vortex dipoles were also observed recently in the Eastern North 
Atlantic Ocean, forming from the Mediterranean Water undercurrents in the Gulf of Cadiz (Carton et 
al., 2002, Serra, Ambar & K¨ase, 2005). In that occurrence also, the cyclones lie above the 
anticyclones and the coupled vortices can propagate southward away from their region of generation. 
The horizontal size of these dipoles is between 80 and 120km. In both cases (Gulf-Stream region and 
Gulf of Cadiz), the first internal radius of deformation is about 30-35km. This radius of deformation 
characterises the equal influence of stable stratification and of Earth rotation on these mesoscale 
motions. The simplest dynamical model which takes into account the dominant 
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2 J. N. Reinaud and X. Carton

effects of rotation and stratification, is the quasi-geostrophic model. Quasi-geostrophic
vortices can interact with one another, and vortex interaction has been extensively stud-
ied in the literature.

Vortex interactions were first studied when vortices were located at the same depth.
An important class of such vortex interactions, which received much attention in the
past, is vortex merger. Vortex merger is the process by which two co-rotating vortices,
at the same depth or which overlap vertically, collapse towards their mutual centre of
rotation, intertwine and finally create larger structures. Vortex merger was associated
with the inverse energy and direct enstrophy cascades in two-dimensional and in quasi-
geostrophic turbulence.

Vortex merger was investigated first in 2D incompressible flows (Deem & Zabusky
(1978), Overman & Zabusky (1982), Dritschel (1986) , Melander, Zabusky & McWilliams
(1988)). A critical horizontal distance of 3.2 radii was found for the merger of piecewise-
constant vortices. More distant vortices co-rotate. Further studies addressed the case of
unequal vortices (Melander, Zabusky & McWilliams (1987), Dritschel & Waugh (1992),
Yasuda & Flierl (1995), Yasuda & Flierl (1997)). They determined how the critical merger
distance varied with vortex size and strength. They also showed that in most cases, vortex
merger was incomplete, or sometimes was replaced by vortex straining. In that instance,
none of the fluid of one vortex merged into the other, but part of this fluid formed a
filament which was expelled.

Vortex merger was also studied in 2-layer, rotating fluids. In that configuration, consid-
erable effort was devoted to reconcile theory and laboratory experiments on the depen-
dence of vortex merger on stratification (Griffiths & Hopfinger (1987) , Polvani, Zabusky
& Flierl (1989), Verron, Hopfinger & McWilliams (1990), Valcke & Verron (1993) , Ver-
ron & Valcke (1994)). It was then shown that the formation of baroclinic dipoles (the
so-called hetons, see below) could counteract vortex merger.

The study of vortex merger was then extended to continuously stratified quasi-geostrophic
flows, with vortices overlapping vertically (von Hardenberg at al. (2000), Dritschel (2002),
Reinaud & Dritschel (2002), Bambrey, Reinaud & Dritschel (2007), Ozugurlu, Reinaud
& Dritschel (2008). As the vortices share some common horizontal layer, they can po-
tentially merge, or more generally strongly interact. The interaction first depends on
the vertical offset between the vortices. Vortices moderately offset in the vertical may
merge for greater separation distances, see Reinaud & Dritschel (2002). The interaction
also depends on the respective aspect ratio and volume ratio between the vortices, the
larger vortex dominating the interaction, see Bambrey, Reinaud & Dritschel (2007). The
potential-vorticity ratio between the two vortices is also important, and the interaction
between vortices having significantly different strengths (volume-integrated potential-
vorticity) generally results in the straining out of the “weak vortex” rather than the
partial merger of the vortices, see Ozugurlu, Reinaud & Dritschel (2008).

Interactions between two opposite-signed vortices are also common, and lead to vortex
pairing, drift, or destruction via shearing (see Miyazaki, Yamamoto & Fujishima (2003)
and Reinaud & Dritschel (2008)). In the latter, the authors showed that pairs of opposite-
signed vortices can strongly interact. In particular they showed that the smaller vortex
can break the larger one.

When like-signed vortices are vertically separated, their radial collapse and merger is
called alignment (Polvani (1991), Viera (1995)). Alignment results in taller vortices and it
is associated with the barotropisation of vortex structures in freely-decaying, geostrophic
turbulence. Again dipolar effects can counteract vortex alignment (Correard and Carton
(1999)).

We focus here on the stability and the nonlinear evolutions of two opposite-signed
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vortices, initially aligned vertically. These ‘hetons’ were introduced by Hogg & Stommel
(1985), to model baroclinic vortex pairs which can transport heat in the ocean. These
early studies of hetons considered two point vortices in a 2-layer model. Flierl (1988)
analysed the linear stability of finite-area baroclinic vortices with piecewise-constant po-
tential vorticity, in a two-layer model. He found that the stability of these hetons depends
on their radius-to-height aspect ratios. Tall hetons are stable. Increasing the radius-to-
height aspect ratio favours baroclinic instability. Helfrich and Send (1988) modelled the
nonlinear evolutions of such unstable vortices with contour dynamics. They observed a
narrow domain of nonlinear stabilisation of perturbations at finite amplitude, for weakly
unstable vortices. Sokolovskiy and Verron (2000) studied the nonlinear evolution of lin-
early unstable hetons and evidenced a noticeable tendency for pure baroclinic vortices to
break into l hetons where l is the linearly most unstable wavenumber. On the contrary,
the addition of a barotropic component could lead to nonlinear stabilisation of the per-
turbation, the perturbed vortex forming thus a baroclinic multipole. They also detailed
the evolutions of initially tilted baroclinic vortices, of their propagation or breaking.
Sokolovskiy (1997) investigated the stability of 3-layer axisymmetric vortices, with finite
potential vorticity in the middle layer. Thus, he did not consider a heton with a vertical
gap between the cyclone and the anticyclone. Moreover, to our knowledge, the stability
of hetons has not yet been addressed within the framework of a continuous stratification.

How similar can heton stability properties be in continuously stratified and in layered
model is the first objective of the present study; in particular, what is the influence of
high baroclinic modes ? The second question is the influence of the aspect ratio of the
heton and of the vertical gap between the two aligned vortices on heton stability. These
questions are novel, in view of the aforementioned studies.

