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rhe relative cross correlation can then be explicitly written 

(<r") W) + {a") 
( I ) 

where )3 r and fiH are identified as biases cine to tilt and 
hydrodynamic modulation, respectively. As understood, the tilt 
bias will exist only under the condition of nonlinear long-wave 
statistics. If the long modulating waves are linear, the tilt bias 
is zero. Any tilt bias can be decomposed further into two 
biases. First-order tilt bias is a function of the cross skewness 
between surface elevation and slopes as well as ratios of the 
slope variances. The second-order tilt bias involves high-order 
statistics such as the cross kurtosis between elevation and 
slopes, but as shown by Elfouhaily et al. [2000], this "second-
order" effect can impact results by nearly 50%. 

In the same manner the hydrodynamic component / 3 H can 
be separated into two identifiable terms. The first is due to 
direct modulation of linear short waves by linear long waves. 
The induced nonlinearity caused by the hydrodynamic modu
lation generates an E M bias even though the interacting waves 
were originally linear. This phenomenon makes the hydrody
namic bias fundamentally different from the tilt bias. In sec
tions 3-6 we develop this first-order hydrodynamic term. In 
section 7, nonlinear waves will be assumed to develop the 
second type of this hydrodynamic bias, which will justify and 
ensure the parallel with the second-order tilt bias developed by 
Elfouhaily el al. [2000]. We now investigate <x° and its relation 
to the short-wave statistics to assess its relative variation when 
short waves are modulated hydrodynamically. 

3. Modulation of the Radar Cross Section 
Under the Geometric Optics (GO) assumption [e.g., Bairick, 

1968] the ocean surface's radar cross section at nadir incidence 
is proportional to the short-wave P D F P ^ x ^ ) multiplied by the 
geometric correction T(xL) of the local tilt angle, 

a" « 2TTT(Xl)PS(XL) = 2ir(l + 'xLxL)2 1 

2ir A/rf s 

(2) 

where the surface slope vector and the covariance matrix of 
short waves are defined as 

« 2 0 K l l 
(3) 

The variable ds is the determinant of the covariance matrix Vs, 

ds = | V j | = K 2 0 K 0 2 (4) 

The leading superscript t represents the algebraic transpose of 
a vector or a matrix, a notation used throughout this paper. 
The surface slope vector is, under geometric optics, the ratio 
between the horizontal and the vertical components of the 
incident electromagnetic wavenumber. In (2) the P D F of short 
waves is assumed to be Gaussian to help simplify the analytic 
relationship between the E M bias and the hydrodynamic mod
ulation. 

From (2) and (3), a" depends on the slope variances of short 
waves in two orthogonal directions ( K 2 0 and K 0 2 ) as well as on 
the cross correlation between the slope components (« , ,). A 
relative variation in a" can be readily expressed as a sum of 

relative variations of each of the slope moments. These slope 
moments enter the a" expression through the short-wave P D F ; 
see (2). This relative variation is 

S cr" 
a" ' J 20 

8 K-} 
+ / i i + / 0 (5) 

where the / functions are given in Appendix A . The next 
challenge is to write the variation of short-wave statistics in 
terms of the hydrodynamic modulation. 

4. Hydrodynamic Modulation 
The strength of the hydrodynamic modulation theory lies in 

a linearization of the wave action balance equation. This lin
earization yields a simple notation based on what is called the 
modulation transfer function ( M T F ) of the hydrodynamic in
teractions. Alpers and Hasselmann [1978] were the first to ex
press the M T F in the Fourier domain as a function of both 
long and short wavenumbers. 

4.1. Formulation and Definitions 

The relative modulation of the wave spectrum can be written 
in the Fourier domain as 

8V 

¥ 7 
= R(kL, ks)Z,Le l (h / . - i - .« .0 dkL + c.c. (6) 

whereR(k L , ks) is the modulation transfer function and Z k j is 
the Fourier transform of the elevation of long modulating 
waves, 

f(r, t) = Z k,e- 1 < k i•• r-'"'-' , dkL. + c.c. (7) 

The symbol c.c. means that the complex conjugate is added to 
guarantee a result that is real. 

4.2. Modulation Transfer Function Concept 

This first paper of Alpers and Hasselmann [1978] contained 
many typographical errors and assumed an inconvenient con
vention for the phase of the modulation. For this reason we 
rederive their M T F in its most general form. The linearization 
of the wave action balance equation is retained. However, we 
further include an additional term in the M T F because of the 
local acceleration inflicted on the short waves by the modulat
ing waves. The corrected two-dimensional M T F can be written 
in a compact form as follows: 

R(kL, k,) = (c ,k t • k, + L„)(kL • U,)M'L (8) 

where cs is the phase speed of short waves and Lc/ is the 
additional term generated by the effective acceleration of grav
ity, written explicitly as 

(9) 

