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During the acoustic surveys of fish stocks, a small number of echo traces are identified to
species by fishing. During data analysis, the process of echogram scrutiny leads to
allocating echo-trace backscattered energies to species. While the precision of survey
estimates is generally based on the spatial variation in the energy, no variance term
accounts for species identification and energy allocation. In this paper, the sampling
variance of species identification is developed and automated procedures are used allowing
energy allocation to be carried out by a non-expert. The procedures are based on the fact
that at the sampling stage trawl hauls are linked with particular acoustic images. The
procedures have two steps: the classification step corresponds to species identification and
the aggregation step to energy allocation. Classification is performed on the identified
images and results in defining groups of images and estimating in each the sampling
variability of the species identification. Aggregation is performed on non-identified images
and results in post-stratifying the data. The estimation (map, abundance and variance per
species) is then derived automatically and is conditioned by the post-stratification. Two
approaches are followed, one based on the echo-trace characteristics making full use of
the echogram (acoustic-image classification) and the other on the spatial continuity of the
species composition between trawl hauls (trawl-haul classification). These methods are
described and compared. The species-identification variance term is also compared to the
spatial variance.
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Introduction

Acoustic-survey estimates of single fish stocks are based on

the ability to allocate backscattered energy of echo traces

to species (MacLennan and Simmonds, 1992; Diner and

Marchand, 1995). Expert scrutiny of the echogram along

with targeted midwater-trawl hauls are traditionally em-

ployed to link individual echo traces to species. Image-

analysis procedures applied to digitally recorded echograms

permit the automated analysis of echo-trace characteris-

tics (Reid and Simmonds, 1993; Weill et al., 1993; ICES,

2000) and have the potential to improve objectivity in

the echogram-scrutiny process (Massé and Rouxel, 1991).

Automated expert methods were developed to identify indi-

vidual schools to species based on school characteristics.

They amounted to training an algorithm on a set of iden-

tified, single-species schools. Then the algorithm was

applied to non-identified schools (Rose and Leggett, 1988;

Lu and Lee, 1995; Haralabous and Georgakarakos, 1996;

Simmonds et al., 1996). Success in this approach de-

pended on target-strength differences between co-occurring

species, the species-diagnostic power of school descriptors

(Scalabrin et al., 1996) and the use of ancillary variables

together with school descriptors (Richards et al., 1991;

Lawson et al., 2001).

In mixed-species ecosystems where school descriptors

have little species-diagnostic power and where small

schools are numerous, as in the Bay of Biscay, species

identification depends heavily on identification via trawl

hauls. Trawl catches do not allow for the identification of
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single schools but an ensemble of schools over several

nautical miles, resulting in identifying groups of schools to

species assemblages. The underlying hypothesis is that

groups of echo traces show some consistency in space and

time and are potentially diagnostic of species assemblages.

The feasibility of the approach is justified by the existence

of acoustic populations (Gerlotto, 1993), i.e. the concept

that the acoustic characteristics of echo traces show a

spatial pattern at a regional scale that is consistent over the

years (Gerlotto, 1993, in Venezuela; Scalabrin and Massé,

1993; Massé, 1996, in Biscay; Petitgas and Lévénez, 1996,

in Senegal). In linking this idea to that of a school cluster, a

hotspot where schools aggregate with different character-

istics in different zones, Hammond and Swartzman (2001)

proposed a Bayesian framework to estimate the species

proportions in hotspots based on previous knowledge of

trawl catches at close geographical and seasonal locations

with similar environmental features and echo traces. The

present paper does not associate trawl hauls and school

clusters in the same way. The approach in this case is based

on the association at the sampling stage between a trawl

haul and the acoustic image that triggered the decision to

trawl. Estimates are made of the sampling variance of

species identification for a given survey with no more infor-

mation than that in the survey.

The fact that identification relies on trawl hauls implies

consideration of survey design for the identification proce-

dure and, in particular, where to locate the hauls (e.g.

