27

CORRÉLATION ESSAIS-CALCUL POUR MATÉRIAUX COMPOSITES EN APPLICATION MARINE.

D. CHOQUEUSE *, P. DAVIES *, B. BIGOURDAN *

IFREMER *, CETIM **, EC NANTES ***, Bureau Véritas ****

Résumé - L'apport des calculs par la méthode des éléments finis (EF) est important pour le calcul des pièces en composites. Actuellement, peu de comparaisons entre calculs EF et essais sur structures ont été entreprises. Après avoir défini un type de géométrie représentative d'une structure marine (bordé de navire réalisé en sandwich raidi), et ainsi qu'un moyen d'essai permettant la mise sous charge (pression répartie) de ces panneaux de dimensions 1m x 2m, la modélisation de cet essai a été entreprise par quatre laboratoires différents en utilisant des codes EF différents. Les résultats obtenus (flèches et déformations) ont ensuite été comparés avec ceux d'essais. Une corrélation satisfaisante est obtenue pour les flèches (écart de l'ordre de 20% pour la flèche au centre) alors que la corrélation est médiocre pour les déformations.

Mots clefs : pression répartie, élément fini, panneau sandwich, mousse PVC, raidisseur

^{*} IFREMER, Laboratoire de Matériaux marins, Plouzané, France

^{***} CETIM, Département d'analyse des structures, Senlis, France

^{***} Ecole Centrale Nantes, Laboratoire de mécanique des structures, Nantes, France

^{****} Bureau Veritas, Centre de recherche et développement, Rueil Malmaison, France

PRÉSENTATION

Dans le programme Européen BRITE-EURAM (COMAST COmposite for MArine STructures and components), une corrélation essai-calcul a été menée sur deux types de structures, représentatives d'une application marine, soumises à un chargement de pression répartie, afin de valider la technique et les procédés EF et de faire une comparaison entre différents codes de calcul par éléments finis.

TYPE DE STRUCTURES ÉTUDIÉES

Les structures considérées sont des panneaux sandwich raidis. Ces panneaux sont assimilables à une maille de bordé de navire type NES ou chasseur de mines.

Les panneaux, de dimensions 1m x 2 m, sont composés de deux peaux verre - résine et d'une âme centrale en mousse à cellules fermées.

Les peaux sont réalisées par moulage au contact à partir de tissus quadriaxiaux $(90^{\circ}/-45^{\circ}/0^{\circ}/-45^{\circ})$ de grammage 1034 g/m de verre E et d'une résine époxy (référence Sicomin SR 1500). L'épaisseur de chaque peau est de 3.4 mm. Le matériau d'âme, d'épaisseur 40 mm, est un PVC réticulé de masse volumique 80 kg/m (référence Diab-Barracuda H80).

Deux types de raidissage ont été envisagés. Pour le panneau 1 (fig 1) deux raidisseurs transversaux sont positionnés avec un écartement de 1180 mm. Le panneau 2 (fig. 2) est raidi par les deux raidisseurs transversaux, identiques à 1, et un raidisseur longitudinal placé dans l'axe centrale du panneau.

Les raidisseurs sont réalisés par stratification (moulage par contact) de deux couches de tissu quadriaxial sur un profil "oméga" en mousse de polyéthylène de masse volumique 35 kg/m^3 .

INSTRUMENTATION DES PANNEAUX.

Deux types de mesures ont été réalisés lors de la conduite de l'essai. Des mesures de déplacement en différents points (fig. 3) (12 pour le panneau 1, 13 pour le panneau 2), à la face supérieure des panneaux, sont effectuées au moyen de capteurs de déplacement linéaire (type LVDT). L'état de déformations (déformations ϵx , ϵy et γxy) en huit points différents, des peaux inférieure et supérieure, est donné par les indications fournies par des jauges de déformation tridirectionnelles collées sur les peaux du matériau.

TYPE DE CHARGEMENT ET DISPOSITIFS D'ESSAI.

Afin d'assurer un chargement représentatif d'une sollicitation à laquelle les bordés sont soumis, le chargement en flexion sous pression répartie a été choisi. Ce chargement est réalisé par l'intermédiaire d'un bâti d'essai qui s'inspire des travaux de REICHARD (ref.1). Le bâti (photo 1) permet de soumettre les panneaux à une pression répartie (jusqu'à 0.5 MPa), les efforts étant repris en bloquant en rotation et translation les semelles supérieures des raidisseurs transversaux (Fig 4).

DÉMARCHE UTILISÉE.

La démarche ci-dessous a été suivie pour la réalisation de l'étude.