If La is neglected in (8), the M T F would be identical to the 
original one by Alpers and. Hasselmann [1978] (with the excep
tion of the typos). The extra correction Lg is omnidirectional, 
which means it has the same strength regardless of the relative 
orientation of the modulating and modulated waves. For this 
reason the effect of local gravity seems to be more important 
when long and short waves are mutually orthogonal. Because 
of the presence of L r / , our modified M T F is not zero as in the 
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original formulation by Alpcrs and Hasselmann [1978]. The 
magnitude of L in (9) runs from 1 to 10% of the M T F when 
both long and short waves are aligned according to our calcu
lations. Also in (8), M] is a complex function combining both 
short and long waves, and the vector I I V is defined in terms of 
the gradient of the equilibrium spectrum of short waves. Their 
expressions are given by 

M) = ,—-—=r — 
ù)l + /n; c, 

ql ™ . < U - % 

(10a) 

(10b) 

where p, t is the relaxation rate of short waves. We note that ps, 
incorrectly, is often assumed in hydroclynamic studies to be 
equal to the growth rate /3V. Kudiyavtsev [1994] explicitly 
showed that the ratio p between the relaxation rate and the 
growth rate is related to the exponent of the friction velocity 
u* in the equilibrium spectrum XVC relative to that in the 
growth rate /3V: 

A / 3 In ps\ I 3 In M ' c 

dll* du* (11) 

When using the unified equilibrium spectrum by Elfouhaily el 
al. [1997] and the growth rate given by Plant [1982] in (11), one 
gets 

2 1 + In 

2 1 + 3 In 
if 

(12) 

where cm is the minimum phase speed. The most likely value 
of this ratio is 2 when u* equals c,n, which corresponds to the 
most probable wind of 7 m s~' on the oceans. A value of 2 for 
the ratio is consistent with Phillips [1985] and produces white-
capping coverage proportional to u*3. 

It must be noted at this point that the ratio p is not a free 
parameter and it is seldom equal to 1, contrary to common 
practice. As outlined above, the choice of the couplet equilib
rium spectrum and growth rate determines the form of the 
ratio as a function of the wind speed or even wavenumber. For 
instance, if the chosen equilibrium spectrum has a linear de
pendence on the friction velocity, the relaxation rate must be 
twice as large as Plant's growth rate. If, however, the depen
dence behaves more as a square root of the friction velocity, 
then /xv becomes 4 times larger than the growth rate fis.. 

the long modulating waves are linear. In this case the higher-
order moments could be considered as redundant information 
since the linear elevation would already fully determine the 
surface. 

In real-world situations, however, modulating waves are not 
linear. Assumed spectra (or direct measurements) are usually 
used to quantify the contribution of the modulating waves. In 
reality, higher-order moments of the surface cannot be fully 
determined. For instance, a spectrum can provide accurate 
information on modulating waves up to the slope moments. 
Measurements can only be trusted up to the first few moments. 
There is no reliable theoretical spectrum or in situ measure
ments that can provide reasonable estimates for all higher-
order surface moments. For these reasons we suggest that the 
M T F in (8) be expanded only in powers of k, about kf; (k;, s 
K, — K)> where k;, is the wavenumber of the dominant spec
tral peak and kt = akp is the separation scale between long 
and short waves. This separation is based on the concept of a 
narrow-band process [see Tayfi.ui, 1986] modulating a broader-
band process comprised of short waves. The multiplicative 
factor a must be smaller than 30, which is determined by the 
narrow-band criterion defined by Longuet-Hlggins [1975]. This 
criterion vk is based on spectral moments, see Longuet-Hlggins 
[1975] for definition, and must be less then unity to guarantee 
that long waves obey the narrow-band property. A value of 10 
for a corresponds to 0.74 for vk. Knowing that the criterion in 
wavenumber is approximately twice that of frequency, we con
clude that vio vkl2 = 0.37 is comparable to values given by 
Longuet-Hlggins [1975] and Liu [1976]. We note that a = 10 
was already used by Donelan and Pierson [1987] and Elfouhaily 
et al. [1997] as an intrinsic scale separation in their surface 
wave spectra. 

The Taylor expansion of the M T F in (8) is 

R(kL, k,)=RJks) + VR„ • (kL — k„) (13) 

up to the linear order in k ,̂ which is the smallness parameter 
in this expansion. The expansion is truncated at the first linear 
order and because the spectrum of long waves is narrow-
banded and will be sufficient for elevation and slope moments 
only. Rq is simply the evaluation of the M T F at the wavenum
ber kq, and VRq is defined and provided in Appendix B. 

5. Implication of the Modulation 
The hydroclynamic M T F formulated in section 4 is now used 

as a tool to express the modulated spectrum from which a 
direct link can be made to the modulated moments. 