Massé and Retière, 1995). During the French acoustic

surveys in Biscay, the trawl stations are conditioned on the

positions of particular acoustic images that are considered

to be representative of communities of echo traces during

the survey. Two sets of acoustic images need to be distin-

guished: first, images associated with trawl hauls (i.e. iden-

tified images) and second, non-identified images. Different

methods are available to associate trawl-haul catches with

non-identified images. In this study, a method based on

echo traces is applied and compared to more standard

methods. The data used for this purpose came from the

spring 2000 acoustic survey of IFREMER over the French

shelf of Biscay, performed with the RV ‘‘Thalassa’’.

Though the survey targeted anchovy and sardine, all the

species found in the survey were considered because they

were part of the process of species identification.

Materials and methods

Acoustic sampling

Cross-shelf transect lines from coast (20-m depth) to shelf

break (250-m depth) were sailed during daytime at 10 kn

(Figure 1). Transects were parallel and regularly spaced

with an inter-transect distance of 12 nautical miles (nmi).

The acoustic equipment was a hull-mounted SIMRAD

EK500 38 kHz echosounder with a nominal beam angle of

7.5�. The pulse duration was 1ms and the ping repetition

rate was 1 s�1. The backscattered-acoustic signal was

digitized providing acoustic samples of 10 cm in height and

5m in length that formed the echogram. Acoustic samples

with a volume backscatter higher than �70 dB were saved.

Midwater trawl hauls

The spacing of the trawl stations was decided by the

positions of particular acoustic images (Figure 1). Schools

were vertically organized in a layer in the altitude range of

0–40m from the bottom. The school layer was identified

using one trawl haul with a 25-m vertical opening posi-

tioned at the appropriate depth. The average trawl-haul dura-

tion was 45min at 4 kn, representing a trawled distance of

3 nmi. The variogram of the number of schools per nmi

(Figure 2) showed a small-range structure between 3 and

5 nmi compatible with that already seen on previous

surveys (Petitgas, 2000). The trawl hauls were, therefore,

seen as sampling clusters of schools that were vertically

organized in a layer close to bottom.

Echo-trace descriptors

The survey was replayed for echo-integration by school

using a sample threshold of �60 dB (Petitgas et al., 1998).

School objects were identified and extracted from the echo-

gram using MOVIES software (Weill et al., 1993). Thresholds

were defined for minimum school object length (one ping:

5m), height (two samples: 20 cm) and average density

(�55 dB), which permitted their automated extraction.

Extracted school objects with a length less than two pings

at depth were rejected as being too small to be adequately

characterized (Diner, 2001; ICES, 2000). The total-back-

scattered energy of the automatically extracted schools

amounted to a value similar to that of the schools retained by

the expert when scrutinizing the echogram. Finally, 26 571

schools were accepted as fish schools over a survey length

of 1563 nmi containing 78 empty nautical miles.

Acoustic images and their characterization

The continuous recorded echogram was divided into 3 nmi

bins, a spatial unit compatible with the average size of

school clusters and the duration of trawl hauls. The binning

resulted in 495 non-zero acoustic images. Each image was

described by a line-data set of school parameters (the

characterizing vector). Parameters belonged to four cate-

gories (ICES, 2000; Reid et al., 2000): school position,

school morphology, school density and the occupation of

space by the schools. Each parameter was partitioned

between three classes, delimited by the quantiles 0.33 and

0.66 (Table 1). For each image and parameter class, the

schools were counted and expressed as a frequency relative

to the number of schools in the image. The characterizing

vector had 32 elements. The first 31 elements were the fre-

quencies in the parameter classes. The last element was the

number of schools in the image, accounting for the differ-

ence in school numbers between images.
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The spatial structure of the acoustic images

The spatial structure in the acoustic images was estimated

by a multivariate function analogous to a variogram, called

D2 variogram. The variogram was defined (Matheron,

1971) as the spatial average of the squared differences

between point values Z(x) and Z(xþ h) separated by vector

distance h: cðhÞ ¼ 0:5Eð½ZðxÞ � Zðxþ hÞ�2Þ. Here, instead
of one value Z(x) at point x, we had a vector ½V1ðxÞ; . . . ;
V32ðxÞ� characterizing the acoustic image centred at x. The

D2 variogram was the spatial average of the multivariate

Euclidean distance in parameter space, between pairs of

acoustic images, as a function of the vector distance h in

geographical space separating the images:

D2
cðhÞ ¼ 0:5E

X
k

½VkðxÞ � Vkðxþ hÞ�2
 !