- 1 Définition des structures, du chargement, des matériaux.
- 2 Détermination des propriétés de base des matériaux. Les propriétés (Ex, Ey, vxy, Gxy) du stratifié de base (peaux du sandwich et stratification des omégas) sont déterminées par essais de traction selon 2 directions (0° et 45°) et par calcul au moyen de logiciels de calcul adaptés (ANASTRA : micromécanique et théorie des plaques minces stratifiées et MODULEF : homogénéisation des milieux périodiques.) (ref.2). Les propriétés de cisaillement (G) de l'âme sandwich sont obtenues par essai mécanique et à partir des données du fournisseur.
- 3 Corrélation des résultats sur le point 2 et choix des propriétés à entrer dans les modèles EF.
- 4 Déterminations par calcul par éléments finis EF des flèches et déformations aux points expérimentaux pour une pression de chargement de 0.1 MPa.

Les codes EF mis en oeuvre sont : ADINA

CASTOR SAMCEF ABAOUS

- 5 Réalisation des chargements sur les panneaux avec suivi des paramètres flèches et déformations en fonction de la pression de chargement.
- 6 Corrélation essai-calcul EF

PROPRIÉTÉS DE BASE DES MATÉRIAUX.

Les données fournies pour la détermination des propriétés mécaniques des peaux par calcul sont les propriétés de la résine, les grammages de verre E dans chaque direction de renforcement, la séquence d'empilement et le taux de fibre escompté dans les peaux. Ce dernier paramètre (58.4% de fibre en masse) provient de résultats moyens obtenus pour la fabrication de pièces du même matériau réalisées au laboratoire IFREMER. Toutes ces données sont donc des données qui peuvent être fournies, à priori, avant réalisation d'une structure.

La détermination par essai mécanique des paramètres Ex, Ey, vxy est réalisée à partir des essais de traction à 0° (0° direction x et 90° direction y identiques). Il est important de noter la non-linéarité des courbes effort-déformation qui nous a amené à définir les paramètres par deux méthodes

différentes : tangentes initiales à l'origine de la courbe (init) et par régression linéaire des moindres carrés entre 10 et 50% de la contrainte maximum (moy).

L'essai de traction à 45° permet d'obtenir le paramètre Gxy. Les différents résultats sont présentés dans le tableau l

Au point de vue module Ex, les résultats issus du calcul se situent entre les deux modules obtenus expérimentalement. Le comportement non linéaire du matériau est difficile à prendre en compte dans la suite de l'étude mais la différence de 30% notée entre les modules **init** et **moy** doit être retenue. Les différences notées entre les v et G mesurés expérimentalement et par calcul peuvent être considérées comme faibles (<10%). Pour la suite de l'étude les résultats obtenus par ANASTRA seront pris en compte, la méthode utilisée dans ce calcul étant la plus généralement employée.

Le module de cisaillement de la mousse déterminé expérimentalement (selon la norme NFT 56-118) est de 33 MPa. Cette valeur sera prise en compte dans la suite de l'étude. Le module fourni par la documentation commerciale est de 30 MPa, soit légèrement inférieur. Rappelons que les propriétés des mousses sont en relation directe avec la densité de celles-ci (ref 3) et que la fourchette de masse volumique donnée par les fournisseurs pour une fabrication est de $\pm 10\%$, ce qui peut expliquer la différence observée. On a noté lors d'un premier essai de cisaillement sur la mousse, un module de 15 MPa, cette valeur particulièrement faible s'est avérée mauvaise en raison d'une mise en oeuvre imparfaite de l'essai. L'essai de détermination du module de cisaillement la de mousse reste délicat à mettre en oeuvre et doit être mené d'une manière très scrupuleuse (ref 4). Par manque de connaissance, le matériau d'âme est considéré comme isotrope avec un coefficient de Poisson de 0,4.

MODÉLISATION DES STRUCTURES

Quatre logiciels EF différents ont été utilisés par les quatre laboratoires. Aucune directive n'a été imposée quant au type de maillage et d'élément à utiliser. Dans le tableau 2, sont reportées, pour chacun des panneaux 1 et 2, les principales informations concernant la modélisation EF développée. Notons que le type de modélisation est similaire pour chacun des laboratoires tant au niveau de la surface maillée que du type d'élément employé.

Les résultats obtenus par les différentes modélisations sont présentés dans les tableaux 3 et 4. Pour ADINA, seuls les résultats de la modélisation linéaire ont été indiqués.