4.3. Limited Scope of the MTF 

If we look more closely at the M T F in (8), we immediately 
notice the highly nonlinear dependence on the wavenumber of 
the modulating waves. Indeed, if one were to expand the M T F 
in (8) into powers of k,, one would find an infinite series. The 
implication of high powers in k, are clear when the M T F is 
introduced back into (6). The infinite series in powers of k, in 
the M T F will solicit an unlimited contribution from the mod
ulating waves through its higher-order derivatives. In other 
words the nonlinear dependence of the M T F on k̂  would 
require knowledge of all moments of the long waves. Hence 
elevation and slopes are not sufficient, and curvature and high
er-order derivatives are required implicitly by (6). The theo
retical basis for this involvement is sound and reasonable when 

5.1. Modulated Spectrum 

The Taylor expansion of the M T F in (13) leads to a simpli
fied modulated spectrum when introduced in (6). Namely, the 
constant term of the expansion Re/(ks) will relate the modula
tion to the surface elevation and its quadrature. Similarly, the 
factor Vi? will yield slope components and their quadratures. 
The expression for the modulated spectrum becomes 

-^r = {aq cos (/;,, - aA cos </;A)£ + a,, sin ^ , 4 + ay sin </>r̂ , 

+ (aq sin — flA sin <I>\)1 — ax cos 4>XX 

A 

- ay cos 4>yl, = C k , - u (14) 

http://Tayfi.ui
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which is a dot product between two 6-D vectors. Here a and </) 
are amplitude and phase, respectively, of the quantities re
ferred to in the subscripts and explained below in (16). C k is a 
function of short waves as defined through the formulation of 
the M T F , and u, is the six-dimensional vector of long waves 
formed by the elevation and slopes as well as their quadratures 
(referred to with a breve over the variable): 

(15) 

This 6-D vector will be called the moment vector throughout 
this paper. We must point out that the presence of the quadra
ture signals is essential in order to capture the phase of the 
modulation even though the process is totally formulated in 
the space and time domain instead of in the Fourier domain. 
The quadrature of a signal, symbolized by a breve over the 
variable name, implicitly refers to a 90° difference in the phases 
of the harmonics. More generally speaking, a quadrature of a 
signal is defined as its Hilbert transform. 

The indices in (14) are abbreviations for the more compli
cated formulas as described by the relations 

g->R(kL, k,.) 

A ^ k „ - V7?(k„ k j | w k , 

x->(VR(kL, k.t)|k(=k,).v, 

y->(VR(kL, k,t)L=k,,),.. 

(16a) 

(16b) 

(16c) 

(16d) 

These indices are applied to each amplitude a and phase (f> of 
the complex quantities derived from the expansion of the hy-
drodynamic M T F . 

5.2. Modulated Moments 

Surface moments enter the radar cross-section expression 
under a G O approximation. Modulation of those moments can 
be computed from the modulated spectrum in (14) to give 

(k^(kX^(K)Ch dk^ nL- C,, (17) 

which is, again, a dot product between two 6-D vectors, the 
moment vector u, and the coupling vector C,„„. A nice prop
erty of this formulation is that the modulated moments are 
linear functions of the moment vector u, . 

Unfortunately, this linear dependence does not hold for the 
modulation of the radar cross-section itself even though it is 
again a clot product between two 6-D vectors. The relative 
modulation of a" is then 

So-" 

II K 0 2 
= u t -S (x t ) , (18) 

where the 2 ( x , J is the variable 6-D vector. T h e / functions are 
given in Appendix A . 

5.3. Repercussion on the E M Bias 

The effect of the hydroclynamic M T F on the E M bias be
comes clear when (18) is used in the expression of the hydro-
dynamic bias in (1), 

13« = 
USa") <fo>,.-2(x t)]> 

J > 1 u ; •Xix - r . /y .u , ; . duL  

.!' <>-/', du, ~ 
(19) 

where P, (u, ) is the long-wave joint PDF. The value of the 
radar cross section I T " in (2) can also be used to give 

Pi, 
J r (x ; , ) [u / , 'ê j[u ; , -S(x ; , ) ] / \ (x, , )P ; , (u/ . ) duL 

' j /'•; \j i / ' , t x, ( U; ! diï;r • 
(20) 

where the identity £ m u, • 6£ explicitly shows the dependence 
on the entire moment vector. Equation (20) is a general solu
tion in the sense that it gives a good idea of how the hydrocly
namic modulation is involved in the final expression of the 
hydroclynamic bias. Note that the numerator integrand in (20) 
is of even power in the moment vector. This observation turns 
out to be useful for the evaluation of the final analytical ex
pression. 

6. Analytical Evaluation of the Hydrodynamic 
Bias 

In order to find a simple expression for the hydroclynamic 
bias the integrals in (20) must be evaluated. Since both PDFs, 
Ps and P,, are assumed to be Gaussians, the multiplication 
will result in a combined multidimensional Gaussian. The re
sulting 6-D Gaussian is naturally coupled in all its six moments. 
The main coupling coefficients are the cross correlations be
tween the two slope components. Another interesting coupling 
coefficient is the cross-correlation between the moments and 
their quadratures. Two successive changes of variables will be 
needed to decouple successfully the 6-D Gaussian for analyt
ical evaluation. 