The paper is organised as follows. §2 presents the results for hetons in a continuously-
stratified ocean. The governing equations are first reviewed then a linear stability analysis
together with a few illustrations of nonlinear evolutions are proposed. §3 focuses on the
same problem within the framework of a 3-layer model. Comparison between the two
approaches and conclusions are drawn in §4.

2. The continuously stratified quasi-geostrophic model

2.1. Formulation

We present here the equations that govern a continuously stably-stratified and rapidly-
rotating flow under the quasi-geostrophic (QG) approximation. For the sake of simplicity,
we take both the buoyancy frequency N and the Coriolis parameter f constant, and we
rescale the vertical direction z by the ratio N/f . Note that at mid latitudes and for
Central Waters, N ∼ 0.01s−1 and f ∼ 0.0001s−1. We neglect both diabatic heating and
viscous diffusion. The governing equations read

dq

dt
= 0, (2.1)

∆ψ = q, (2.2)

u = (u, v, 0) = −∇ × ψk. (2.3)

where q is the materially-conserved potential vorticity PV anomaly (hereinafter referred
to as PV), d/dt = ∂/∂t + u · ∇ is the material derivative with u being the layerwise
two-dimensional advecting velocity field, ψ is the streamfunction, and ∆ is the three-
dimensional Laplace’s operator, see e.g. Vallis (2006) for further discussion.

We consider vortices of uniform PV. Such vortices are fully described by the shape of
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their boundary. Each vortex is discretised in the vertical by a set of nc horizontal PV
contours, and each PV contour is discretised by np nodes.

We first perform a linear stability analysis of cylindrical vortices aligned in the vertical
direction. The vortices are taken to be axisymmetric in the horizontal, and therefore
the overall PV distribution of the basic state is only function of ρ, the horizontal polar
radius, yielding a steady state.

The basic state is a ‘hot heton’, consisting of a cyclonic vortex, with q = 2π, settled
on the top of an identical anti-cyclonic vortex with q = −2π, see Hogg & Stommel
(1985). Note that within the QG approximation, there is no asymmetry between cyclonic
and anti-cyclonic vortex dynamical behaviour. Hence the reverse situation with an anti-
cyclonic vortex on the top of a cyclonic vortex would give the same results. The time
scale of the problem is set by taking q = ±2π. For comparison, an isolated sphere of PV
has a rotation period of T = 6π/|q|, while an infinite columnar vortex has a rotation
period of T = 4π/|q|.

The linear stability analysis relies on deformation modes of the vortex boundaries.
The analysis results in a standard eigenvalue problem in which the complex eigenvalues
σ = σr + i σi give the growth rate (σr) and the frequency (σi) of the modes. On the
other hand, the eigenvectors give the spatial structure of the modes. Calculations are
performed by explicit integration along contours in an infinite fluid domain. Details of
the formulation may be found in Reinaud & Dritschel (2002). In the linear stability
analysis, the length scale of the problem is set by the total height of the heton, taken to
be π.

We also illustrate the early stage of the nonlinear evolution of unstable hetons in a few
cases. To that end, we use the Contour-Advective Semi-Lagrangian algorithm (CASL) de-
veloped by Dritschel & Ambaum (1997). The QG equations are solved in a triply-periodic
domain. To avoid a strong influence of the periodic images on the development of the
flow, we confine the initial conditions in a 13-box centred in the (2π)3 computational
domain. During the late evolution of the heton, vortices may approach the boundaries
and start to strongly interact with images, but we mainly focus here on the early desta-
bilisation of the flow. The conversion grid which is used to convert the PV contours onto
a fine gridded PV is 5123, while the inversion grid on which the Poisson’s equation 2.2
is inverted is 1283.

2.2. Results

2.2.1. Example case: d/hv = 4/3 ; linear stability analysis

We consider first two cylindrical vortices of half-height hv = 3π/16 separated in the
vertical by a gap of d = π/4, hence d/hv = 4/3. The radius of the vortices is denoted r.
The upper vortex has a uniform PV of q = 2π, while the lower one has a PV q = −2π.
The geometry is described in figure 1. Recall that the total height spanning the heton
is H = π. Each vortex is spanned in the vertical by nc = 45 horizontal contours, while
the gap corresponds to 30 layers. Each contour is discretised by np = 298 nodes. The
layer thickness is δz = π/120. We perform the linear stability analysis of the heton for
1.8 6 r/hv 6 10.0 using an increment in r/hv of 0.2. We have tested the accuracy of the
method on the case r/hv = 5, by almost doublng the resolution, i.e. taking nc = 90 and
np = 498. The growth rates obtained are unchanged down to the five significant digits.

We first illustrate the growth rates and frequencies of the modes in figure 2(a). For
r/hv < 3.4 the heton appears neutrally stable as σr = 0 for all modes at the algorithm
precision. One of these neutral modes has a frequency that decreases faster than the
others as we approach r/hv = 3.4, as seen from figure 2. There are in fact two modes
with opposite frequencies that collapse to zero, only the positive one is displayed and we
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Figure 2. Growth rates σr (+) and frequencies σi (∆) of the modes versus the aspect ratio
r/hv for cylindrical hetons hv = 3π/16 and d = π/4.

will restrict attention to this one only. The frequency eventually vanishes and the mode
becomes unstable (exchange-type instability). From r/hv > 3.4, the unstable modes
have zero frequency. The unstable mode is a double eigenvalue of the problem, due to
the symmetry of the configuration. As the aspect ratio r/hv is increased, the growth rate
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Figure 3. Spatial structure of the most unstable mode for (a) r/h = 5.0, (b) r/h = 8.0,
(c) r/h = 10.0. In each case the top figure represents the deformation of the top cyclonic vortex
and the bottom figure the deformation of the bottom anti-cyclonic vortex. The vertical axis
of each plot is the non-dimensional direction z∗ = (z − zi)/(2hv), where zi corresponds to the
vertical coordinate of the bottom of the vortex i, i = 1, 2. The horizontal axis is the azimuthal
angle 0 6 θ 6 2π. Solid contours correspond to negative deformation – inward deformation –
while dashed contours correspond to positive deformation – outward deformation.

of this unstable mode increases to reach a maximum σ = 0.03832 for r/hv = 5.0. For
r/hv > 5.0, the growth rates along this branch of unstable modes (branch I) decrease
when increasing r/hv. Meanwhile, a second branch (branch II) of instability appears
for r/hv > 5.8. Qualitatively, this branch is similar to the previous one and stems from
a mode whose frequency has collapsed to zero. The growth rate first increases up to
r/hv = 8.0, where σr = 0.04085 then decreases for increasing r/hv. Modes from branch
II become more unstable than modes from branch I from r/hv = 6.8. A third branch
appears (branch III) from r/hv = 7.8, and becomes the most unstable mode from
r/hv = 9.6. We do not study the hetons for r/hv > 10. Such structures are arguably very
rare in the oceans. Branch III has not saturated yet by r/hv = 10 (i.e. has not reached
its maximum growth rate). Finally a fourth branch starts at r/hv = 10.

