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The school-aggregation pattern (schools and clusters of schools) is presumed to play a
significant role in determining pelagic fish-stock catchability. However, its analysis has
seldom been undertaken because it requires field-behavioural data that is seldom available.
Such information can now be obtained by analysing school-based data of fisheries-acoustic
surveys. This paper proposes a method for doing so. The method allows for the identi-
fication of clusters of schools and the estimation of their parameters along one-dimen-
sional, acoustic-survey transect lines. It is based on a spatial point-process approach that
considers schools as point events occurring along the track sailed by a ship. More precisely,
it is based on defining a maximum distance between schools in a cluster. This distance
is chosen to optimize various criteria and in particular that of homogeneity concerning
school location inside the clusters and school number per km. The algorithm is described
and applied to a series of acoustic surveys carried out in the Bay of Biscay. The pertinence
of the clusters obtained by the algorithm is evaluated by analysing which component
of the spatial distribution of the schools corresponds to those clusters. This involves
considering all the distances between school events and performing simulations of cluster
point processes. The school clusters obtained by the proposed algorithm represent a small-
range structure of a few kilometres when a longer-range structure of tens of kilometres
was also present in the data.
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Introduction

As fishermen exploit aggregations of fish, the mesoscale

characteristics of fish distribution such as clusters of

schools are presumed to impact fish-stock catchability

(Paloheimo and Dickie, 1964). Fréon and Misund (1999)

present a review of theoretical scenarios relating fish

density-dependent, spatial distribution and fishing strategies

leading to stock depletion. The analysis of the interactions

between the fish-aggregation pattern and other factors influ-

encing stock catchability (e.g. Potier et al., 1997) requires

quantitative-behavioural data characterizing the schools

and their clustering (e.g. the number of clusters, the number

of schools in them, dimension of clusters, etc.) which is

seldom available. These data can be obtained from the spa-

tial analysis of school-based data derived from fisheries-

acoustic surveys. Geo-referenced, school-based data can
1054–3139/03/080872þ13 $30.00 � 2003 International Cou
be routinely acquired now by post-processing the digitally

recorded echograms of acoustic surveys using image-

analysis software (ICES, 2000; Reid et al., 2000). The

objective of the present paper is to provide a procedure that

allows the estimation of school-cluster parameters using the

school-based data of fisheries-acoustic surveys.

Two approaches are possible for analysing statistically

the spatial structure of schools (ICES, 2000): one is to

consider the schools as discrete events of a spatial-point

process, the other is to consider the number of schools per-

unit-sailed distance (km) as a continuous variable forming a

density surface. In the latter case, Geostatistics, Generalised

Linear Models, or Additive Models (GLM or GAM) have

been used. In the former case, point-process analysis can be

used. The interest in considering school occurrence as a

point process is that one can work on all distances at all
ncil for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
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scales as well as estimate parameters of the school clusters.

These are more informative for characterizing clusters than

the unique value of the variogram range. This is because the

variogram range is not only a function of the dimension of

density patches but also of the distance separating them

(Guardiola-Albert and Gomez-Hernandez, 2000). Cluster-

ing of schools has been reported using various statistical

methodologies: geostatistics to acknowledge correlation

structure in the number of schools per mile (Marchal and

Petitgas, 1993; Petitgas and Lévénez, 1996), GAM to show

the trend structure in the number of schools per mile (Beare

et al., 2000, 2002) and survival approach to illustrate the

skew in the distance to the next neighbouring school

(MacLennan and MacKenzie, 1988; Swartzman, 1997;

Petitgas and Samb, 1998; Soria et al., 1998). None of these

statistical analyses allow the explicit definition of clusters

of schools as objects and estimate indices for their param-

eters. In this paper a point-process approach is used to

group schools in clusters of schools and estimate param-

eters that characterize this scale of spatial organization.