:

Species echo-integration factor Xei

This was the factor multiplying the total-backscattered

energy Etot (mV2m2) in the acoustic image to estimate

the biomass Be (103 kg nmi�2) due to species e: Be ¼
XeEtot. The echo-integration factor for species e and trawl

haul i, Xei, was derived from a published target strength–

length relationship (Diner and Marchand, 1995) and a

length-to-weight relationship determined from the trawl

catch. When the fish length histogram was multi-modal,

echo-integration factors were first calculated for each

length category, then summed to give one factor per

species.

Methods for associating trawl hauls and
acoustic images

The ‘‘Nearest Haul’’ method is the simplest one: any non-

identified image was associated with the nearest trawl haul,

irrespective of the echo traces. The ‘‘Expert’’ method

(Massé, 1988) represented the current practice in analysing

acoustic surveys in Biscay. Trawl hauls were grouped

according to their species composition and geographical

position, thus post-stratifying the surveyed area and using

average biological parameters per species per strata. The

definition of strata limits along transects and the identi-

fication of echo traces to species were made via expert

scrutiny of the echogram. Neither of the methods provided

a variance term for species identification. The derivation of

such a term relied on the ability to post-stratify the data and

estimate within-strata variability of each species echo-

integration factor. Two post-stratification methods were

Figure 1. Survey design of the French fisheries-acoustic survey performed in Biscay in spring 2000 by IFREMER with RV ‘‘Thalassa’’

showing the acoustic transects, the location of the midwater identification trawl hauls and the 100 and 200m isobaths. (The figures on the

vertical axis denote the latitude in degrees North and those on the horizontal axis the longitude in degrees west.)
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used, one based on echo-trace characteristics only and the

other on species composition only.

Acoustic image classification and species allocation

The method had three steps: the classification of identified

images, the estimation of the average echo-integration

factor per group per species and the aggregation of non-

identified images to the defined groups. An identified

image was defined as that closest to a given trawl haul.

Identified images (i.e. a training set) were classified

according to their characterizing vector, through principal

component analysis (PCA) and hierarchical clustering

in the principal component space using the Euclidean

distance (Lebart et al., 1995). In each group of images,

there were several trawl hauls. The average species echo-

integration factor for each group of images, Xeg, its

variance, varðXegÞ and upper and lower 2.5% confidence

limits were estimated by bootstrap re-sampling with the

replacement of the trawl catches in each group (Manly,

1997). Non-identified images were then projected in the

principal component space as passive individuals and

aggregated to the groups of images in the training set. The

aggregation method comprised attributing the image to the

group, which had the closest centre. Non-identified images

too far from any group centre were not attributed to any

group; they were considered to be non-identifiable, though

this situation did not occur in the survey considered here.

The threshold distance retained for the aggregation was the

maximum-observed distance between an identified image

and its group centre. In the geographical space, the aggre-

gation step resulted in mapping groups of images along the

transects.

Trawl-haul classification and species allocation

The methodology was similar to that of acoustic image

classification and species allocation (AICASA). First, the

trawl hauls were classified on their species composition

using the same combination of PCA and clustering as in

AICASA. The PCA was applied on the correlation matrix

of the species-weight proportions in the catches. Second,

the average echo-integration factor per species and its

variance were estimated for each group of hauls with the

bootstrap procedure as described above. Finally, the non-

identified acoustic images were associated with the hauls

using the criteria of closest, geographical distance as in the

‘‘Nearest Haul’’ method.