To ease the development, we start with a Gaussian distribu
tion for the long modulating waves. A more general distribu
tion will replace this assumption in section 7. For this 6-D 
problem a Gaussian distribution can be written as 

1 

( 2 i r ) \ / | V L 

(21) 

where VL is the cross-covariance matrix. Its description can be 
expressed in terms of two submatrices, s and fl, as 

OL P 
(22) 

This representation benefits from the fact that the covariance 
matrix is symmetric. Within the submatrix ot the statistics are 
restrained to either regular moments or to the quadrature 
moments. No cross correlation between signals and their 
quadratures is captured by this a submatrix. On the other 
hand, p represents the possible correlation between the mo
ments and their quadratures. The submatrices a and p are 
defined as 

0 
K 0 2 ( i K m i 

K l l l l K ( I02 

0 

" K l l l l 

K f l O 

0 
0 

« H ) l \ 

0 / 

where the nonzero elements in p are simply 

W) 
K Ï I 0 : ( k j ^ ( k t ) dkL 

(23) 

(24a) 
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,cH 1, = -*,„- , i j j (kJ / J ' tk , . ) dkL (24b) 

and Hie integration over the spectrum of long waves is defined 
in the same manner as for the regular moments. The latter 
elements can be interpreted as proportional to the variance of 
the orbital velocities of the modulating waves in either thex or 
the )' direction. The proportionality constant between K H ) I , 
Kilo a n c ' m e orbital velocity variance is the acceleration of 
gravity g as in k = u>2/g. 

6.1. First Change of Variable 

In addition to a first change of variable, we will assume 
K O I , = 0 without loss of generality. Indeed, one can always 
choose the observation frame of reference to be aligned with 
the long modulating waves. However, one cannot assume 
alignment with short and long waves simultaneously without 
harming the generality of the problem. 

The first change of variable needed is the normalization by 
the variance of each variable. We also include in this change of 
variable the determinant of the resulting matrix in order to 
simplify the expression of its inverse, which is used later in this 
development. Formally, the change of variable is 

D t i [dL Diag (V,J]-" 2 K O I 1 = 0, (25) 

where the function Diag operates on a matrix to give a diag
onal matrix, the elements of which are formed by the diagonal 
of the argument. After the change of variable the covariance 
matrix V L simply becomes 

W t = D Z ' C V J ^ o D r 1 - ( _ r j ) , (26) 

where the submatrix T is given in Appendix C. In Appendix C 
the inverse of YiL is worked out formally in terms of the 
submatrices. The parameter dL used in the first change of 
variable is defined as the square root of the determinant of the 
new covariance matrix W ^ : 

dL = VTwIT = = i - (yn„ + y;„-,). (27) 

The squared variables in (27) are given in Appendix C, where 
the submatrix r is defined. 

Similarly, the change of variable will affect the covariance 
matrix of short waves. Hence Vs becomes W v as follows: 

w _ i = d± ( K\naKQ2 - K M V W O K O K A ^ / H ' 2 0
 w n \ 

S ds \ — K | , N / /<( |2( )Ko()2 K 0 0 2 K 2 0 / \ W 1 ' M ' 0 2 / ' 

(28) 
where the it's are helpful shorthand for the more complicated 
expressions of the corresponding terms. 

Now this first change of variable can be explicitly introduced 
in the hydroclynamic bias of (20) to yield 

a J r(D,:'t,L) • e {(D ;:'uJ • 1 e"^-""<"'- duL 

j t G-i»w::<«. duL

 ( 2 J ) 

in which the inverse of the new covariance matrices are com
bined into a single matrix 

w,- ' = w , ; ' + [ w ; 1 ] , (30) 

where the square bracket indicates a change of dimension. 
W7J 1 is 6 X 6, while V/~ 1 is only 2 X 2 . Therefore the sum in 
(30) is applied to the slope components only and not to their 
quadratures. The wide hat ewer T and 2 reflects the first 
change of variable to be included in the algebraic formulation 
below. After the first change of variable the hydroclynamic bias 
in (29) becomes an integral over a single 6-D Gaussian multi
plied by a kernel function. 

6.2. Second Change of Variable 

The major difficulty in evaluating (29) analytically comes 
from the fact that the 6-D Gaussian is coupled in all its vari
ables. In the following we will show a general approach to 
solving this problem. A second change of variable is now 
needed to decouple the 6-D Gaussian into six independent 1-D 
Gaussian integrals. To accomplish this goal, one decomposes 
the combined covariance matrix W£ v

l into a matrix multiplied 
by its transpose. The reason for that is 

V W Z X = V ' S S u t = '(SuL)(Su,J, (31) 

where the new variable can be defined as Su, . If the matrix S 
is not preconditioned, the decomposition will not be unique. 
However, if S is required to be triangular, then the decompo
sition is unique. This type of decomposition is well known in 
linear algebra as the Cholesky decomposition [e.g., Golub and 
VanLoan, 1996]. A n alternative to the Cholesky decomposition 
in the present problem is to complete the squares "by hand" in 
the argument of the exponential. The Cholesky decomposition 
provides an automated process for decoupling multidimen
sional Gaussian distributions. 

When this second change of variable is applied to (32), one 
gets 

/ 1 

PH — V K 2 ( ) ( I ^ L (2TT)3 

• ftS-V) • e £ ( S - V ) • (DZ'Sje-" 2""- '"- d»L, (32) 

where the second wide hat over T and 2 reflects the second 
change of variable. The definition of the double wide hat op
eration can be spelled out as follows: 

f(x,J » f ( D r ' x J = T(D:]'S-vxL) (33a) 

S (xJ = 2(DZl'xL) = 2 ( D : , ' S - | ' x J , (33b) 

where the prime signs indicate that the operation is carried out 
only over the slope components of the regular signal and not 
on the quadrature moments. 