Two ways have been used to identify clusters and estimate

their parameters to date. In the fisheries-ecological literature,

clusters of schools have been identified based on the distance

to the nearest neighbouring school (Swartzman, 1997; Soria

et al., 1998). A fixed-threshold distance was chosen based

on experience that defined the maximum distance between

schools in a cluster. Schools occurring at a distance greater

than the threshold from the current school were aggregated

to another cluster. Cluster parameters were estimated based

on the clusters identified. In the statistical literature, Stoyan

(1992) proposed a statistical-inference procedure that uses

all the distances between schools and, in particular, those

beyond the nearest neighbour. First, the spatial structure in

the occurrence of point events was characterized by an

experimental curve that plotted the probability that two

point events occurred at a given distance from each other.

Second, cluster-process models were simulated with various

values for their parameters until the fit was acceptable be-

tween the observed curve and that corresponding to the

simulated model. Values retained for the cluster parameters

were those corresponding to the best fit.

In this study, schools were aggregated in clusters based

on a simple, clustering algorithm using the distance to the

next-school neighbour along the acoustic-transect lines. In

contrast to Swartzman (1997) and Soria et al. (1998) the

threshold distance was not fixed but chosen to optimize

several criteria. Then, the pertinence of the clusters obtained

in this way was evaluated by analysing which component of

the school-spatial distribution corresponded to those clus-

ters. To do this, the approach proposed by Stoyan (1992)

was used. The aggregation in school occurrence was charac-

terized by the pair-correlation function, an analogue to the

variogram but for point process, which used all distances

between schools. Cluster processes were simulated along

the survey-transect lines with cluster parameters equal to

those inferred by the next-neighbour, clustering algorithm.
The pair-correlation function of the simulated processes

was then compared with that of the school data. This made it

possible to evaluate which part of the school-correlation

structure corresponded to the identified clusters.

Materials and methods

School occurrence along acoustic-transect lines

A series of French pelagic acoustic surveys undertaken

by IFREMER with RV ‘‘Thalassa’’ in the Bay of Biscay

was worked on. Each survey was designed to monitor

population abundance of the target species anchovy and

sardine. Non-target species also present were sprat, horse-

mackerel, and mackerel. Four surveys were selected which

were similar in their design (Figure 1), with parallel East–

West transects, regularly spaced every 10 nautical miles

(nmi), from the Spanish border (43�309N) to the isle of Ré

(46�309N) and traversing the entire continental shelf. Only

daytime surveying was performed as fish aggregations

dispersed too greatly at night making the separation be-

tween fish and plankton difficult (Massé, 1988). Transects

were covered at 10 kn. The acoustic equipment was a hull-

mounted, OSSIAN 38 kHz echosounder with a nominal

beam angle of 7�. The pulse duration was 1ms and the

ping-repetition rate was 1 s�1. The back-scattered acoustic

signal was digitized providing acoustic samples of 10 cm in

height and 5m in length and these formed the echogram.

Acoustic samples with a volume backscatter higher than

�70 dB were saved. In the laboratory, the surveys were

replayed for echo integration by school using a sample thres-

hold of �60 dB (Petitgas et al., 1998). School objects were

identified and extracted from the echogram using MOVIES

software (Weill et al., 1993). Thresholds for minimum

school-object length (1 ping: 5m), height (two samples:

20 cm) and average density (�55 dB) were defined which

allowed for their automated extraction. Extracted school

objects with a length smaller than two beam widths at depth

were rejected as being too small to be adequately

characterized (ICES, 2000; Diner, 2001). Individual-school

echotraces were not identified to species because the diag-

nostic power of school parameters was too imprecise in

Biscay (Scalabrin et al., 1996). All schools from all species

were considered. For each school, latitude and longitude of

the school centre was estimated as the average of latitude

and longitude between start and end points of the school

echotrace. The occurrence of schools along the survey track

was studied as a one-dimensional point process and the

school centres were considered as point events along the

transect lines. Schools could occur at different depths in

the water column. School locations were collapsed vertically

and the distance between schools was the horizontal dis-

tance along the acoustic-transect lines. We focused on the

one-dimensional analysis along the actual track steamed. A

point-process analysis in 2D would require all process

events to be recorded in 2D as is done, e.g. on a sonar

image (ICES, 2000). Here school events are recorded along

http://icesjms.oxfordjournals.org
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Figure 1. The school occurrence along the one-dimensional transect lines. Spring acoustic surveys of IFREMER carried out by RV

