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space—time dependencies to allow examination of the impact of
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As part of the EU-funded project “CLUSTER” a database was constructed of herring
schools identified during a series of acoustic surveys in the northwest North Sea.
Among other descriptors, the database included each schools’ height, length, and
acoustic backscattering energy (S,). The number of schools per nautical mile. EDSU
(Elementary Distance Sampling Unit) was also recorded. The relationships between
local school count and school backscattering energy to time-of-day and location were
first modelled using multiple regression techniques. The results indicate a considerable
degree of non-linear dependency on both time-of-day and location. Herring-school
counts per EDSU tended to be high during the middle part of the day and lower at
dawn and dusk and were higher along the continental shelf edge about 130 m west of
Orkney and Shetland. The regression models, by definition, also allow variability due
to each explanatory variable to be assayed and divided. This feature meant that their
output could be used to explore further into the relationships among the schools. In
this paper the residual variability from the regression models is used to describe
density-dependent relationships among herring schools, i.e. we asked “To what extent
does local herring school abundance influence the size (backscattering energy) of a
given school?” It is concluded that herring school size is regulated mainly by location
and time-of-day and that “measured’ school size is not influenced by the local “‘school
count per EDSU”. The results and their implications are discussed.
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Introduction

The schooling behaviour of pelagic fish has been exten-
sively studied in the laboratory but very little attention
has been paid to schooling in the wild (Pitcher, 1993).
However, as Pitcher points out, understanding of
schooling is fundamental to our assessment and man-
agement of commercial fish stocks because the aggre-
gation pattern will impact on catchability and effort
measurements. Observations of schooling behaviour in
the wild have been mainly dependent on the use of
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acoustic instrumentation viz. sonars or echosounders
(Misund, 1997; Reid, 2000). Extensive studies have been
carried out using sonar observations (Hafsteinsson
and Misund, 1995; Misund and Jakopsstovu, 1997;
Nottestad et al., 1996; Misund et al., 1995). The main
drawback of sonar observations is that they are labour-
and vessel-intensive to collect and often difficult to
interpret, particularly in terms of school biomass. Their
main advantage is that they provide three dimensional
(3D) views of each school. Echosounders, by contrast,
can provide a great deal more data (see Reid, 2000; Reid
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et al., 2000). The observed schools can be quantified
using standard methodologies (MacLennan and
Simmonds, 1992). Their main disadvantage is that they
provide only 2D information on the structure of
observed schools. Use of image-processing technologies
(Reid and Simmonds, 1993; Swartzman, 1997; Richards
et al., 1991; Scalabrin and Masse, 1993; Haralabous and
Georgakarakos, 1993) has allowed the collection of
extensive databases of pelagic fish school structure from
a wide range of acoustic survey situations. These can
then be used to answer detailed questions about the
schooling behaviour of pelagic fish and its impact on
assessment and management.

This concept inspired the EU-funded “CLUSTER”
project (1997-1999). The goal of “CLUSTER” was to
characterize schooling behaviour among a range of
European pelagic fish species using data collected during
acoustic surveys (Reid et al., 2000). One of the most
interesting questions that can be asked of these data is
what, if any, factors govern the sizes of fish schools in
any particular area. In this paper we have focused on the
question of density dependence. This can be expressed as
an hypothesis:

“In a particular area and at a particular time of day,

herring schools tend to be smaller when the number of

schools is more numerous.”

Which is based on the common observation on acoustic
surveys that “big” schools tend to be seen in isolation
whereas the smaller ones come in groups. One explana-
tion for this phenomenon postulated by Soria et al.
(1998) is that given fish schools are dynamic and
likely to form and break up regularly, the large,
isolated schools might represent the aggregated phase
and the groups of smaller schools might represent the
disaggregated phase.