Maps, abundance estimate and variance terms

Mapping was done by combining the geographic distri-

butions of species echo-integration factors from the

Figure 2. Experimental variograms. Top: D2 variogram of acoustic

images. Dashed line represents the total inertia (sum of all D2

distances between images). Bottom: variogram of the school num-

ber per nmi. Dashed line represents variance of school number.

Table 1. School parameters in the acoustic image characterizing
vector with their threshold limits defining classes (Lim.). Altitude
is the distance between the bottom of the school and the seabed;
bottom depth is that below the school, latitude is that of the school
centre (mid-geographical point of school echo trace); length is the
maximum horizontal distance between start and end of the school;
height is the maximum vertical distance between start and end of
the school; fractal dimension is the log of the circularity coefficient
(100 log (P2/4pA) with P the school perimeter (m) and A the school
area (m2)); energy is the integrated-backscattered energy of the
school; Rv (index of volume reverberation) is the average for
school pixels of the volume-backscattered energy expressed in dB
(10 log (Epixel/Vpixel) with E the pixel-backscattered energy and V
the pixel cross-section); CV of Rv is the coefficient of variation of
the pixel Rv values inside the school.

Minimum Lim. 1 Lim. 2 Maximum

Altitude (m) 0 2 40 500
Bottom depth (m) 10 60 120 250
Latitude (degrees) 43 45 47 49
Length (m) 0 8 16 110
Height (m) 0 1 2 70
Fract. dim 100 150 171 2400
Energy (mV2m2) 0 44 134 700 000
Average Rv (dBm�3) �60 �53 �48 �19
CV Rv (%) 0 26 41 300
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aggregation step with those of the backscattered energy.

The mean abundance estimate was:

Be ¼
X
g

wgXegEg ð1Þ

where, for group g, Eg was the average-backscattered

energy; Xeg the average species echo-integration factor and

wg the geographical weight. The design being regular, wg

was estimated by the number of images in group g divided

by the total number of images from the survey.

The variance of the mean abundance was estimated as

the sum of two independent terms, coming from the vari-

abilities of the backscattered energy and the species echo-

integration factor, respectively:

varðBeÞ ¼
X
g

w2
g
X

2

eg
varðEgÞ þ

X
g

w2
g
E

2

g
varðXegÞ ð2Þ

varðEgÞ was estimated assuming the backscattered energies

were spatially non-correlated within each group. Thus

varðEgÞ ¼ r2ðEgÞ=ng, providing a conservative estimate of

variance. Non-correlation between Xe and E was tested

visually on scatter plots, and varðXegÞ was obtained from

the bootstrap estimate in each group. Equations (1) and (2)

applied to any post-stratification of the data.

Results

Spatial structure of the acoustic images

Variograms were computed for different lag distances and

averaged in the various directions. The variogram of school

number per nmi displayed two nested structures, the short-

range approximating 3 nmi and the long-range, 50 nmi.

The D2 variogram of acoustic images (3 nmi in length)

displayed one long-range structure also around 50 nmi

(Figure 2). The long-range structure envisaged the concept

of an acoustic population, i.e. image groups, while the

short-range structure corresponded to that of a school

cluster.

Classification of acoustic images identified
by trawling

Fifty trawl hauls were made, allowing for the identification

of 50 images out of 495. PCA was performed on the

correlation matrix of the 50 characterizing vectors. Hier-

archical clustering was performed in the principal compo-

nent space of the first eight axes that explained 85% of total

variance. Four groups were retained which displayed a

spatial pattern in agreement with the D2 variogram range:

groups 1 and 2 were mainly coastal, south and north of

46�309N, respectively; group 3 was mainly on the mid-shelf

south of 46�309N and group 4 was mainly at the shelf break

both in north and south as well as on the mid-shelf north of

46�309N.