We determine the spatial structure of the unstable modes, by analysing the eigenvalues.
Branch I corresponds to azimuthal wavenumber l = 2, branch II to l = 3 and branch III
to l = 4. The sequence continues for larger r/hv, with the fourth branch corresponding
to l = 5 and so on.

The spatial structure of the most unstable mode is illustrated in figure 3 for r/hv =
5, 8, and 10. We verify that for the most unstable mode has an azimuthal number l = 2
for r/hv = 5, l = 3 for r/hv = 8, and l = 4 for r/hv = 10. These deformation modes are
generic to all cases studied. We see, as one expects, that the deformation is the largest
at the bottom of the top vortex and the top of the bottom vortex, parts of the vortices
which most strongly interact with one another. We also note that the deformation of
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Figure 4. Nonlinear evolution of the heton with r/h = 5. Times displayed are t = 0, 81, 87, 89.
Vortices are viewed orthographically at an angle of 60◦ from the vertical.

each PV contour for a given vortex is in phase, i.e. the deformation does not twist the
vortex. However the deformation between the top and bottom vortices has a phase of
π/(2l), hence for example, azimuthal angles corresponding to maximum or minimum
deformation for the top vortex correspond to zero-deformation for the bottom vortex.

2.2.2. Nonlinear evolutions of vortices in case: d/hv = 4/3

We next illustrate the nonlinear evolution of the heton for the three examples detailed
in the previous paragraph, namely r/hv = 5, 8, and 10 with d/hv = 4/3.

In the first example (r/hv = 5), the initial conditions are two cylindrical vortices
centred respectively at (0, 0,−5/16) and (0, 0, 5/16) and of radius r = 15/16. The total
height of the structure is 1, so that the vortices initially fit in the 13 box centred at the
origin of the (2π)3 computational domain. Each vortex is discretised by 30 contours. The
nonlinear evolution of the heton is shown in figure 4. In this example, as in the following
ones, the flow is not explicitly disturbed. The perturbation builds up from the weak
numerical noise. This noise is present at all spatial scales available, and we do not bias
the outcome of the interaction by forcing a specific mode. The heton remains virtually
not deformed until t ≃ 65. Then the azimuthal mode l = 2 starts to develop. Note that
in the case, according to the linear stability analysis, only mode l = 2 is unstable, with a
growth rate σr = 0.03832. Both vortices deform quasi-elliptically and we recover a phase
difference of about π/4 between the deformation of the two vortices, in agreement with
the linear stability analysis. Indeed, this π/4 vertical phase shift maximises the growth
of baroclinic instability (via a maximal conversion of available potential energy into
eddy kinetic energy). As the flow develops it becomes slightly asymmetric. Each vortex
further deform into dumbbell-shaped vortices, with poles increasingly moving away from
the centre of the domain. Eventually the bridge of PV linking the poles of each vortex
is stretched and breaks, and essentially 4 poles are generated, with filaments and debris
remaining at the centre of he domain. Note that at the late evolution of the flow, vortices
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Figure 5. Nonlinear evolution of the heton with r/h = 8. Time displayed are t = 0, 61, 64, 68.
Vortices are viewed orthographically at an angle of 60◦ from the vertical.

Figure 6. Nonlinear evolution of the heton with r/h = 8. Time displayed are t = 44, and 51.
Vortices are viewed orthographically at an angle of 30◦ from the vertical.

are very close to the boundary of the domain and the influence of the periodic images
becomes important.

In the second example (r/hv = 8), the two vortices are centred at (0, 0,−5/24) and
(0, 0, 5/24) at t = 0, and they have unit radius. The total height of the heton is 2/3, so
the initial conditions fit in the 13 box. Each vortex is discretised by 21 contours. As seen
in the previous subsection, in this case the most unstable mode corresponds to l = 3 with
σr = 0.04085. We can expect that this mode will dominate the evolution of the heton.
However, we have to keep in mind that this mode is not the only unstable mode. Modes
l = 2, with σr = 0.03009, and l = 4, with σr = 0.02133 also develop. The heton evolution
is illustrated in figure 5. It is shown that mode l = 3 dominates the nonlinear evolution
of the flow. Each cylindrical vortex reorganises into a tripolar vortex, and the poles move
away from the centre of the domain, as clearly seen from t = 61 in figure 5. The poles
are not equally distributed in the azimuthal direction, and this is due to the influence of
the two other unstable modes which compete with the mode l = 3. We also see a small
phase between the two vortices which is consistent with the results of the linear stability
analysis.



The stability and the nonlinear evolution of quasi-geostrophic hetons 9

t

A

35

30

20

10

0
0 10 20 30 40 50

Figure 7. Time evolution of the norm of the Fourier modes of the contour deformation for the
azimuthal modes l = 2 (thin solid line), l = 3 (bold solid line) and l = 4 (dashed line).

Eventually the heton breaks generating 6 main vortices with filaments and debris near
the centre of the domain. In this case we see that the mode l = 3 leads the long term
evolution of the flow. However, interesting dynamics occurs at an early stage of the
evolution. From t = 0, the 3 unstable modes grow from the numerical noise. When the
deformation becomes nonlinear, the most apparent mode is l = 4, see figure 6. Yet this
mode saturates early and weak nonlinear effects stabilise this mode. As soon as the mode
l = 4 virtually disappears, the mode l = 3 grows rapidly and dominates the late nonlinear
stages of the flow.