‘‘Thalassa’’ on the French continental shelf in the Bay of Biscay. Each cross indicates a school centre. The empty circles indicate the

extremities of the transects. (The figures on the vertical axis show latitude North in degrees and those on the horizontal axis indicate

longitude West in 0.5 degree intervals.)
parallel-retransect lines only because of the survey design.

Therefore, a two-dimensional reconstruction of the school

point process would require some hypothesis on the

isotropy or anisotropy of school occurrence across the

transects. No such assumptions were made.
Correlation-structure analysis

The correlation structure in the school occurrence along

the transect lines was analysed using the pair-correlation

function. Consider two infinitesimally small segments of

length dx and dy with distance r between their centres.

http://icesjms.oxfordjournals.org
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Let P(r) denote the probability that a segment of length r

has one school event in each extremity dx and dy. P(r)

writes (Penttinen et al., 1992; Stoyan and Stoyan, 1994):

PðrÞ ¼ k2
gðrÞdxdy:

The parameter k is the intensity of the point process (i.e.

the number of schools per km). The function g(r) is called

the pair-correlation function. It is the probability-density

function of the distance between pairs of point events.

When there is no correlation, the pair-correlation function

equals 1 for all distances. Interactions between point events

(i.e. the correlation structure) will be shown by the departure

of g(r) from the unit value. If r0 denotes the range of the

interactions, a cluster process will show values of g(r) higher

than 1 for r smaller than r0 while an inhibition process will

show values of g(r) smaller than 1 for r smaller than r0.

Essentially, the pair-correlation function reads like

a classical correlation. The pair-correlation function g(r) is

the derivative of Ripley’s K-function (Stoyan and Stoyan,

1994). It is here preferred to Ripley’s K-function for two

reasons. First, it interprets in a similar manner to a spatial

correlation function and second, it is easier to estimate

as no edge effects need to be corrected for at-transect extre-

mities. We used the estimate for g(r) proposed by Stoyan and

Stoyan (1994). Along a transect line, the estimate becomes:

gðrÞ ¼ 1

k2

X
i

X
j 6¼i

khðr� dijÞ
lTR � dij

where r is the distance at which the function is computed,

kh is a kernel of width h, dij the distance between school i

and school j on the same transect TR, lTR the length of

transect TR, and k the intensity. Because g(r) is a density

function, a kernel estimator is useful. A kernel is a

weighting function which allows more weight to be given

to those distances dij that are closer to the distance r at

which the function g(r) is being estimated. Following

Stoyan and Stoyan (1994) the Epaneçnikov kernel (see

Appendix) was used. The larger the value of the kernel

bandwidth h, the smoother is the estimated curve ĝðrÞ. After
different trials the value h ¼ 0:25 km was retained as

satisfactory and used for all the years being studied. The

distance between schools, dij, was computed as the distance

between their centres. The estimate of g(r) was computed

by pooling all transects together: the intensity k was the

total number of schools in the survey divided by the total

survey length, N/LTR; all the terms khðr� dijÞ=ðlTR�
dijÞwere summed with no reference to the transects. The

estimate of the square intensity was k̂
2 ¼ NðN� 1Þ=LTR.

The pair-correlation function was estimated with a distance

lag of 1 km.

Multicriteria, NND-clustering procedure

Because the transect lines were sailed in a particular

direction, the lines were considered oriented. The next-

neighbour distance (NND) was computed for each school
along the transect lines. Schools were grouped in clusters

based on the NND distances. This involved setting a

threshold NND beyond which the next school was taken to

be in a different cluster (i.e. the maximum distance between

schools in a cluster). Schools beyond the threshold NND

were considered too far to belong to the same cluster. There

was little behavioural knowledge with which to define such

threshold distance a priori. Historically, this was done

using an empirical approach (Swartzman, 1997; Soria et al.,

1998). Basically, the researcher defined a distance based on

his observations. The procedure proposed here was a more

statistical approach to the problem.