6.3. Final Expression 

After the second change of variable, the integral in (32) can 
be evaluated analytically since the multidimensional Gaussian 
is now uncoupled. The easiest way is to expand the integrand 
in powers of the moments. Every odd power of the moment 
variable vanishes and every even power will be replaced by the 
double factorial of the index minus one [see Elfouhaily et al., 
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Figure 1. Numerical evaluation of the hydrodynamic bias fiH 

in ( 3 5 ) for wind-driven waves and where long and short waves 
are aligned. This simulated hydrodynamic bias is comparable 
with the current operational algorithm by Caspar et al. [ 1 9 9 4 ] . 

The frequency dependence is also in agreement with measure
ments by Arnold et al, [ 1 9 9 5 ] , especially when the tilt compo
nent [Elfouhaily et al., 2 0 0 0 ] is added. 

2 0 0 0 ] . A tedious algebraic manipulation yields this simple re
sult: 

Pll = \l^a(\fl<2Bo2c+
 V ^ 0 2 0 T f l o S f , + 4*002 Y l O l S f , ) , ( 3 4 ) 

where indices on the vector 2 refer to corresponding compo
nents. A n extra simplification can be carried out by replacing 
yt-w and -y l o i by their values as defined in Appendix C. As 
developed, the hydrodynamic bias expression becomes 

Phi = K 2 a o S j + K { 1 0 2l + K I Q I S J , ( 3 5 ) 

It is the sum of three terms. The first term is the elevation 
variance of long waves multiplied by the first element of the 2 
vector in ( 1 8 ) . The other two. terms are similar but involve the 
cross moment between the elevation and the two quadratures 
of the slope components. The K i I ( ) and K ) 0 J values being pro
portional to the orbital velocity variance of the long waves, our 
development explicitly indicates the fundamental role played 
by the straining of the short waves by the orbital motion of the 
long waves. The 6 - D vector 2 is computed from the hydrody
namic transfer function. As defined, long-wave-short-wave in
teractions will impact the E M bias even though the original 
waves are linear. In other words, without the hydrodynamic 
modulation the E M bias would have been zero because of the 
absence of nonlinearities. 

Figure 1 shows a numerical evaluation of the hydrodynamic 
bias pH in ( 3 5 ) for the special case of a wind-driven sea where 
long and short waves are aligned. This example is not neces
sarily a common real-world occurrence. Nonetheless, our cal
culation provides reasonable agreement with empirical mod
els. The model by Gaspar el al. [ 1 9 9 4 ] is the current operational 
algorithm for T O P E X K u band altimeter and is consistent with 
Chelton [ 1 9 9 4 ] . It is worth noting that when the tilt component 
of the E M bias [Elfouhaily et al., 2 0 0 0 ] is added, our wind-
driven simulation will be closer to the field experiment models 
by Arnold el al. [ 1 9 9 5 ] for both K u and C bands. The total E M 
bias will increase, in absolute value, by about 2 % . It should also 
be noted that 1 - 3 % on-orbit T O P E X E M bias levels are not 
necessarily universal since reported Poseidon and E R S K u 
band altimeters can reach values as high as 5 % . Experimental 

data, such as by Walsh et al. [ 1 9 8 9 ] , Melville et al. [ 1 9 9 1 ] , and 
Arnold et al. [ 1 9 9 5 ] , also exhibit these higher levels. New non-
parametric studies propose that the E M bias for the T O P E X 
altimeter should be increased from around 2% to about 5 % ; (P. 
Gaspar, personal communication, 1 9 9 9 ) . 

Field experiment results should be utilized for safe fre
quency comparison of the E M bias since the dual-frequency 
T O P E X altimeter mixes information from both frequencies 
into its estimate of sea surface height. Our model's agreement 
in frequency dependence appears to improve on results 
achieved by Rodriguez et al. [ 1 9 9 2 ] because now both the shape 
and magnitude of the wind dependence observed in the E M 
bias are reasonably captured. We note that the local minimum 
of the present illustration occurs at lower wind speeds than for 
the satellite or field observations. This feature, the general 
wind speed dependence of the model, and the absolute value 
of S w will be assessed in forthcoming sensitivity studies. 

In this simulation we used a 2 - D spectrum for surface ocean 
waves [Elfouhaily et al., 1 9 9 7 ] that fulfills the desire expressed 
by Rodriguez et al. [ 1 9 9 2 , p. 2 3 8 8 ] for a realistic spectral model. 
Not only did Rodriguez et al. [ 1 9 9 2 ] use an unrealistic spectral 
model, but they also limited the problem to 1 - D waves. In 
contrast to Rodriguez et al. [ 1 9 9 2 ] , we have derived, in ( 3 5 ) , an 
analytic expression for the ensemble average E M bias instead 
of numerically averaged Monte-Carlo simulations. This is a 
considerable improvement since no complicated and repetitive 
numerical evaluations are needed. A single numerical run of 
( 3 5 ) directly provides the statistical average of the E M bias. 
Another improvement on the work of Rodriguez et al. [ 1 9 9 2 ] is 
that the hydrodynamic modulations are now accounted for in a 
fully 2 - D context with extra modulation caused by heaving 
motions. The local acceleration is now included in the hydro-
dynamic modulations. 