To better judge the time evolution of the different modes of instability, we analyse the
deformation of the PV contours bounding the hetons. More specifically, we first calculate
for each contour the departure from the initial axisymmetric cylindrical shape. We then
perform a Fourier transform, and sum over the number of contours the norm of the
Fourier coefficients for the three unstable modes, l = 2, 3, and 4. Results are shown in
figure 7. Mode l = 4 first grows rapidly and saturates at t = 34. Modes l = 3 and l = 2
grow from an infinitesimal numerical noise and mode l = 3 is the most amplified, yet the
mode l = 2 has a similar amplitude which explains the asymmetry in the later evolution
of the heton.

The last example consists of two cylindrical vortices with r/hv = 10. Vortices are placed
at (0, 0,−5/30) and (0, 0, 5/30) and have unit radius. The total height of the heton is
16/30, such that the initial conditions fit in the 13 box. Here the vortices are unstable
to 4 azimuthal modes. The most unstable mode is l = 4, with σr = 0.04074. The 3 other
modes are l = 3 with σr = 0.03805, then l = 2 with σr = 0.02431, and finally l = 5, with
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Figure 8. Nonlinear evolution of the heton with r/h = 10. Time displayed are t = 0, 18, 29, 41.
Vortices are viewed orthographically at an angle of 60◦ from the vertical.

σr = 0.01654. Each vortex is discretised by 16 contours. An illustration of the nonlinear
evolution of the heton is proposed in figure 8. From t = 0, the mode l = 4 dominates
the evolution of the flow. The vortices first deform toward square-shaped vortices, then
the corners move away from the centre. By t = 29, each quadrupolar vortex has a four-
blade propeller shape, and the deformation exhibits a phase between the two vortices
of about π/8 as predicted by the linear theory. The poles of the quadrupolar vortices
later separate, generating four pairs of peripheral vortices. The two vortices break into 10
main vortices: four peripheral hetons and a central baroclinic vortex with square shape.
A small amount of filaments is also generated during the interaction.

These examples of nonlinear evolution of unstable heton back the predictions of the
linear theory, and they show that hetons are highly unstable structures on their own.

2.2.3. Influence of the vertical gap d

We next investigate the linear stability of the hetons over a broader parameter space.
In particular, we consider the influence of the relative vertical gap d/hv on the stability
property of the flow. We consider 26 values for the vertical gap, 0 6 d/hv 6 2 with an
increment of 2/25. For each value of d/hv, we analyse 50 aspect ratios r/hv, 0.2 6 r/hv 6

10 with an increment of 0.2, that is we investigate the stability of 1300 individual hetonic
structures. To this end, we decrease the resolution to limit the computational cost, while
retaining high accuracy. Each vortex is spanned by nc = 25 contours and each contour
is discretised by np = 198 nodes. The previous subsection shows on a few examples that
is the most unstable mode dominates the nonlinear evolution the heton. In this section,
we analyse the azimuthal wavenumber of the most unstable mode as a function of r/hv

and d/hv.
This can be done in a straightforward manner. For each value of d/hv, r/hv we select

the mode which has the largest growth rate. Then we extract the part of the eigenvector
for this mode corresponding to the deformation of the bottom contour of the cyclonic
vortex (the vortex on the top). The number of changes of sign in the deformation per-
turbation equals twice the azimuthal mode. We gather this information for all values of
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Figure 9. Most unstable modes in the parameter space r/hv, d/hv . The horizontal dashed-line
indicates d/hv = 4/3, corresponding to the cases analysed in the previous section. The triangles
indicate the region of unstable l = 1 mode.

d/hv and r/hv and draw contours for fictitious intermediate values for the mode such as
1.5, 2.5 and so on, which delimits the different regimes of instability. Results are shown
in figure 9. For each value of d/hv, we recover (qualitatively) a similar behaviour as r/hv

is varied. Increasing r/hv makes the heton more sensitive to perturbations with higher
azimuthal wavenumber. However, there is a significant influence of the vertical gap, espe-
cially for d/hv small. For d = 0, mode l = 2 is the most unstable even when r/hv = 0.4,
to be compared to r/hv = 3.4 for the example detailed in the previous section where
d/h = 4/3. For r/hv = 10, the most unstable mode is l = 10 when d = 0. Recall it
was only l = 4 for d/hv = 4/3. Even if the influence of the vertical offset decreases
for larger values of d/h, it remains significant. We next plot the maximum growth rate
(most unstable mode) in the (r/hv, d/hv) parameter space in figure 10. The bottom
contours correspond to σ = 0.1. As d/hv is increased, the growth rate decreases as the
mutual influence of the vortices weakens. The contour interval is dσ = 0.01. In figure
9, the region to the left of the contour that delimits the region l = 2, consists of the
region where the hetons are neutrally stable. This is true but for a very small subregion
where instability is observed. This region is only found for both d/hv and r/hv small,
and covers a very small area in the parameter space and is indicated in figure 9. This is
confirmed in figure 10. The instability comes from the existence of an unstable baroclinic
mode l = 1 in this part of the parameter space. This mode is found to be dominant for
d = 0 and r/hv = 0.2, d/hv = 2/25 and 0.2 6 r/hv 6 0.6, and finally d/hv = 4/25 and
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Figure 10. Maximum growth rate in the parameter space r/hv, d/hv . The contour interval
dσ = 0.01. The bottom contour represents σ = 0.1.

0.2 6 r/hv 6 0.8. In all other cases in this region, there is no dominant, unstable l = 1
mode.

Figure 11 shows the spatial deformation of the bottom vortex for the most unstable
mode for 0 6 d/hv 6 4/25 and 0.2 6 r/hv 6 0.8. For the values of d/hv and r/hv

mentioned in the previous paragraph we see that the mode has azimuthal wave number
l = 1. For a given PV contour, a l = 1 disturbance can be seen as a shift of the contour
in the horizontal direction. We see that the phase and magnitude of the perturbation
along the vortex is z−dependent, that is, the perturbation is baroclinic. The unstable
perturbation twists and bends the vortex. From the strong variation in the amplitude
of the deformation as a function of the z, it is likely that only the top of the lower
vortex and the bottom of the upper one can strongly interact. There is some similarity
between what is observed in this situation and the tall-column instability discussed by
Dritschel and de la Torre Juárez (1996) even if the situation is different here from the
case investigated by the authors. This baroclinic instability affects tall vortices submitted
to a strong deformation field due to the presence of a nearby vortex (the second vortex
of the heton).