For a given-threshold NND, schools were grouped into

clusters and the following parameters estimated:

� The number of clusters (Nclus)

� Their length (Lclus)

� The number of schools per unit cluster length (kclus)
� The number of solitary schools (Nsoli)

� The homogeneity of the spatial distribution of schools

within a cluster (Homog).

The length of clusters (Lclus) was estimated as the

distance between the first and last schools of the cluster.

Solitary schools were clusters of zero length and were not

considered in the estimation of the average cluster length.

The number of schools per-unit-cluster length (kclus) was
estimated by the slope of the regression of the number of

schools in a cluster on the cluster length. Clusters con-

taining at least two schools were considered in the re-

gression. The internal homogeneity of school occurrence

inside the clusters was tested using a Kolmogorov test. Let

x denote the distance to the next school in the cluster and sc
its average. If the schools were Poisson distributed inside

the cluster, the empirical distribution function of x would

satisfy the exponential curve: FðxÞ ¼ 1� e�x=sc . The

departure from the Poisson curve was checked using

the Kolmogorov test, which is based on the value of the

maximum difference between the empirical and model

values for F(x). The significance level was set at 5%.

A range of threshold NNDs were considered. The

threshold-NND retained minimized the following empirical

criteria:

� Not too many clusters

� Not too many solitary schools

� Fewer than 5% clusters with non-homogeneous-school

occurrence inside

� High R2 for the regression of numbers of schools-

per-cluster on length of clusters.

The range of threshold NNDs was chosen from the NND-

cumulative distribution as the threshold lay in the inflexion

part of the distribution. This was because the curvature in

the distribution curve was related to the repetition rate of

the process and thus to the scale of clustering. Consider the

distance x between this school and the next as a survival

time with mean s. The homogeneous Poisson process has a

http://icesjms.oxfordjournals.org
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Figure 2. Pair-correlation functions for the four surveys characterizing the spatial structure in the school occurrence along the one-

dimensional, survey transect lines.
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repetition rate 1/s and its survival time x follows an

exponential distribution ð1� e�x=sÞ. A process with its

repetition rate accelerated by a constant a, a/s, has its

survival time x following a Weibull distribution (1� e�bxa ;

with b a scaling factor) that is more skewed than the

exponential (McCullagh and Nelder, 1995).

Essentially, the NDD threshold lay in the inflexion part

of the NND distribution and was chosen to divide the point

process of schools in clusters with similar number of

schools-per-km and homogeneous-school distribution in-

side. The multicriteria, NND-clustering procedure was

applied to each survey and cluster parameters estimated

for each survey. The reference-conceptual, point-process

model was a cluster process, in particular the Matern pro-

cess (Stoyan and Stoyan, 1994).

Simulations of a cluster process with homogeneous
distribution of parent events (Matern process)

A Matern process can be generated in two steps (Stoyan

and Stoyan, 1994): first, parent events are positioned

following a homogeneous Poisson process with intensity q
and second, daughter events are uniformly and indepen-

dently distributed within a distance R from each parent

event. The resulting process of daughter events is called

a Matern process. The number of daughter events per clus-

ter around a parent point follows a Poisson distribution
with parameter l. A Matern process was simulated along

the one-dimensional transect lines of each survey with

parameter values for q, R and l equal to those estimated

using the multicriteria, NND-clustering procedure:

l̂l ¼ Lclus k̂clus; R̂ ¼ Lclus=2; q̂ ¼ Nclus=LTR with LTR

being the total survey length. Ten simulations were

performed for each survey. For each simulation, the pair-

correlation function was computed. The average for the ten

simulations was computed for each survey and compared

with that computed on the school data. This revealed that

the clustering procedure only accounted for one component

in the spatial structure and in particular it did not account

for a long-range component observed in the data. Thus a

two-stage point process was simulated along the survey-

transect lines to account for the two scales in the spatial

structuring.