7. Nonlinear Modulating Waves 
In the previous sections, both long- and short-wave statistics 

were taken to be Gaussian. In that case, waves of both scales 
were assumed to be a priori linear. A posteriori, however, 
modulated waves become nonlinear, and modulating waves 
remain linear. This induced nonlinearity in the modulated 
wave is responsible for the E M bias obtained in section 6 . 
When long waves are themselves nonlinear, the hydrodynamic 
bias generated by the modulation will then comprise two kind 
of biases. 

PII = P"?"^ + PH ' E , C M ( 3 6 ) 

The first term p'/"¡

ü"ct:d ¡ s identical to the previous hydrody
namic bias, which we call the induced hydrodynamic bias. The 
second term, however, depends oh the nonlinearities of long 
waves as well as on the induced nonlinearity of short waves. 
This conjugation of the hydrodynamic modulation with tilting 
caused by nonlinear modulating waves we call the inherent 
hydrodynamic bias. In this final part of the paper we outline 
the analytical derivation of the hydrodynamic bias when the 
modulating waves are themselves nonlinear. A brief guidance 
is provided for the derivation of the E M bias when both short 
and long waves are inherently nonlinear in addition to the 
nonlinearity induced by the hydrodynamic modulation. 

7 .1 . Generalized Perturbed Gaussian Model 
of Modulating Waves 

The easiest way to approach the nonlinearity problem of 
long waves is to perturb slightly the multidimensional Gaussian 
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distribution in a form similar to the Gram-Charlier expansion. 
The non-Gaussian P D F of the normalized moment vector can 
be formally expressed as 

7 .2. Inherent Hydrodynamic Bias 

The hydrodynamic bias generated by this interaction with 
nonlinear long waves is then 

/Y (v , ) = 
(2TT) ' \ / , 

p-HrH---ii 

where 

/ l lì/Il-

where k1^',. represents the joint nonlinear statistics of the 6-D 
moment vector. The functions H ^ are generalized [Termite 
polynomials, which are defined by 

ry¥ =  

(2-TT) 3 

f(S-'u,) • ê {(S-'u,.) • (D,: 1 S iH i l e - 1 ' 2 ' " ' ' 1 ' - duL 

(43) 

H S v J = ( -1 )"P , : ' 
d rfd r/'ft Tj'yd 7]!'d f/j'r) rfy 

-,PL(VÔ, (38) 

where i l is the order of nonlinearity and the 17 variables rep
resent the normalized random processes. 

In our development the dimension of the workable space 
will always be higher than the order of nonlinearity. In other 
words, in most practical cases, i l will always be smaller than 6. 
This means that each variable can be used as a tracer within a 
given order. Indeed, a tracer Hermite will suffice to describe all 
the Hermite polynomials that belong to the same order. In 
addition to this property, there is a relationship between the 
tracer Hermite from one order and the ones from previous 
orders. This recursion relation is found to be 

f O v j = 'ê„w,:v, (39a) 

(39b) 

H i u t v J - H n o H 
, 1 T - T « 1 » 

T T O O O / " , , T T O O O T T O O O 
r M l l ^ M X ) 

ÔT),, 

(39d) 

which is carried out up to the fourth (Kurtosis) order. More 
explicitly, the second- and third- (skewness) order expressions 
for the tracer Hermite polynomials are 

t fOOi) / \ _ T T W 0 r r 0 ( i ( ) _ / - W ~ ' p = U ™ T T O U O _ pOOO f O l n - l \ 

TTirao/,, _ Hmii)TTWOui)oo _ /pomijjfooo , ^noooWo , cOWiTjiiira-, 
" i m ' / J — i l l O O 1 1 ! ) ! ! ) 1 1 ™ ! ! V-1—1 Itl-r^-OOl "r" • L j I O I - r l O I O p O l l - ' J - lOW > 

(40b) 

where the scalars E are the elements of the normalized covari-
ance matrix of long waves (WjT'). As stated before, the tracer 
Hermite in (40b) can be used to deduce all the third-order 
Hermite polynomials. For instance, if one needs the expression 
for this third-order Hermite H ™ , a quick look at (40b) pro
vides the answer by simply changing the tracers to the real 
variables as follows: 

T J O O O / , , \ _ m"(ili(h3 — q p W o r r W o fA.\ 

W3(i(i(.V;J - C-H- i 0 0; - 3t 2(,()ti l („>, (41.) 

where E"",u is therefore the first diagonal element in ' . 

is obtained by introducing (37) into (32). The double wide hat 
reflects the successive change of variables as recapitulated here 
by 

S u J = H«;(DZ 'u L ) = H ^ D t ' S - ' u , . ) . (44) 

To illustrate the benefits of changing variables in the general
ized Hermite, the tracer Hermite of first order after the change 
of variable simplifies to 