To examine this hypothesis we used acoustic survey
data collected by the Aberdeen Marine Laboratory in
the northwest North Sea in July 1991 and 1993-1997
(Figure 1). The surveys covered the waters surrounding
Orkney and Shetland. The most abundant pelagic fish
are herring, Clupea harengus. The analysis initially
examined how location and time-of-day influenced the
number and size (backscattering energy — S,) of the
herring schools detected. Location is clearly a primary
factor, as any fish population will tend to be distributed
heterogeneously. Time-of-day is well known to impact
on schooling, since schools break up at night and
re-form during the day (Freon and Misund, 1999).
Given these relationships we have examined how the size
of each school was related to the number of schools
recorded in an area, the “‘school count per EDSU”’. The
first part of the analysis allowed us to predict both the
size of a school for a particular area and time, in
addition to the “school count per EDSU” for a particu-
lar time and area. The second step then examines
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whether any variability from the expected school sizes
can be attributed to the number of schools in the EDSU.
This can be seen as analogous to the common question
in ecology of whether individual animals or plants are
larger or smaller at high or low population densities.
The first step involved using regression models (Hastie
and Tibshirani, 1990; McCullagh and Nelder, 1989) to
remove, or at least reduce, the location and time-of-day
effects. The relationship of school size to local school
count, given a specific location and time-of-day is then
examined using the residuals from these models.

Materials and methods

Acoustic surveys and data

The analysis used data from six acoustic surveys carried
out in 1991 and 1993-1997. The surveys were all carried
out in July and covered substantially the same area
(Orkney/Shetland area), and used the same survey dates
(Table 1) and the same vessel — FRV “Scotia”. The
acoustic data were collected using a Simrad EKS500
38-kHz echosounder, and stored using the BIS00 high
volume echo data format. The archived BI5S00 data were
then transformed into matrix images in such a manner
that each pixel in the image corresponded to a single
acoustic back-scattering strength sample from a single
echosounder transmission.

Information on each school was then extracted using
image-processing software (ImagePro Plus, Media
Cybernetics). This procedure combined automated,
image-filtering algorithms with interactive decisions
made by the user (Reid and Simmonds, 1993). The
detection threshold was set at — 60 dB, which provided
the optimum effective beam angle for the school-volume
backscatter (Sv) of the schools retained. The effective
beam angle varies with the difference ASv between the
echo integration threshold and the true Sv of the school.
Herring schools have a volume back-scattering strength
in the region of —40 to —45dB. When ASv is in the
range ( — 25<ASv> — 10 dB) the beam is relatively large
but insensitive to variations in the ASv (see chapter 5 in
Reid, 2000). Following thresholding, a single morpho-
logical filter pass was used to eliminate small objects and
smooth the outlines of the larger ones. Previous exper-
ience has shown that this combination best preserved
school morphology and biomass. The remaining
detected objects are identified as schools and labelled by
species.

Acoustic data were collected continually during the
survey (Figure 1). The data were then divided into one
nautical mile EDSUs (Elementary Distance Sampling
Unit). One mile EDSUs were used as these satisfied the
criteria defined in Simmonds et al. (1992) of minimizing
the correlation between the fish energies recorded
in successive EDSUs. The herring schools in each
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Table 1. Timing of the July acoustic surveys between 1991
and 1997.

Start date End date
Survey (July) (July)
1991 13th 31st
1993 11th 29th
1994 7th 25th
1995 9th 26th
1996 14th 30th
1997 9th 27th

EDSU were counted and characterized in terms of their
morphology, energy, location etc. The energy from the
school was characterized by the S, value (the area
back-scattering coefficient). Physical characteristics of
each EDSU were also recorded, e.g. mean depth and sea
surface temperature per EDSU (Reid et al., 2000).

Throughout this paper we have used the term ‘“‘school
count per EDSU” rather than school density per EDSU.
While this may appear to be a non-standard terminol-
ogy, it has been adopted to avoid confusion between the
density of fish in the schools and the density of the
schools in the EDSU.

