Importance of peakedness in sea surface slope measurements and applications

Type Publication
Date 2000-07
Language English
Copyright 2000 AGU
Author(s) Chapron Bertrand, Kerbaol V, Vandemark D, Elfouhaily T
Affiliation(s) IFREMER, Ctr Brest, Dept Oceanog Spatiale, Inst Francais Petr, F-29280 Plouzane, France.
Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
NASA, Goddard Space Flight Ctr, Lab Hydrospher Proc, Wallops Island, VA 23337 USA.
Source Journal Of Geophysical Research Oceans (0148-0227) (Amer Geophysical Union), 2000-07 , Vol. 105 , N. C7 , P. 17195-17202
WOS© Times Cited 43
Abstract We recall the simple statistical concept that non-Gaussian distribution peakedness results from the compounding of random processes. This idea is applied to observations and analysis of sea surface slopes as inferred using optical and microwave-scattering measurements. Our study emphasizes the importance of identifying and quantifying the distribution variance and kurtosis from observations. Data are shown to indicate consistently non-Gaussian peakedness, to indicate the need to report at least two parameters in an even order analysis, and to indicate near equivalence between radar and optical data. Physical interpretation for observed infrequent steep slopes is given via compounding statistical processes where normally distributed short-scale waves are modulated because of random fluctuations mainly associated with the underlying long wave field. Implications of non-Gaussian peakedness are provided for altimeter backscatter theory and for modeling wave-breaking probability.
Full Text
File Pages Size Access
Publisher's official version 8 719 KB Open access
Top of the page

How to cite 

Chapron Bertrand, Kerbaol V, Vandemark D, Elfouhaily T (2000). Importance of peakedness in sea surface slope measurements and applications. Journal Of Geophysical Research Oceans, 105(C7), 17195-17202. Open Access version : https://archimer.ifremer.fr/doc/00000/10503/