We finally illustrate this instability by a numerical experiment. The lower anti-cyclonic
vortex is placed at (0, 0−0.525) and the upper cyclonic vortex at (0, 0, 0.525). The radius
of the vortices is r = 0.1, and r/hv = 0.2. In this part of the parameter space only the
mode l = 1 is unstable. The flow evolution is illustrated in figure 12. As seen from the
figure, the vortices slightly bend near their edges. The bending motion is oscillatory with
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Figure 11. Spatial structure of the unstable baroclinic l = 1 mode.

a frequency of T ≃ 30, i.e. 15 vortex turnovers. A few filaments are generated, and
the vortex tips misalign. This induces a slow translation motion on the heton. However,
this interaction remains weak, as the two vortices remain robust and do not break. The
average translation velocity of the heton is about 5∗10−3. Recall that the heton horizontal
radius is 0.1 and its PV is |2π|.

3. Heton stability in the three-layer quasi-geostrophic model

3.1. Model equations

In the QG layered model, potential vorticity is conserved in each layer under adiabatic,
unforced and inviscid conditions

dqj
dt

= 0,

with j = 1, 2, 3 representing the upper, mid and lower layers.

Layerwise potential vorticity is written

q1 = ∇2ψ1 + F1(ψ2 − ψ1),

q2 = ∇2ψ2 + F2(ψ1 − ψ2) + F3(ψ3 − ψ2),

q3 = ∇2ψ3 + F4(ψ2 − ψ3).
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Figure 12. Nonlinear evolution of the heton with r/h = 0.2, d/h = 0.1. Time displayed are
t = 0, 80, 90, 120. Vortices are viewed orthographically at an angle of 60◦ from the vertical.

The linear stratification operator is represented here by matrix

F =





−F1 F1 0
F2 −F2 − F3 F3

0 F4 −F4



 , (3.1)

where F1 = f2

0
/(g′

1
H1), F2 = f2

0
/(g′

1
H2), F3 = f2

0
/(g′

2
H2), F4 = f2

0
/(g′

2
H3). The reduced

gravities are g′j and layer thicknesses at rest are Hj . For simplicity of the analytical
calculations we assume that the total depth is unity in the 3-layer model, so that H1 =
H3 = (1−H2)/2. This choice does not prevent comparison with the continuously stratified
model of section 2, since we can convert layer thicknesses into d and hv via d = πH2 and
hv = πH1/2. The calculation of vertical modes is detailed in appendices A and B.

3.2. Linear stability of the three-layer vortices

The linear (normal-mode) stability of the columnar vortex with radius r and layerwise
PV qj (q1 = 2π, q2 = 0, q3 = −2π) is considered. As shown in the appendices, the normal
mode stability equation is for each PV front deviation

Ljkηk = cηj .

Here L is the linear operator describing the linear dynamics of the perturbed vortex
boundary (see appendix B), ηj is the magnitude of the deviation of the vortex boundary
from a circular state in layer j and c is a complex number providing the rotation rate
Re(c) and the growth rate σr = l Im(c) of the perturbation. These growth rates are
computed for various values of the parameters.

Figure 13 presents the maximum growth rates over l = 1− 10 in the r/hv, d/hv plane,
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Figure 13. Maximum growth rates and most unstable waves of normal-mode perturbations on
the three-layer heton, in the r/hv , d/hv plane. In the lower panel, vortices are stable in the blue
region, most unstable to wavenumber l = 2 in the green region, to l = 3 in the orange strip and
to l = 4 in the dark red triangle.

in the three-layer model. Firstly, it evidences that mode l = 1 is always stable for equal
upper and lower layer thicknesses in the three-layer model (because stratification can
be computed only for d/hv > 4/3 in this case). Very shallow intermediate layers cannot
be represented under these conditions and therefore the asymmetric mode l = 1 found
in the previous section cannot be attained. Secondly, this figure evidences the existence
of successively dominant wavenumbers (here l = 2, 3, 4). Growth rates decrease for each
wavenumber as d/hv increases because the interaction between the two active PV poles
becomes weaker then. Higher modes (l > 5) are not linearly unstable in this region of
parameter space.
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Figure 14. Normal mode instability of the three-layer heton (with zero PV in the
intermediate layer), for hv = 3π/16 and d = π/4, and for azimuthal modes from 2 to 5.

Figure 14 is a section of figure 13 at d/hv = 4/3. It provides the growth rates of
azimuthal modes l = 2 to 5. It can be compared to figure 2(a) in the continuously
stratified model.

Modes l = 2, 3, 4, 5 become unstable near critical radii r/hv = 3.4, 5.8, 7.8, 9.6 as in the
continuously stratified model. The values reached by the growth rates are comparable
in the two models (σr ∼ 0.035) slightly increasing with the mode number. Growth rates
peak at r/hv ∼ 5.0, 8.0, 9.5 for l = 2, 3, 4 again as for continuous stratification. In the
three-layer model, the structure of the perturbation is uniform vertically in each layer

Growth rates in the three-layer model are much smaller than in the two-layer model
(by a factor 1/2, results not shown here), since the two PV poles are separated here by
a layer without PV anomaly which ”shields” their interaction. Calling unscaled critical
radii, the radii not divided by hv, we note that these radii are comparable between the
2-layer and 3-layer models, though slightly larger in the 3-layer model. The agreement
of our linear stability analysis in the two-layer case, with the Flierl (1988), Helfrich and
Send (1988) and Sokolovskiy and Verron (2000) results, validates our procedure.

3.3. Nonlinear evolution of the heton with zero PV in layer 2

The nonlinear evolutions of the hetons are computed in a pseudo-spectral Eulerian model
which solves the equation

∂tqj + J(ψj , qj) = ν4∇
6ψj .