Simulations of a cluster process with
inhomogeneous distribution of parent events

The parent events of the Matern process were positioned

according to an inhomogeneous Poisson process (i.e. a

Poisson process for which the intensity varies in space).

The number of schools was counted in segments of a given

length (elementary-sampling, distance unit, ESDUs) along

the survey transects. Presence of clusters within the ESDUs

was coded 1 for those ESDUs containing at least two

http://icesjms.oxfordjournals.org


877Method for identification and characterization of clusters of schools

 at IF
R

http://icesjm
s.oxfordjournals.org

D
ow

nloaded from
 

Figure 3. The cumulative distribution of the distance to the next school along the acoustic transect lines (points) together with their fitted

Weibull distributions (lines). Model parameters are in Table 1.
E
M

E
R

 on M
arch 15, 2010 
schools and 0 otherwise. The probability for a cluster to

occur in the ESDUs was estimated using a GAM (Hastie

and Tibshirani, 1995). In a GAM, the survey values yi are

considered to come from a random function Yðy1; . . . yn;
. . .Þ where each sample value yi is considered to be one

outcome from a probability distribution with mean mi and

variance r2. The GAM allows for the estimation of the

mean mi as a function of specified, known covariates

Table 1. Modelling the probability distribution, F(x), of the
distance to the next school as a survival time, x, using a Weibull
distribution, FðxÞ ¼ 1� e�bxa . The table gives the values of the
Weibull parameters, a and b, estimated by non-linear least square.
R2 is the R-square of the fit.

Years a b R2

1991 0.060 1.412 0.997
1992 0.623 2.876 0.990
1994 0.497 1.031 0.999
1997 0.551 1.638 0.996
Xjðj ¼ 1; . . . ; pÞ. The systematic components of the model

are the link function L and the linear predictor g:
LðmÞ ¼ g and g ¼

P
j SjðXjÞ where S are smoothers.

The random component of the model is the probability

distribution assumed for the random variables yi (i.e. error

distribution). The GAM allowed for the estimation of the

probability pi to have a cluster in ESDUs. The link function

was the logit, the error distribution was binomial. The

smoother used was the locally-weighted, regression-

smoother of Cleveland (1979) called ‘‘loess’’ that is found

in SPLUS (Inc.) software. The covariate considered was

the interaction between latitude and longitude. No other

covariate was tried as focus was put on extracting the crude

trend in the data. The model fitted can be written as:

Logðpi=ð1� piÞÞ ¼ loessðlat; long; 0:25Þ
þ binomial error:

The goodness-of-fit of the model was quantified by the

deviance, an analogue to the R-square in least-square, linear

regression. The GAM provided a trend surface for the

probability pi of cluster occurrence. A threshold value was

http://icesjms.oxfordjournals.org
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Figure 4. Multicriteria curves for 1991. The threshold distance chosen is indicated by the dotted, vertical line.

Figure 5. Multicriteria curves for 1992. The threshold distance chosen is indicated by the dotted, vertical line.
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Figure 6. Multicriteria curves for 1994. The threshold distance chosen is indicated by the dotted, vertical line.

Figure 7. Multicriteria curves for 1997. The threshold distance chosen is indicated by the dotted vertical line.

http://icesjms.oxfordjournals.org
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Table 2. Parameter values inferred by the multicriteria, NND-clustering procedure. Ntot, total number of schools; Lsurv, sum of transect
lengths; Av.dtn, average next-neighbour distance; DT, threshold distance; Nsoli, number of solitary schools; Nclus, number of clusters;
Lclus, average cluster length; kclus, average number of schools per unit cluster length; R2, R-square of the linear regression of the number
of schools in the clusters on the length of clusters; Homog, percent of clusters with homogeneous distribution of schools.