Statistical analysis

The analysis is centred on the “school count per ESDU”
and the associated backscattering energy (S,) of each
school. The “school count per EDSU” (1 nmi) was used
as an expression of the local school density; in this case
the number of schools per nautical mile. An alternative
would be to use the distance to the nearest neighbouring
school (NN). NN, however, is an expression of
extremely local school abundance, whereas the “school
count per EDSU” represents the school density over a
wider scale and was chosen as representing the general
situation of each school rather than simply its proximity
to its nearest neighbour. It is known that fish abundance
parameters are dependent on many different factors such
as depth, longitude, and time-of-day and that these
factors can interact with each other. Regression models
are a useful choice for quantifying such variability and
were used here (McCullagh and Nelder, 1989; Bailey
et al., 1998; Beare et al., 1998; Daskalov, 1999; Venables
and Ripley, 1994; Lindsey, 1995). After experimen-
tation, the count data (“school count per ESDU”’) and
the continuous data for the school backscattering energy
(S,) were modelled using Generalized Additive Models
(GAMs) which are now widely used in fisheries science
(Hastie and Tibshirani, 1990; Augustin et al., 1998). In
additive modelling, the dependent variable (e.g. “school
count per EDSU”) is interpreted as a random function
Y(yl, ..., yn, ...) where each observation is a random
variable and all observations are assumed to arise from
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the same probability distribution. GAMs account for
the dependence of the mean on various covariates. The
effect of the covariates on the mean is estimated using
non-parametric smoothing functions: locally-weighted
regressions were used in this case because they can be
fitted successfully in multiple dimensions. In effect, the
data themselves dictate how the shape of the depen-
dent variable is affected by each covariate. Clearly
the resolution and distribution of the original data
themselves in time and space is crucially important.
The models had the following general structure:

Count per EDSU=smooth(Longitude, Latitude, Time
of Day)+Error . .. (a)

Backscattering energy (S,)=smooth(Longitude,
Latitude, Time of Day)+Error . .. (b)

The Poisson distribution is often considered to be appro-
priate for describing the error structure in count data
(Lindsey, 1995). However, preliminary application of
GAMs from the Poisson family to the count data tended
to produce over dispersed models with unacceptably
high residual variation (Lindsey, 1995). The Poisson
distribution assumes that the mean is equal to the
variance [u=Var]. When the variance exceeds the mean
(i.e. very high residual deviances) then the data are not
Poisson distributed. The excessive residual variability,
caused by aggregation of the data in space and time
makes discrimination between models using conven-
tional chi-square or Akaike Information Criterion (AIC)
tests unreliable. Methods for correcting over-dispersion
in Poisson models are available (see McCullagh and
Nelder, 1989; Lindsey, 1995; Beare and McKenzie,
1999) but were not used here. Instead we opted to
account for the higher than expected residual deviances
directly by modelling the mean/variance relationship in
the data using GAMs with a negative binomial error
structure (Venables and Ripley, 1994; Lindsey, 1995)
which assumes that u=Var?/0. The parameter 0, which is
a measure of aggregation too, can be estimated from the
data using maximum likelihood techniques. Data for
school acoustic backscattering energy (S,) were also
modelled with GAMs, but Gamma error was considered
more appropriate as school S, data are highly skewed
and always positive. Nonlinear dependence was
described in all models using locally weighted regression
smoothers. The data from each of the six surveys were
modelled separately, allowing the spatio-temporal
patterns used in each case to be different.

Assessing model adequacy in GAMs is difficult, and
cannot be entirely objective but it essentially follows an
analogous procedure to ordinary linear regressions
except that a generalization of the variance, known as
“deviance” is used instead (Venables and Ripley, 1994).
In statistical modelling the typical aim is to obtain a
balance between explaining all or none of the variance
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Table 2a. The numbers of observations made during each acoustic survey.