The right-hand side is a numerical artifact which suppresses small scale features due
to enstrophy cascade, but which does not alter the physical outcome of the simulation.
The horizontal resolution of the model is 256x256. Low biharmonic viscosity was used
(ν4 = 5 × 10−8 in the 8πx8π domain and ν4 = 2 × 10−7 in the 16π × 16π domain). The
baroclinic circular vortices are used as initial conditions of the model, with several types
of perturbations to allow the most unstable mode to develop.
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Figure 15. Nonlinear instability of the three-layer heton in the (d/hv, r/hv) plane. The initial
perturbation is a white noise in vorticity.

Figure 16. Nonlinear instability of the three-layer heton in the (d/hv, r/hv) plane. The initial
perturbation is a sum of l = 2m l = 3 and l = 4 modes, with equal amplitudes. (2+3) indicate
regimes where the vortex will either break into two dipoles with an asymmetric influence of
mode 3 or conversely (the same holds for (3+4).

Firstly, we checked the similarity of growth rates in the linear calculation and during
the linear stage of nonlinear simulations (maximum growth rates over the linear period).
We chose d/hv = 4/3 and values of r/hv near the peak instability of each mode. For
r/hv = 4.24, l = 2, the relative difference between linear and nonlinear growth rates
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Figure 17. Horizontal maps of potential vorticity in layers 1 and 3 superimposed (contour
qj = ±2π) for r/hv = 5.1, d/hv = 4/3, with initial superposition of equal amplitude mode 2 to
4 perturbations. Times shown range from t = 24 to t = 48 with increment δt = 8, from left to
right, and from top to bottom.

was 4%; for r/hv = 7.64, l = 3, the relative error was 5%, and for r/hv = 11.03, l = 4,
the difference was 3%. These figures were obtained in the largest domain and for a pure
l-mode perturbation initially.

Secondly, we ran many numerical simulations of the nonlinear model, either with a
white-noise perturbation in vorticity, or with an initial perturbation having an equal
amplitude on modes l = 2, 3, 4. Figures 16 and 15 show the regime diagram for these
two cases, in the (d/hv, r/hv) plane, superimposed on the linearly most unstable wave
diagram.

The two plots clearly show that the initial baroclinic vortex breaks into l peripheral
hetons, drifting radially away from the centre. The value of l obtained in the nonlinear
model is comparable to the dominant linear mode, when the growth rate of this mode is
at least 20% larger than those of the other modes (in particular for l = 3). In the regions
of the plane where the growth rates of modes l and l+ 1 are comparable, the outcome of
the nonlinear model is less predictable : the vortex will break into either l hetons with
an asymmetry on mode l+ 1 or conversely . This is clearly the case at the boundaries of
the domain of mode l = 3, and for an initial white-noise perturbation. In this case, the
initial vortex breaks into 2 or 3 asymmetric hetons (on the left-hand side of the domain)
and 3 or 4 asymmetric hetons (on the right-hand side of the domain).
Mode superposition is slightly reduced when the three modes l = 2, 3, 4 are initialised
at equal amplitude, compared with the white-noise perturbation. An explanation for
this is that the amplitude of the most unstable mode is not controlled in a white noise
perturbation (and therefore, can be smaller than that of other modes).
Mode superposition (in particular involving l = 3) is also reduced when simulations are
performed in a large domain. Since the initial perturbation is only 1/10000 of the mean
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Figure 18. Horizontal maps of potential vorticity in layers 1 and 3 superimposed (contour
qj = ±2π) for r/hv = 8.5, d/hv = 4/3, with initial superposition of equal amplitude mode 2 to
4 perturbations. Times shown range from t = 24 to t = 48 with increment δt = 8, from left to
right, and from top to bottom.

Figure 19. Horizontal maps of potential vorticity in layers 1 and 3 superimposed (contour
qj = ±2π) for r/hv = 11.9, d/h=4/3, with initial superposition of equal amplitude mode 2 to
4 perturbations. Times shown range from t = 24 to t = 48 with increment δt = 8, from left to
right, and from top to bottom.
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Figure 20. Time evolution of the amplitudes of the l = 2 − 4 components of the perturbation
in the instability of the r/hv = 8.5, d/hv = 4/3 vortex.

vortex amplitude, the long-range influence is mostly due to this latter, at least for several
linear growth periods. But the mean flow has no barotropic component here, so that its
decay scale is given by the largest deformation radius (which is unity). Therefore, for
several linear periods, the influence of the image vortex due to domain periodicity, is
negligible.
Thus, the most likely explanation for the asymmetric evolutions of the baroclinic vortex
in these regions of the parameter plane, is the similarity of the growth rates. Indeed,
another series of nonlinear simulations, performed with only the most unstable wave in
the initialisation, leads to breaking into more symmetric hetons.
In all cases, as d/hv becomes larger, PV-containing layers become more distant and
couple less strongly; also the volume integral of PV in the uppermost and lowermost
layers decreases with their thicknesses. Then, baroclinic instability becomes weaker and
unstable wavenumbers decrease for given r/hv.

These results can be compared with those of figure 9. For d/hv = 2.0, the appearance
of mode 2 is shifted to r/hv = 4 and the predominance of mode 3 to r/hv = 9. Neverthe-
less, mode 4 still exists for r/hv = 10, whereas it was not observed in the linear analysis
of continuously stratified hetons.

The time evolution of the perturbed hetons is shown on figures 17-19. The initial per-
turbation for each simulation is a superposition of equal-amplitude modes l = 2, l = 3
and l = 4 which are the dominant modes in the parameter region considered here. The
scaled vortex radii are r/hv = 5.1, 8.5, 11.9, and d/hv = 4/3 for the three simulations.