Species echo-integration factors per group
of acoustic images

For each group and each species, the average echo-

integration factor Xeg, its variance varðXegÞ and its lower

and upper 2.5% confidence limits were obtained from 400

bootstrap estimates of the trawl catches in each group

(Figure 3). Distribution of the estimates was not sym-

metrical. The species belonged to different image groups

and, therefore, formed different school types depending

on their location and composition. There was some cor-

respondence between acoustic image groups and species as-

semblages: group 1 (coastal south) was dominated by

anchovy, sprat, mackerel and chub-mackerel, with mack-

erel showing considerable variability; group 2 (coastal

north) by sardine and horse mackerel; group 3 (mid-shelf

south) by sardine with all species showing low variability

and group 4 (shelf break and mid-shelf north) by sardine,

mackerel and horse mackerel with mackerel showing con-

siderable variability. High proportions of a particular non-

target species in a few trawl hauls (e.g. mackerel in groups

1 and 4) increased the variance of the estimate for the target

species of anchovy and sardine.

Maps, abundance estimates and variances
for target species

For anchovy and sardine, maps produced by the different

methods showed good general agreement with some local

differences (Figures 4 and 5). There were differences in

areas with few trawl hauls and where post-stratification

differed between methods. All methods produced similar

abundance estimates (Table 2). The target strength of

anchovy and sardine being approximately �30 dB kg�1,

small differences between methods in the partition of energy

between species resulted in similar differences in abun-

dance. AICASA and trawl-haul classification (THC) gave

similar estimation CVs for sardine but THC gave a lower

CV for anchovy. This was because, in the THC method,

strata where anchovy was present were homogeneous in

species composition. Although CVs for anchovy and sar-

dine were generally in the acceptable range of 10–20%, the

species-identification term represented 60–80% of total

variance, indicating that this source of error was critical.

Maps, abundance estimates and variances
for non-target species

For mackerel, methods ‘‘Nearest Haul’’ and ‘‘Expert’’ were

similar, as were methods AICASA and THC. The former

pair gave lower estimates of abundance (Table 2). For

horse mackerel, the ‘‘Nearest Haul’’ method was in closer

agreement with AICASA and THC. Differences between

methods depended on energy allocation, trawl performance,

target strength and schooling. In allocating backscattered

energy to species, the ‘‘Nearest Haul’’ approach restricted

the area of influence of the trawl stations, and the ‘‘Expert’’

method probably did so as well. Mackerel had a target
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strength about 15 dB kg�1 lower than that of anchovy or

sardine; thus 30% difference in the abundance estimate was

equivalent to 10% difference in energy allocation. In Biscay,

mackerel was not easily identified from echogram scrutiny

and its fishing was unsatisfactory, resulting in considerable

variability in the trawl catches. For horse mackerel, the

situation was different: the ‘‘Expert’’ method suggested that

schooling behaviour had changed over 3 years, resulting in

possible under-allocation of energy to this species compared

with the automatic procedures.

Discussion and conclusions

Factors affecting variability in the estimates

The results of the automated procedures depended on the

number and locations of the trawl hauls, the number and

variance of the post-strata, trawl catchability and the

presence of non-target species. Dependence on the trawl

location is expected to be stronger for ‘‘Nearest Haul’’ and

THC methods in contrast to AICASA, because the former

are based on defining an area of influence around the trawl

stations. The definition of post-strata was based on the data

structure and, in particular, on the coherence in the spatial

pattern. Variability in the trawl performance and the manner

of image identification were not separable from the true

variability in species composition. Since the true species

composition remained unknown, the computed variance

reflected sampling variability but not the accuracy of the

estimate. The non-target mackerel was unreliably identified

by trawling, which increased species-identification variance

for the targets, anchovy and sardine, but had less effect

on their abundance estimates because anchovy and sar-

dine have a strong target strength.