H Ä u J = H ï ï o 0 ( D : , S - ' u J = - Ì r ' ( S è i ) u t = - f . (45) 

In the Q£|J! integrals one can notice that the integrand consists 
of even powers in u , if and only if the generalized Hermite is 
of even order. Hence the extra change in the tilting caused by 
the skewness order will not have any effect on the hydrody
namic bias. However, the kurtosis order will conjugate with the 
hydrodynamic modulation to give an enhanced modulation. 
Because of the overwhelming algebraic computation needed to 
find the final expression for ß)_ in (42) for all the kurtosis 

(39c) orders, we provide the final result of a subelement of this 
fourth order. For instance, the final result of Q™" where the 
considered subelement is H ^ H ^ ' H ^ 1 , is given by the follow
ing expression: 

t , ^ 2 I U 2 1 l 
7no7uÏ!+ Vf 11 

dì 

M i l l "fio |

 K 

K020 «002 
2 J £ + K f H | S j ( + K[()iS{ (46) 

which when introduced in (42), will reproduce a partial bias 
proportional to the kurtosis of the long modulating waves. The 
coefficient w,, in (46) is a clear manifestation of the nonlinear 
tilting in the hydrodynamic bias. 

The skewness of long waves can enter the hydrodynamic bias 
only under the condition that short modulated waves are them
selves inherently nonlinear. The nonlinearity in short waves 
induced by the hydrodynamic modulation is not sufficient to 
warrant the presence of the skewed tilting. However, if the 
short waves are skewed, then the skewness of the modulating 
waves will appear in the final expression of the hydrodynamic 
bias. The reason for this behavior becomes obvious when one 
traces the even and odd powers in the integrand of (43). A p 
pendix D indicates the changes needed in the modulated quan
tities in order to bring the effect of the skewness in both short 
and long waves. . 
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8. Conclusion 
The present study clearly shows how both inherent and in

duced nonlinearities in long and short waves enter the electro
magnetic bias problem. The inherent part is produced by the 
nonlinear nature of the waves before turning on the interaction 
between short and long waves. The induced component can 
exist even when both modulating and modulated waves are 
linear before allowing any hydrodynamic interaction between 
scales. This nonlinear process is then fundamentally different 
from the one that generates the tilt bias derived in previous 
work [see Srokosz, 1986; Elfoiihaily el a!., 2000]. Assuming that 
a surface wave spectrum can be effectively separated between 
faster moving modulating long waves and shorter steeper ones, 
the complete improved E M bias description is hence the sum 
of all components coming from the long waves' pure geomet
rical effects and induced hydrodynamic modulations. 

As pioneered by Alpers and Hasselmann [1978], the modu
lation transfer function concept provides a simple means to 
model the variation of the short-wave spectrum in the presence 
of longer modulating waves. For the case of the radar altimeter 
the resulting modulation will lead to a correlation between the 
radar cross section and the surface wave elevation. Such a 
phenomenon will thus enter in the electromagnetic bias defi
nition and can potentially add to the bias associated with the 
long-wave asymmetric profiles (so-called tilt bias). 

In this study we rederived the hydrodynamic modulation 
transfer function from the wave action balance equation that 
includes both the orbital straining and a term carrying the 
effective acceleration of gravity. Higher derivatives of the mod
ulating surface can be used within this formulation of the 
hydrodynamic M T F . However, measured spectra of long waves 
cannot guarantee sufficient accuracy for all derivatives of the 
surface elevation. Most surface spectra provide faithful esti
mates of the elevation moments. Fewer, however, can be used 
with confidence to predict both elevation and slope moments. 
For this reason the M T F was expanded in power of long 
wavenumbers and truncated to the linear order. This provides 
an explicit scale separation that must be consistent with the 
two-scale M T F concept. We further demonstrated that under 
this assumption and a G O approximation the expected radar 
cross section is conveniently expressed as a dot product be
tween a modulation vector and a 6-D moment vector. The 
latter is constructed from the elevation and slope moments 
together with their quadratures. The modulation vector is re
lated to the short-wave components. It is a function of the 
M T F , the proper relaxation rate, and the wind speed, friction 
velocity, and wave age, which could possibly enter in the for
mulation of the short-wave spectrum. 

When the modulated radar cross section is used in the for
mulation of the E M bias, one faces the evaluation of a 6-D 
integral. The integrand of this multidimensional integral is 
nonlinear with the variable of integration. When the G O as
sumption is used, the kernel of this 6-D integral becomes a 
multidimensional Gaussian amenable for analytical evalua
tions. However, the multidimensional Gaussian involved is 
coupled in all its elements. We have shown one method for 
analytical evaluation using a linear change of variable based on 
the Cholesky decomposition. 

After substantial algebraic manipulations, one arrives at a 
simple expression for the hydrodynamic bias by assuming, for 
simplicity, that both long and short waves are originally linear. 
Following our development, this first-order hydrodynamic bias 

is a sum of three terms. The first term is formed by the eleva
tion variance and the elevation component of induced hydro-
dynamic modulation as expanded in powers of the long-scale 
wavenumber. The remaining two terms are functions of the 
orbital velocity variance of long waves as well as of the mod
ulation by the elevation and the slope quadrature components. 
Although anticipated, this result explicitly shows the funda
mental role played by the long-wave slope and orbital velocity 
components to interpret and to parameterize E M bias mea
surements. 