Years Ntot Lsurv Av.dtn DT Nsoli Nclus Lclus kclus R2 Homog

1991 1111 1202 0.97 3.33 25 60 9.98 2.36 0.70 1.00
1992 2671 1119 0.37 2.08 27 65 8.84 5.71 0.76 1.00
1994 482 1140 2.07 4.45 19 52 6.53 1.77 0.84 0.95
1997 1487 1341 0.78 3.33 13 79 8.46 2.66 0.77 0.97
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then chosen on this probability and one parent event was

positioned at random in the ESDUs that had a probability

higher than the threshold. The next step was to position the

daughter points at random within distance R from the

parent points. In a Matern process, the parent events are

positioned randomly and uniformly but in this case their

position was constrained by the probability surface. For

each survey, 10 simulations were performed and the pair-

correlation function computed for each simulation. The

average of the 10 curves was then estimated and compared

with the pair-correlation function computed on the school

data.

Results

School occurrence and pair-correlation function
along transect lines

For each survey, school occurrence as extracted from the

echogram was plotted along the acoustic transect lines

(Figure 1). The schools were grouped visually in small

clusters which themselves were structured in a regional

pattern. In particular, there were many schools in all the

years studied in the area in front of the Gironde estuary and

this influenced the regional pattern. The pair-correlation

function was computed for each survey along the transect

lines (Figure 2). The deviation of the curves from the

Poisson, horizontal-unit line suggested a clustering of

schools. In all years except 1991, the curves showed a

similar behaviour: a rapid decrease with a correlation range

between 5 and 10 km and then a slower decrease with a

correlation range between 35 and 40 km. Such behaviour

Table 3. Parameter values used for simulating Matern processes
along the survey lines. k, school intensity; q, cluster intensity; l,
average number of schools per cluster; 2R, maximum cluster
length.

Years k q l R

1991 1.20 0.050 23 5
1992 2.40 0.058 50 4.5
1994 0.55 0.046 12 3
1997 1.36 0.059 23 4
agreed with that of the variogram of school number per km

computed for the same years (Petitgas, 2000). From this

it can be inferred that the continuous-density-surface ap-

proach or the point-process approach were similar in char-

acterizing school-correlation structure.

Multicriteria, NND-clustering procedure

The cumulative distribution of the distance to the next

school (NND) along the transects was computed for each

survey by pooling all NNDs from all transects (Figure 3).

The distributions showed a concave shape modelled by a

Weibull distribution (Table 1) fitted by non-linear least

squares (routine ‘‘nls’’ in SPLUS, Mathsoft Inc.). For all the

surveys, the inflexion part of the curve was between 5 and

10 km and this was in coherence with the small correlation

range visible on the pair-correlation functions (Figure 2).

The threshold NND was expected to lie in the range 5–

10 km. For each survey, several threshold distances were

tried in that range, schools were grouped in clusters, and

criteria parameters estimated (Figures 4–7). For each

survey, one threshold distance was retained and cluster

parameters estimated: Nclus, Lclus, kclus, Nsoli, Homog

(Table 2). Average cluster lengths (Lclus) were in agree-

ment with the ranges observed on the pair-correlation

functions, except for 1991 (see Discussion).

Simulation of a Matern process

The parameters of a Matern process that were considered

were parameters l, R, and q estimated by the clustering

procedure described above (Table 3). In the simulations, the

number of schools in a cluster was a random variable

following a Poisson probability distribution with parameter

l. Parameters R and q were constants. The school intensity

k (average school number per km) varied in each simu-

lation because it was an outcome from a Poisson distrib-

ution with parameter q l. In each year, the pair-correlation

function corresponding to the simulated Matern process

was estimated. It showed a small-range structure in agree-

ment with that of the school-data, pair-correlation function

(Figure 8). However, the slow decrease in the school-

data, pair-correlation function was not reproduced by the

http://icesjms.oxfordjournals.org
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Figure 8. Pair-correlation functions compared between the school data (empty circles) and simulated Matern process (lines).
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simulations of the Matern process. The fact that the small-

range structure was well reproduced meant that the multi-

criteria, NND-clustering procedure identified the small scale

correlation range only. In the simulations the clusters were

positioned at random along the survey transects. The slow

decrease in the experimental curves presumably accounted

for the structure made by a non-random positioning of the

clusters relative to one another. In order to investigate this

assumption further a model was simulated where clusters

were positioned around parent points with their locations

constrained by a trend surface.