Figure 3. Mean species echo-integration factor Xe (10
3 kg nmi�2mV�2m�2) in each group of identified acoustic images with their upper

and lower 2.5% confidence limits (bootstrap step of the AICASA method). Species codes are: (1) anchovy (Engraulis encrasicolus); (2)

sardine (Sardina pilchardus); (3) sprat (Sprattus sprattus); (4) blue whiting (Micromesistius poutassou); (5) mackerel (Scomber scombrus);

(6) chub-mackerel (Scomber japonicus); (7) horse mackerel (Trachurus trachurus); (8) Mediterranean horse mackerel (Trachurus

mediterraneus).
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Comparison of results

All methods agreed for the target species anchovy and

sardine in the estimates of abundance and variance, and

in the general pattern of the mapped distributions. Differen-

ces between AICASA and THC methods were explained

by the fact that AICASA-generated post-strata built to be

homogeneous in terms of echo traces but not in terms of

species composition, while THC-generated post-strata built

to be homogeneous in terms of species composition but not

in terms of echo traces. General agreement in the results

between methods was explained by these species having

strong target strength, making the estimation only a little

sensitive to differences in energy allocation. Also, the acous-

tic images displayed a long-range spatial structure, driving

both methods similarly in space and with the acoustic

populations being in good agreement with species assem-

blages. The diagnostic power of individual schools for

species identification was poor as the same species were

present in different groups of images, a result already found

in Biscay (Scalabrin and Massé, 1993; Massé, 1996).

Because of the good coherence between the acoustic

Figure 4. Maps of anchovy (Engraulis encrasicolus) abundance obtained by various methods. In each map, circle radius is proportional

to the abundance scaled by the maximum for that map.
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populations and the species assemblages, the AICASA

method using the fine-scale echogram details did not per-

form better than the simpler THC method.

Variation in schooling behaviour

In Biscay, school type could be more dependent on the

habitat than on species or species composition or changes in

acoustic populations over the years. Consistency or varia-

tion in the school characteristics for a particular species

over the years could be studied by analysing the dataset

pairs (identified acoustic image, associated trawl-haul

catch) for a series of surveys. This could serve to control

the reliability of the ‘‘Expert’’ method of echogram scrutiny

as well as demonstrating the importance of multi-year in-

formation for analysing the current year’s survey.

Acknowledgements

This study was partly financed by the European Commis-

sion, DG-Fish, under the project PELASSES contract

99/010. Referees and the Editor are thanked for their

suggestions leading to improvements of the manuscript.
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Scalabrin, C., and Massé, J. 1993. Acoustic detection of fish shoals
in the Bay of Biscay. Aquatic Living Resources, 6: 269–283.

Scalabrin, C., Diner, N., Weill, A., Hillion, A., and Mouchot, M.
1996. Narrow band acoustic identification of mono specific fish
shoals. ICES Journal of Marine Science, 53: 181–188.

Simmonds, E., Armstrong, F., and Copland, P. 1996. Species
identification using a wide-band scatter with neural network
and discriminant analysis. ICES Journal of Marine Science, 53:
189–195.

Weill, A., Scalabrin, C., and Diner, N. 1993. MOVIES-B: an
acoustic detection description software: application to shoal
species classification. Aquatic Living Resources, 6: 255–267.
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(2) sardine (Sardina pilchardus); (3) sprat (Sprattus sprattus); (4) blue whiting (Micromesistius poutassou); (5) mackerel (Scomber
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(Trachurus mediterraneus). m is the mean density (103 kg nmi�2); cv is the coefficient of variance (square root of total variance divided by
m); id (%) is the species-identification variance divided by the total variance (see Equation (2)).

1 2 3 4 5 6 7 8

AICASA
m 16.36 34.97 7.67 0.30 94.04 5.98 33.80 0.06
cv 0.21 0.20 0.30 0.50 0.36 0.84 0.19 0.60
id 0.78 0.81 0.89 0.95 0.93 0.98 0.57 0.95

Trawl-haul classification
m 18.26 40.89 6.66 0.31 80.46 2.34 29.99 0.06
cv 0.12 0.19 0.29 0.49 0.33 0.28 0.17 0.59
id 0.62 0.60 0.94 0.97 0.92 0.12 0.59 0.90

Nearest haul
m 18.41 43.87 3.66 0.25 63.94 2.25 31.28 0.05

Expert
m 17.46 43.31 3.92 1.15 35.48 2.77 11.66 0.02
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