CONDUITE DE L'ESSAI

Chaque panneau, après instrumentation, a été chargé jusqu'à une pression de 0,12 MPa par pas de 0.02 MPa. Les déplacements et déformations ont été enregistrés par l'intermédiaire d'une centrale d'acquisition (Type ORION Schlumberger). Pour chaque panneau deux essais ont été réalisés. Les résultats (moyenne sur les deux essais) apparaissent dans les tableaux 3 et 4 (colonne ESSAI)

RÉSULTATS OBTENUS

Panneau 1

L'allure de la déformée du panneau est sensiblement différente en lonction du type de modèle EF mis en oeuvre (fig. 5). Les résultats ADINA et CASTOR sont tout à fait similaires. L'allure de la déformée notée sur le panneau est elle aussi différente de celles obtenues par les calculs. Les flèches au centre déterminées par les calculs sont supérieures de 10 à 25 % à celle relevée lors des essais. Les résultats du modèle non linéaire (grand déplacement) d'ADINA s'approchent un peu plus de ceux obtenus lors de l'essai dans la zone du raidisseur.

Une étude paramétrique a été réalisée en faisant varier le module de cisaillement de la mousse (ref 2) ; celle-ci fait apparaître que l'allure de la déformée ne change pas en diminuant de 33 à 15 MPa le module de la mousse, le déplacement au centre calculée évoluant de 21 à 32 mm.

Pour les déformations (fig. 6), des écarts très sensibles sont relevés entre le calcul et l'expérimentation, des différences de valeurs allant du simple au double sont très fréquentes. En outre, les valeurs obtenues par le modèle ABAQUS ne nous paraissent pas réalistes.

Panneau 2

Des écarts de l'ordre de 20% sont relevés entre les valeurs obtenues par calcul et celles notées lors de l'expérimentation. Dans ce cas, à la différence du panneau 1, les flèches notées au cours de l'essai sont généralement plus élevées que celles obtenues par les modélisations.

L'allure de la déformée du panneau dans sa partie centrale (cote x=1000) est visualisée (fig 7) où on note la bonne concordance entre les résultats de modélisation qui différent toutefois sensiblement des résultats d'essai.

La modélisation ABAQUS donne des résultats assez différents des autres modélisation pour le déplacement, les déformations relevées n'étant pas, là non plus, réalistes.

CONCLUSION

Les résultats obtenus par les modélisations ne sont pas tous concordants, bien que les paramètres d'entrée soient identiques (conditions limites, propriétés des matériaux), et différent sensiblement des résultats obtenus lors de l'expérimentation. Les déflexions obtenues par calcul différent de 20 à 30% des résultats d'essai. La corrélation essai-calcul sur les déformations reste très approximative et rend très délicate l'utilisation d'un critère (TSAI,) pour prévoir la rupture.

Un des paramètres qui pourrait permettre de mieux alfiner les modèles serait d'intégrer le comportement non linéaire de la mousse, du matériau de peau.

Les structures étudiées semblent difficiles à modéliser en raison de la présence des raidisseurs et de la structure sandwich du panneau.

Une étude est en cours pour séparer les problèmes (raidisseur, structure sandwich), ainsi que pour déterminer l'influence respective des différents paramètres (propriétés des matériaux, conditions limites).

Remerciements

Nous remercions les personnes suivantes qui ont participé à la réalisation de l'étude : J. Royer, B. Pesseux (ECN), N. Sayhi, J. Peignet, H. Mallard (CETIM), C. Triay (BV), J. Croquette, L. Potin, H. Loaec, D. Petton (IFREMER).

Nous rappelons que cette étude est réalisée avec le support financier de la CEE, Programme BRITE COMAST.

Références

- 1 R.P. REICHARD, "The design of FRP Sandwich Panels for Ship and Boat Hulls", Proc. Sandwich Constructions 1, p. 349, 1989.
- 2 D. BEGIS, G. DUVAUT, A. HASSIM, "Homogénéisation par éléments finis des modules de comportements élastiques de matériaux composites", Rapport de Recherche INRIA, no. 101, 1981.
- 3 P. DAVIES, D. CHOQUEUSE, B. BIGOURDAN "Recent studies on Correlation between experimental results and Finite Element predictions at IFREMER" Charles Smith Memorial Conference, Dunfermline, July 13-14th 1992.
- 4 L.J. GIBSON and M.F. ASHBY "Cellular Solids" Pergamon Press, 1988.
- 5 K.A. OLSSON and A. LÖNNÖ, "Testing procedures for Foam Core Materials", Proceedings Sandwich constructions 1, editors K.A. Olsson and R.P. Reichard, p. 293, 1989.

			essais	ANASTRA	MODULEF homogénéis.	
			mecanques	microméca.		
Ex	init moy	MPa MPa	15.51 11.28	14.11	13.84	
vxy	init moy	ĺ	0.31 0.33	0.31	0.34	
Gxy	init	GPa	5.48	4.83	5.38	