In the first example (figure 17), mode l = 2 is most unstable and the circular vortex
destabilises to form two hetons propagating in opposite directions as in figure 4. The
vertical phase difference, opposite to the vertical shear of mean azimuthal velocity, can
be seen, characteristic of baroclinic instability. In the second example (figure 18), mode
l = 3 is most unstable, and modes l = 2 and l = 4 are slightly less unstable. This leads
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to an asymmetric breaking into three hetons. Figure 20 illustrates the time evolution
of the l = 2 to l = 4 components of the perturbation, obtained by Fourier analysis, in
this example. Clearly, mode l = 3 is most unstable and is followed by modes l = 2 and
l = 4 which have similar growth rates. Comparison of early growth rates in the nonlinear
model (during the linear stage) with linear growth rates is satisfactory. The final growth
of perturbation components with high wavenumber in the final stage is also related to the
pinching of vorticity contours (formation of filaments) before final breaking. In the third
example (figure 19), the evolution is very similar to that shown on figure 8. The circular
heton breaks into four hetons which propagate outwards. A remnant of the core, with
square shape, is finally left at the centre (not shown). Other experiments, performed with
increasingly large vortices indicate that this central remnant can later become unstable
and break into dipoles (a result previously obtained by M. Sokolovskiy, priv. comm.).

3.4. Influence of the vertical structure of the flow

Here we discuss our previous results in view of the structure and observed evolution of
oceanic vortices.
In the previous simulations, no vortex, initially perturbed either with white noise vor-
ticity, or with a superposition of l = 2, 3, 4 disturbances, showed finite-amplitude stabil-
isation. On the contrary, when the upper and middle layers have equal thicknesses and
when the lower layer is thicker, finite-amplitude stabilisation of the perturbation was
often observed.
Results not shown here indicate that when the lower layer is twice as thick as the upper
and middle layers, the outcome of simulations with mode l = 2 perturbation is often a
baroclinic tripole (an elliptical core vortex, surrounded by two crescent-shaped satellites,
at right angle to the core vortex). This result has already been obtained in two-layer
models (Sokolovskiy and Verron (2000)). The time evolution of such vortices shows a
marked difference between the upper and lower layers, when potential vorticity resides.
The upper layer vortex breaks rapidly, but the lower layer vortex is less deformed. In-
deed, the volume integral of potential vorticity for the lower layer is twice as large as
for the upper layer. This induces stronger shear velocities in the upper layer, but weaker
ones in the lower layer. The final stabilisation of the perturbation at finite amplitude is
due to the absence of dipolar breaking of the lower layer vortex. In fact, the vorticity
anomalies in the final state, are then confined within a separatrix, as previous work has
shown (Carton and Corréard (1999)).
To create radially propagating hetons, the mutual influence of the dynamically active
layers (where potential vorticity is located), must be comparable. This conclusion is sup-
ported by another set of experiments, where the potential vorticity amplitude is doubled
in the upper layer. Then, the volume integral of potential vorticity is equal for the upper
and lower layers, and hetonic breaking is recovered in all cases.

Thin upper layers and strong motion in these layers are representative of oceanic mo-
tions. The vortices studied above have radii ranging mostly between 3 and 5 deformation
radii, or, at mid-latitudes, between 90 and 150km (we consider here the first internal
radius of deformation). This size is characteristic of intense rings of western boundary
currents. Such rings have not yet been reported to split into hetons. The influence of a
barotropic component, or the nonlinearity of the rings (i.e. their lens-like structure), may
account for this difference in behaviour. In a two-layer shallow-water model, it was shown
that the addition of a barotropic component to the mean flow can reduce the instability
or even stabilise an otherwise unstable vortex (Dewar and Gailliard (1994)). In the same
model, baroclinic anticyclones with strong isopycnal deviations (i.e. lens eddies) were
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shown to be linearly more stable than their quasi-geostrophic counterparts (Baey and
Carton (2002)).

4. Conclusions

In this paper, the linear stability of quasi-geostrophic hetons was studied and their
nonlinear evolution was investigated, in two distinct frameworks. On the one hand, using
the equations governing a continuously stratified fluid, we discretised the domain in the
vertical with many layers (typically about O(100) layers spanning the heton). This allows
many baroclinic modes to develop.

On the other hand, we have contrasted these results with results obtained with a 3-layer
model. Here the barotropic and the two first baroclinic modes are taken into account.
Most of previous studies restrained attention to 2-layers models where the barotropic
mode and the first baroclinic mode only can exist.

We have first shown a remarkable similarity in linear instability properties of hetons
in the continuously stratified and in 3-layer models, when the vertical gap between the
two vortices is finite. The instability threshold for the various modes, in terms of vortex
radii, and the growth rates for the normal mode perturbations, are quite comparable.
The nonlinear evolutions of perturbed and unstable hetons in the two models are also
similar.

Secondly, we have shown that the vertical offset between the two poles of the heton
has a significant influence on its stability, especially when d/hv −→ 0. The smaller
the gap d is, the more the deformation of the heton’s poles depends on height. This
inhomogeneity cannot be captured by a few-layer model. It must be noted that the 3-layer
model cannot accommodate both constant N and vertically symmetric layer thicknesses
for H2 < 0.25 (or d < π/4) and thus cannot, under such conditions, simulate infinitesimal
gaps. In the continuous stratification case, when d/hv is increased, the vertical scale of
the deformation increases (it is less concentrated vertically). Then the layered model
and continuous stratification model results converge. The 3-layer model, which is less
computer-time consuming can accurately describe the characteristics of the flow in these
cases.

In the three-layer model, nonlinear simulations with vortices perturbed either with
white noise vorticity, or with a superposition of modal disturbances, evolve according to
the linear prediction (i.e. they break on the linearly most unstable mode), if one mode
is noticeably more unstable than the others; when two modes have comparable growth
rates, the dominant mode at the end of the simulation is unpredictable. The three-layer
model provide vortex evolutions similar to those observed in a continuously stratified
fluid, in the same region of parameter space. The three-layer model indicates that the
presence of a barotropic component in mean potential vorticity, which asymmetrises the
mutual influences between layerwise vortices, leads to a nonlinear stabilisation of linearly
unstable vortices.

We have also discovered a very small region of the parameter space where a baroclinic
l = 1 mode is unstable. This instability domain is confined in a region d/h, r/h ≪ 1.
Therefore, these modes are not captured by the 3-layer model (see above). However,
the nonlinear evolution in the continuously-stratified case shows that these modes are
weak in the sense that they do not destroy the vortices. The instability generates a very
small amount of filaments, and mostly misaligns the vortices. The consequence of this
misaligment is a slow translation of the heton.