A numerical simulation of this E M bias is shown in Figure 1. 
These results compare well with E M bias models based on 
observations. Our theory augments the numerical study con
ducted by Rodriguez et al. [1992] with the following features: 
2-D realistic surface spectrum, 2-D extended hydrodynamic 
transfer function, and an analytic expression for the ensemble-
averaged E M bias. These features ensure effectiveness while 
broadening the scope of the theory to real-world situations. 

Higher-order statistics may also enter into the hydrodynamic 
bias. When present, the kurtosis of long waves can be conju
gated with the induced nonlinearities of modulated waves to 
produce a nonlinear hydrodynamic bias. Further, the skewness 
of long waves should not impact the hydrodynamic bias unless 
the short waves are inherently nonlinear. In other words the 
skewness of long waves will conjugate with the skewness of 
short waves, for instance, to generate higher-order hydrody
namic biases. 

In the next phase of this research effort we plan to examine 
our refined E M bias theory to assess its sensitivity to the value 
of critical input parameters such as the relaxation rate func
tion, the assumed form of the long- and short-wave spectrum, 
and the explicit inclusion of nonlinearities. Such sensitivity 
studies along with comparisons with data from field experi
ments as well as on orbit satellites will provide estimates of the 
effect of these parameters on the computed E M bias and focus 
the design of future experimental campaigns. 

Appendix A: Partial Derivatives 
of the Covariance Matrix 

Under G O assumption for electromagnetic scattering a rel
ative variation of the radar cross section yields the following 
expressions: 

f f \ - _ 1 K 2 ° K ( I 2 i I A 

K l l [ 

where the delta functions are defined by 

dv;[ i 
A , 

av; 

K 0 2 K ( I 2 , < 0 2 K I I 

3 111 K ( ) 2 ds \ K ( I 2 ' < I I 

= = - —( ~ 2 K ( , 2 ' C" '<2"'<(l2 + K " 
" t) In K „ d] V '<20'<(>2 + " l i - 2 K 2 ( ) ' < 1 [ 

( A l ) 

(A2) 

(A3a) 

(A3b) 

revealing a binomial dependence on the moment vector. 
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Appendix B: Gradient of the MTF 
The gradient of the 2-D hydrodynamic M T F is 

Y « ( k , „ kt) = (k,. • k.ilk, • U.ïYM] 

+ /V/Kk,, • H ,)(c,/c, + Y L „ ) 

+ /Wi .(k,.-k s)ri s , 

where 

+ l 

2c. t (w 2 , 4- M- 2 ) 2 /c,. 

V L » = ~ 4 c ' - k ' -

( B l ) 

(I32a) 

(B2b) 

M"L carries the phase of the modulation because it is the only 
complex quantity in the M T F expression. L(/ is an omnidirec
tional correction to the M T F due to the effective acceleration 
of gravity felt by short waves when riding on moving long 
waves. 

Appendix C: Inverse of the Block Covariance 
The submatrix C is defined by 

r = 

o K Ì 0 I 

\ / K 200 K 020 

*101 

\ / K 2(10 K 001 

\lK200'<m) \j K 2 0 D K 0 0 2 

0 0 

0 0 

0 7 no 
7 no 0 0 

y io "i 0 0 / 
(CI) 

which yields to the formal inverse of the WL as follows: 

w - i / M 1 + r 2 ) ~ ' r ( i + r 2 r ' 
d + r 2 )" 1 

A - r 
r A 

where the submatrix A is given by 

ll 0 

A = (i + r 2) -
o \ 

0 L ~ 7 loi 7f>o7ioï 

\ 0 7fio7ioi 1 - 7no/ 

( C 2 ) 

( C 3 ) 

Appendix D: Nonlinear Short Waves 
The skewed P D F of short waves can be written as a gener

alized Gram-Charlier expansion: 

a" « P'''(xL) = - v - » 111 2 
mini 

H„,„(xJ , 

(Dl) 

where is a 2-D vector formed by the component of the 
slopes. The modulated radar cross section becomes 

Str" 8 K 3 ( i 5 K M _ S K , P „ S A , , , „ 

- f ' J ' T Z + J ^ + t " ^ * 1 H 
in -In =3 

(D2) 

where the tilde over the / functions indicates a change in the 
expression versus the linear case previously given in Appendix 
A . The changes arc 

K 20 '<02 
X/AaiX,. + 2J 

m in ! il In K 2 ( I 

(D3) 

in-t-ii—-3 

The modulated skewness parameters can be calculated in the 
following manner: 

S A „ , „ s A-,„„(k„ k 2 )8^(k , )8*(k 2 ) rfk, rfk2 

K (k„ k 2 )*(k 1 )*(k, ) (C k l -u t ) 

• ( C k , - u j f/k, rfk,, (D5) 

where Kmll(kt, k 2 ) is an assumed kernel function to be deter
mined by the nature of the hydrodynamic interaction among 
long waves. 
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