Survey 1991 1993 1994 1995 1996 1997

n 2221 2234 2364 2052 2140 2239

Table 2b. The numbers of herring schools observed during each acoustic survey.
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Survey 1991 1993 1994 1995 1996 1997
Schools 1672 1423 1388 816 1792 1863
Schools/n 0.75 0.64 0.59 0.40 0.84 0.83

(deviance). A model with a residual deviance of 0, for
example, has an R? of 100% but is identical to the
original data and not a summary. As a general rule we
searched for models in which the residual deviance was
similar in magnitude to the residual degrees of freedom.
The GAM for counts of herring per EDSU in the 1991
data, for example, has a “Null” deviance of 6074 and a
residual deviance of 2611 (see also Table 3a). To calcu-
late the Null deviance the counts are fitted to their
average (the intercept). In other words the Null deviance
describes the total amount of variability in the data
when no explanatory covariates are used at all. This
demonstrates that the combined effect of location
[smooth(long,lat)] and time-of-day [smooth(time)] on
average herring-school count, reduced the deviance by
3463 (6074 — 2611) in this example. The total degrees of
freedom are 2221 (n—1), while the residual degrees
of freedom are 2130 which means that 38 [3463/
(2221 —2130)] units of deviance are explained by the
model for each degree of freedom used which is highly
significant. The model has an R? of 41% which means
that most (5§9%) of the variation in the average count per
EDSU remains unexplained. Nevertheless, inspection of
the residuals suggests that the model is “‘adequate” and
useful for our current purposes.

Results

Statistical analysis

Sampling intensity was similar during each of the six
surveys (Table 2a), although the numbers of herring
schools recorded varied substantially (Table 2b). In
1997, for example, 1863 herring schools were seen in
2239 EDSUs, while in 1995 only 816 schools were seen
in 2052 EDSUs. This information can be translated into
a “rate of herring school encounter per EDSU” (see
Table 2b). Mean encounter rates of herring schools in
1995, for example, were half those recorded during the
1996 and 1997 surveys (see Table 2b).

The locations of the data from the six surveys are
illustrated in Figure 1 and clearly the spatial coverage
was slightly different from year to year. The survey track
extended further south in 1991 and 1994 (Figure 1) and
further west in 1993, 1995 and 1997 (Figure 1). Spatial
distributions of school abundance also varied between
surveys. In July 1991 most schools were seen northwest
of Shetland. In 1993 and 1994 the highest school counts
were noted in the Fair Isle channel while more recently
(1995, 1996, and 1997) schools were most prevalent to
the west of Orkney and Shetland between the 100 m and
200 m depth contours.

The GAM fits to the school count data for 1991 and
1993 July surveys are summarized as examples in the
analysis of deviance tables (Table 3a,b) below. Terms
fitted are described using S-plus notation. “Lo” refers to
locally weighted regression smoothers (Chambers and
Hastie, 1991) while “Lon”, “Lat” and “Time” are
longitude, latitude and time of day respectively. The
third and sixth columns show the amount of deviance
(variance) reduced following successive introduction of
extra terms into the models. The second and fifth
columns reflect the “cost™ in degrees of freedom of that
reduction in deviance (variance). In the last column we
tested whether that reduction in deviance was statisti-
cally significant given the concomitant increase in model
complexity (degrees of freedom). In the case of the 1991
survey data, the third model was chosen. Residual
deviance was reduced by 490 from 3102 to 2611, using
11 less degrees of freedom (see Table 3a).

The analysis of deviance tests between models 1 and 2
gauged whether time-of-day explained significant quan-
tities of deviance (variance) when covariables of location
were also included. The test between models 2 and 3
ascertained whether the effect of longitude depended on
latitude when time-of-day was included. The last test,
between models 3 and 4, tested whether the effect
of time-of-day depended simultaneously on longitude
and latitude. In other words the last model allowed
the spatial pattern of school occurrence to vary with



474

D. J. Beare et al.

Table 3a. The results of Generalized-Additive-Model fits to herring-count data for 1991. (NB,

smoothing span=0.06).