 TABLEAU I

 Propriétés des peaux obtenues par essais et par calculs

TABLEAU 2 Comparaison des différents modéles EF utilisés

	ADINA	SAMCEF	CASTOR	ABAQUS
surface maillée	1/4 du panneau	1/4 du panneau	1/4 du panneau	1/4 du panneau
type d'analyse	linéaire (L) er non-linéaire (NL)	linćaire	linéaire	linéaire
type d'élément nombre de noeuds pa	ir élément			
pou <i>r</i> le stratifié	coque multicouche MITC à 8 noueuds	coque 1ype 56 de SAMCEE	coque multicouche à 4 nœuds	coque multicouche à 8 nœuds
pour l'âme	solide à 20 nœuds	volumique type 8 de SAMCEF	solide à 8 nœuds	solide à 20 noeuds
nombre d'éléments				
pour les peaux panneau 1 panneau 2	228 196	420 420	400 400	272 272
pour les renforts panneau 1 panneau 2	84 92	40 76	60 92	48 93
pour l'âme panneau 1 panneau 2	(2*114) + 96 98 + 56	210 + 20 210 + 39	200 + 40 200 + 76	136 + 32 136 + 62

		PANNEAU 1				
	ADINA	SAMCEF	CASTOR	ABAQUS	ESSAI	
Déplacements						
A (220/150) B (600/150 C (1000/150) D (220/500)	2.95 7.91 21.69 3.10	-0.02 9.98 24.09 0.11	3.10 8.00 22.00 3.30	3.38 8.62 31.01 2.50	2.59 9.95 21.07 3.39	
); (600/500) G (800/500) [[(1000/500)	7.63 17.12 20.82	9.66 19.43 23.11	7.80 17.40 21.10	7.12 17.86 24.23	10.59 17.63 19.31	
Déformations						
Cs Ex Ex γxy	3276 -729 123	3499 -824 55	3190 -725 43	24 120 -2200	2092 -397 113	
Ds Ex Ex γxy	-1001 68 18	-989 124 3	-985 81 0	99 158 -4300	-414 10 -428	
Ei εx εx γxy	3455 -103 -70	3089 -20 15	3020 -76 27	283 -378 -2580	1828 41 4	
Gs Ex Ex Yxy	2115 -235 40	2501 -327 21	2040 -233 0	169 -483 12700	1747 -406 106	
Hi Ex Ex Yx y	-3243 354 23	-3308 454 34	-3130 426	-364 203 -4700	-1901 1044 81	
Hs Ex Ex Yxy	3068 -338 -22	3349	3020	376 -230 4410	1560 837	
[^}	~~~	-24		4410	41	

TABLEAU 3 Résultats CACULS ESSAI panneau 1 pour P = 0.1MPa

	PANNEAU 2				
	ADINA .	SAMCEF	CASTOR	ABAQUS	ESSAI
Déplacements					
A (220/150)	2.78	1.85	2.80	3.74	5 32
R (600/150)	5.23	5.84	5.80	5.23	8 87
C (1000/150)	13.78	14 35	15.00	15.67	15.45
D (220/500)	1 38	17	1.60	0.71	4 32
E (600/500)	3 30	1	4.15	2.18	7.32
G (800/500)	7.54	854	870	4.98	10.59
H (1000/500)	9.45	9.98	10.50	6.80	11.87
O (1000/300)	11.50	12.39	12.70	0.00	13.76
			,		
Déformations					
Cs Ex	1749	1861	1870	39	1162
£х	-433	-497	473	169	-211
γχ	148	-88	21	-4930	-62
Ds Ex	-1957		-2055	-3	-1427
εx	647		746	47	708
γχγ	-428		-1060	-1120	97
Ei Ex	2247	1965	2150	233	1333
£x	-395	-336	-439	-27	-100
γχγ	60	-88	118	-1310	-5
Gs Ex	3489	4608	4075	27	3840
£х	-865	-1416	-1230	634	-896
γxy	420	-1063	1060	503	-788
Hi Ex	-2342	-2171	-2330	-57	-1471
εx	1799	1647	1630	170	1766
γχγ	I	2	0	344	321
Hs Ex	5755	6385	6540	72	4498
εx	-1251	-1976	-1090	-142	-1632
γху	-196	-485	-113	-3010	22
Oi Ex	1089	1329	1210	[681
εy	-502	-516	-465	1	-275
γχγ	-183	-155	0		23
	1		1		}
	1	1	1		1

TABLEAU 4 Résultats CACULS ESSAJ panneau 1 pour P = 0.1MPa

INSTRUMENTATION DES PANNEAUX PANEL INSTRUMENTATION

LOADING CONDITIONS

Côte selon X (mm) pour Y= 500

Figure 5. Déformée du panneau 1 mesurée et calculée *Predicted and measured shape of deformed panel 1*

Côte selon X (mm) pour Y=500