Overall, many hetons were found strongly unstable in the continuously stratified QG
model, despite being separated in the vertical. Only well separated hetons (d/h ∼ O(1),
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or greater with r/h ∼ O(1) or smaller) are stable. Other (isolated) hetons break into
smaller vortices, the number of which depends on the azimuthal wavenumber of the most
unstable mode.

This observation has to be extended to more general models, in particular models cou-
pling interior and surface dynamics (like the coupled QG-Surface QG model), or models
allowing higher Rossby numbers and inertia-gravity waves (like the primitive equation
and the Boussinesq models) to draw firmer conclusions for oceanic and atmospheric flows.
In particular, the analysis of oceanic vortices indicates that their stability is strongly de-
pendent on their nonlinearity. This conclusion was reached in a two-layer shallow-water
model. A generalisation of the present study to three-layer shallow-water models and to
continuously stratified primitive-equations model should be carried out in that respect.

Appendix A. Stratification and vertical modes in the layered model

The three-layer model used here has rigid top and flat bottom boundary conditions
(with free-slip conditions and zero density anomaly). This will not induce major dif-
ferences with the continuously stratified model where vertical periodicity effects were
avoided.
In a continuously stratified quasi-geostrophic model with rigid top and bottom, and con-
stant f0 and N0, the eigenvalues of the stratification operator (f0/N0)

2∂2

z are nπ/H and
the associated eigenvectors are

ψ = ψncos(nπz/H),

where n = 0 denotes the barotropic mode. Hereafter, the vertical scale is normalised by
π to have unit total depth ; therefore, stratification eigenvalues are equal to n.

In the three-layer model, the barotropic and first two baroclinic modes are represented.
To compute potential vorticity, we have to determine the Fj with the knowledge of the
stratification eigenvalues γ1 = 1 and γ2 = 2, and of the layer thicknesses. Note that,
with the rigid lid, γ0 = 0 for the barotropic mode. The two deformation radii are thus
Rd1 = 1, Rd2 = 1/2. Diagonalising the F matrix provides g′

1
and g′

2
via

Y3 = Y1/g
′

1
+ Y2/g

′

2
, Y4 = 1/(g′

1
g′
2
),

with Y1 = H3(1 − H3), Y2 = H1(1 − H1), Y3 = H1H2H3(F1 + F2 + F3 + F4), Y4 =
H1H2H3(F1F3 + F1F4 + F2F4), again using f0 = 1, H = 1. The eigenmodes (vertical
modes) are solutions of GX = 0 with

G =





−γ2
1,2 + F1 −F2 0
−F1 −γ2

1,2 + F2 + F3 −F4

0 −F3 −γ2

1,2 + F4



 . (4.1)

Numerical solutions for various values of Hj show that the barotropic mode is like-
signed on all layers, the first baroclinic mode changes sign once and the second baroclinic
mode twice vertically, as expected. We call A = (aij) the layer to mode transition matrix,
that is ψm = amiψi, and B = (bij) its inverse.
In vertical modes, potential vorticity is written

qt = ∇2ψt =
∑

j

a1jqj ,

qc1 = ∇2ψc1 − γ2

1
ψc1 =

∑

j

a2jqj ,
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qc2 = ∇2ψc2 − γ2

2
ψc2 =

∑

j

a3jqj ,

which allows its inversion into streamfunction.
It must be remarked that imposing vertical symmetry in layer thicknesses and constantN
does not allow three-layer analogues of the continuously stratified models, for H2 < 0.25.
Therefore, the case of vertically close vortices in the heton is not addressed in the three-
layer model.

Appendix B. Linearised potential vorticity equations in the layered

model

The linearised potential vorticity (PV) equation is

∂tq
′

j +
Uj

r
∂θq

′

j +
1

r

dQj

dr
∂θψ

′

j = 0.

Here Qj is not continuous and this equation has to be integrated in the vicinity of
each PV front (at radius r). This integrated equation is equivalent to the continuity of
the total tangential velocity at the PV front inserted into the kinematic equation of the
PV front. We follow this alternative procedure here.
The azimuthal velocity of the circular vortex at the vortex radius r is

Ut(r) = qtr/2, Uc1(1) = qc1I1(γ1r)K1(γ1r), Uc2(1) = qc2I1(γ2r)K1(γ2r).

The perturbation streamfunction is a normal mode

ψ′

j = φj(ρ) exp(il(θ − ct)),

where ρ is the generic radial coordinate. Here l the azimuthal mode, cr = Re(c) the phase
speed of the perturbation and σr = lci = lIm(c) its growth rate.
The perturbation potential vorticity is a Dirac at the PV front (ρ = r).
Using continuity of the perturbation streamfunction at the front, the internal/external
solutions in modal perturbation streamfunction, are

φt(ρ) = A1(ρ/r)
l, A1(ρ/r)

−l = A1φ1i(ρ), A1φ1e(ρ),

φc1(ρ) = A2Il(γ1ρ)Kl(γ1r), A2Il(γ1r)Kl(γ1ρ) = A2φ2i(ρ), A2φ2e(ρ),

φc2(ρ) = A3Il(γ2ρ)Kl(γ2r), A3Il(γ2r)Kl(γ2ρ) = A3φ3i(ρ), A3φ3e(ρ).

At ρ = r, we write their values symbolically as Amφm(r), m = 1, 2, 3.
The continuity of total azimuthal velocity u′θ +η(dUθ/dr) at ρ = r, where η is the contour
perturbation, leads to

∑

m

bjmAm(∂rφme − ∂rφmi) = ηjqj .

In more compact form, this is written

ηj =
∑

m

MjmAm,

with Mjm = bjm(∂rφme − ∂rφmi), and the reciprocal equation is

Am =
∑

j

Nmjηj ,



The stability and the nonlinear evolution of quasi-geostrophic hetons 25

with N = M−1. With normal modes, the kinematic equation at the front is, in each layer

(Uj(r) − c)ηj = φj(r).

Now

φj(r) =
∑

m

bjmAmφm(r) =
∑

mk

bjmφm(r)Nmlηk,

and thus

Uj(r)ηj −
∑

mk

bjmφm(r)Nmkηl = cηj .

Finally, linear stability is given by the system

Ljkηk = cηj ,

with

Ljk = Ujδjk −
∑

m

bjmφm(r)Nmk.
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