Terms Resid d.f.  Resid dev Test d.f. Dev Pr(F)
1. Lo(Lon)+lo(Lat) 2149 3940

2. Lo(Lon)+lo(Lat)+1o(Time) 2119 3102 +lo(Time) 30.7 838  <0.01
3. Lo(Lon,Lat,)+1lo(Time) 2130 2611 2vs. 3 —11 490  <0.01
4. Lo(Lon,Lat,Time) 2147 3276 3vs. 4 —17 —664 <0.01

Table 3b. The results of Generalized-Additive-Model fits to herring-count data for 1993. (NB,

smoothing span=0.06).

Terms Resid d.f.  Resid dev Test d.f. Dev Pr(Chi)
1. Lo(Lon)+lo(Lat) 2159 3584

2. Lo(Lon)+lo(Lat)+lo(Time) 2128 3164 +lo(Time) 31 420 <0.01
3. Lo(Lon,Lat,)+lo(Time) 2147 2874 2vs. 3 -19 290 <0.01
4. Lo(Lon,Lat,Time) 2163 3389 3vs. 4 -16 =515 <0.15

time-of-day, and then tested whether this model was
an improvement (statistically) over the one where the
spatial pattern was the same at each time-of-day. For all
six surveys (1991, 1993-1997) longitude and latitude,
interacted significantly with each other. Time-of-day,
whilst significant as an additive term, was (statistically)
independent of both longitude and latitude. This means
that for all of the surveys the shape of the spatial pattern
of “school count per EDSU” did not vary with time-of-
day, only the average level changed. Put another way,
the relative numbers of schools was consistent between
areas irrespective of time-of-day.

In Figure 2 the model output at 1000 Greenwich
Mean Time (GMT) is plotted for each survey in the
left-hand panel. In the right-hand panel, mean “school
count per EDSU” is plotted calculated over nine sur-
faces predicted from the model at 400, 600, 800, 1000,
1200, 1400, 1600, 1800, and 2000 GMT. “School count
per EDSU” tended to be highest in the late morning.
The equivalent of model 3 (Table 3a), but with Gamma
error, was chosen to summarize the herring-school
acoustic backscattering energy (S,) data. The spatial
pattern (Figure 3) was inconsistent between surveys,
although schools did tend to be larger around Shetland
and in the southern part of the study area in most years.
Herring schools were also larger in the evening and
smallest in the early morning. It should be noted here
that the average school energy is not necessarily related
to the total herring biomass. Figure 3 provides a sum-
mary of where the largest herring schools are located
and at what time of day, but not necessarily where there
is high herring biomass.

Partial regressions

The aim of the modelling described above was to
account for the variability in school-count per EDSU

and school S, in relation to location and time-of-day.
The residuals from these models represent remaining
unexplained variance. They were plotted against each
other and the results are presented in Figure 4. A linear
model was fitted through these data by least squares. A
negative slope would suggest negative density depend-
ence and vice versa. The plots in Figure 4 show that
herring school backscattering energy (S,) recorded dur-
ing all six surveys was completely independent of local
school count. In other words, the size or backscattering
energy of a herring school at a known point in space and
time within the survey region does not depend on local
school count.

Discussion

The partial regression approach described here may
seem unnecessarily laborious. It must be remembered,
however, that our aim was to extract a signal from data
that exhibited complex non-linear and multivariate
dependencies. Only by first accounting for variability
due to time and space could we be reasonably confident
that any residual variability might be due to another
specific factor, e.g. the ‘“‘school count per EDSU”.
Additionally, the first stage of the analysis allowed a
detailed quantification of the space — time dependencies
in the data, which can be regarded as useful in itself.
The initial hypothesis we proposed was that, “In a
particular area and at a particular time, herring schools
tend to be smaller when they are more numerous”. The
hypothesis is based on frequent observations on acoustic
surveys but cannot be confirmed by the current study. A
cursory examination of the data does, however, appear
to support the idea. When “‘school count per EDSU”
(or school-nearest-neighbour distance), for example, is
plotted directly against school backscattering energy, it
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Figure 2. Left panel: spatial pattern in herring — “school count per EDSU”* at 1000 GMT recorded in the survey area in July 1991,
1993-1997. Right panel: diel dependency of average “school count per EDSU”.
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appears that the EDSUs with high school counts tend to
be associated with smaller schools and vice versa. This
negative relationship between the two parameters is,
however, the result of time-of-day and location effects
rather than any putative ‘“density dependence”. A
bivariate plot between the two quantities, therefore, is a
potentially serious oversimplification and needs to be
interpreted carefully.