Simulations of a cluster process with
inhomogeneous parent events

The survey transect lines were binned in ESDUs of 10 km

and the number of schools counted in each. The presence of

clusters within the ESDUs was coded 1 for ESDUs

containing at least two schools and 0 otherwise. The size

of 10 km for the ESDUs was chosen because average

cluster lengths were in the range 6–10 km for the different

surveys (Table 2). The probability pi for a cluster to occur

in the ESDUs was estimated by fitting a GAM on presence

or absence data, using the routine ‘‘gam’’ in Splus

(Mathsoft, Inc.). Those ESDUs were then selected which

had their pi greater than a given probability threshold.

The threshold was set so as to produce a cluster intensity
q compatible with that estimated on the data by the

multicriteria, NND-clustering procedure. The probability-

threshold values for the different years 1991, 1992, 1994,

and 1997 were, respectively, 0.95, 0.96, 0.62 and 0.80,

and the explained deviances were 12, 18, 8, and 9%. The

explained deviances were small, meaning that the trend

estimated represented only a small part of the spatial

variability. For each year, the pair-correlation function

corresponding to the simulations was computed and

compared with that of the school data (Figure 9). The

small-range structure as well as the slow decrease ob-

served on the school data were both reproduced in the

simulations. This confirmed the first interpretation that

school clusters were positioned relative to one another

according to a regional pattern that is modelled here by

a trend surface.

Discussion and conclusion

The distribution of the along-transect NND was well

modelled by a Weibull distribution. MacLennan and

MacKenzie (1988) and Petitgas and Samb (1998) had

already used the Weibull on their data (northern North Sea

herring and sardinella off Senegal). The Weibull has two

parameters which certainly make it flexible in many cases.

However, the model also has the property of characterizing
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Figure 9. Pair-correlation functions compared between the school data (empty circles) and a two-stage, cluster process (lines). The first

stage of the process is an Inhomogeneous-Poisson process giving the locations of parent events. The second stage is a Matern-cluster

process around the parent events.
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a process with a repetition rate higher than for a Poisson

process, meaning that its use is adapted to cluster processes

(McCullagh and Nelder, 1995).

In the multicriteria, NND-clustering procedure the thres-

hold distance varied from year to year in accordance with

the year to year change in the statistical characteristics of

the spatial pattern. Other authors used a fixed threshold

Figure 10. Epaneçnikov kernel with a bandwidth h ¼ 10.
(Swartzman, 1997; Soria et al., 1998). A varying threshold

will tend to produce clusters that are homogeneous in every

year whereas a fixed threshold may produce inhomo-

geneous clusters for particular years. It seems difficult to

say which is better without behavioural knowledge of the

schools within clusters. Although variable, the threshold

distance did not vary much across years (2–5 km).

In this paper the estimation of synthetic variables

characterizing a fish school aggregation pattern was felt to

be a necessary first step to the analysis of how this spatial

pattern determined population catchability when interact-

ing with other factors such as e.g. fishing tactics or the

environment. The focus of the approach taken was on the

methods needed to group schools in clusters and estimate

their parameters, school-based data being derived from

image analysis of echograms of echosounder surveys. A

simple procedure was to group schools in clusters depending

on the NND along the track sailed. The clusters estimated by

the multicriteria, NND clustering, procedure had internal

homogeneity characteristics, i.e. similar number of schools

per km and the homogeneous distribution of schools. The

clusters estimated in this way corresponded to a small-range

spatial structure (5–10 km) leaving a longer-range structure

(35–40 km) uncharacterized. The longer-range structure

was not identifiable on the NND cumulative distribution
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as distances between clusters were too few in number.