In the early part of the day, for a location with
reasonable amounts of herring, there is a tendency to see
more and smaller schools. Later in the day there are,

typically, fewer, larger schools. When multivariate
models are used to reduce effects due to time-of-day and
location, the residual variability shows no relationship
to “school count per EDSU”. So while there might
appear to be evidence in these data that more schools
suggest smaller schools, we believe that this is due to
location and time-of-day effects rather than any direct
biotic effect of the school abundance itself.

The important factor appears to be the variation in
the number of schools per EDSU over the course of the
day. In most years this starts low, reaches a maximum
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prior to 1200 h, and then declines thereafter. Why
should this be so? Herring schools are believed to break
up with the onset of darkness (Freon and Misund, 1999)
and then start to re-form after dawn. It can probably be
assumed that the first schools to form will be small.
Therefore, initially, the fish will tend to coalesce into an
increasingly large number of small schools. As the day
progresses these schools themselves will tend to merge
into larger and hence fewer schools. In the first part of
the day both these processes can be assumed to be going
on at the same time. The first small schools to form are
then likely to merge into larger schools earlier than those
that coalesce later. This interpretation may be confirmed
by the changes in school S, during the day. In the early
morning in most years, the schools were initially small
and then tended to increase in size throughout the day.
In most years the number of schools then tends to
decrease over the remainder of the day. Correspondingly
the size of those schools tends to show a slight increase.
The most likely explanation for this is that at some point
in the first part of the day most of the fish have
aggregated into schools. For the rest of the day those
schools will continue to coalesce into larger schools. As
suggested by Soria et al. (1998) these schools will
probably merge and break up in a dynamic fashion
throughout the day (see also Pitcher et al., 1995). There
was a clear tendency, however, for fewer and larger
schools later in the day, suggesting that this process was
tilted towards aggregation rather the break up of
schools. It is also interesting to note that while the
number of schools per EDSU and their S, values
changed throughout the day they did so in a consistent
fashion across the whole area in any given year. This was
illustrated by the analysis of the relative improvements
between models 3 and 4 using position and time either as
additive or as interactive factors. This suggests that the
process of school formation and the subsequent merging
of schools was generally quite robust and not subject to
local variation in other conditions.

There has been some previous work on density
dependence in schooling pelagic fish, although usually at
a population scale. Paloheimo and Dickie (1964) first
raised the issue of density-dependent catchability in
pelagic fish. They suggested that pelagic fish may reduce
their spatial extension to maintain constant density
within schools. The present analysis has examined a
similar question at a more localized level. Petitgas and
Lévénez (1996) found that the biggest schools were
randomly positioned relative to other schools and that
their proportion varied with the survey abundance.
Marchal and Petitgas (1993) found that there was no
evidence for a relation between the number of schools
and the biomass in the EDSU. They also found, how-
ever, that the probability of encountering a large school
was slightly increased with a high “school count per
EDSU”. Based on the current work the most likely
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scenario is that any observed density dependence is most
likely the result of time-of-day and location effects.

The conclusion must be that there was no evidence
for any density-dependent effect in herring school S,.
Nevertheless there is strong evidence that both “school
count per EDSU” and the S, values of those schools
does change during the course of the day. The process
of school formation from the night-time situation of
scattered fish continues throughout the early part of the
day. The number of schools per EDSU rises throughout
this period. One inescapable conclusion from this is that
school-based echointegration may tend to underestimate
herring abundance during this period. Acoustic surveys
for herring in the North Sea are deliberately discon-
tinued during the hours of darkness recognizing that
schools break up in darkness. However, a possible
implication of this study is that the surveys should not
be started until the process of school formation is
substantially complete.
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