Therefore, the analysis of the school pattern using only the

NND can lead to larger-scale spatial structures that

correspond to assemblages of clusters being missed. A

practical solution could be to estimate each and every time

the pair-correlation function or the variogram of school

number per unit distance.

The pair-correlation function allowed for the character-

ization of the spatial structure over all its spatial scales.

Two scales of structuring were found. The clusters

identified by the multicriteria, NND-clustering procedure

corresponded to the smaller structure (5–10 km). The larger

structure was generated by a non-random positioning of

the clusters relative to one another. This correspondence

was found by undertaking simulations of cluster-point

processes and comparing the pair-correlation function of

the school data with that of the simulations. The approach

was proposed by Stoyan (1992) for estimating cluster

parameters and was very appropriate to the situations found

in this case where school occurrence was structured at

different spatial scales.

For 1991, the pair-correlation function did not identify a

small-range structure (Figure 2) whereas the multicriteria,

NND-clustering procedure did (Figure 3). Clusters were

identifiable visually when plotting the school occurrence

along the transect lines (Figure 1). Cluster parameters

were not found to be different for that year compared with

other years (Table 2). Observed and simulated pair-

correlation functions agreed (Figure 9). Thus, clusters

of a few kilometres in length were real but their rela-

tive positions in this particular year would have made

the cluster structure not visible on the pair-correlation

function.

Between the smallest spatial structure, the school, and

the largest, the population, this study showed two scales of

spatial organization: the clusters of schools and the

assemblage of clusters (either in larger clusters or along

trends). It can be hypothesized that the clusters of schools

could be controlled by the dynamical behaviour of schools

at the small scale whereas the assemblage of clusters could

be organized under environmental factors structured at the

regional scale.

In the series of surveys analysed here, 1994 and 1992

were two contrasting years with, respectively, low and

high total school numbers. Table 2 shows a relationship

between the total number of schools and the school-

clustering pattern. When the total number of schools was

low (in 1994) the number of solitary schools was high and

the number of clusters, their length, and the number of

schools in them was low. In contrast, when the total

number of schools was high (in 1992), only one cluster

parameter responded, i.e. the number of schools in the

clusters. These findings agree with the general behaviour

of a variety of European pelagic stocks (Petitgas et al.,

2001) relating the number of schools and the clustering

pattern.
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Appendix: Kernel estimator of a
probability-density function (after
Stoyan and Stoyan, 1994)

We wish to estimate a probability-density function on

a continuous range of values x using a finite, discrete number

of sample values x1; . . . ; xn. Let f(x) be the density function
to be estimated. Let k(x) be another density function, the

kernel function. The kernel is usually a symmetrical

function: k(�x)¼ k(x). The kernel estimator of f(x) is:

f̂ðxÞ ¼ 1

n

Xn

i¼1

kðx� xiÞ:

There are different kernels possible. The Epaneçnikov

kernel is often used. It is defined by:

ehðtÞ ¼ 0:75ð1� t2=h2Þ=h ð�h � t � hÞ
0 otherwise

�

where h is a bandwidth centred on x and t ¼ x� xi. The

kernel allows the estimation of f(x) at the unknown value

x by weighting those sample values that stand in the

bandwidth h centred on x. The sample values outside

the bandwidth do not intervene in the estimate of f at x.

The estimated f(x) will be rough for small h and will get

smoother as h increases. The particular choice of the form

of the kernel is less decisive than the bandwidth and it is

recommended that preliminary trials are carried out with

various bandwidths. The Epaneçnikov kernel with a

bandwidth of 10 is plotted in Figure 10 as an example.
 at IF
R

E
M

E
R

 on M
arch 15, 2010 

http://icesjms.oxfordjournals.org

	A method for the identification and characterization of clusters of schools along the transect lines of fisheries-acoustic su
	Introduction
	Materials and methods
	School occurrence along acoustic-transect lines
	Correlation-structure analysis
	Multicriteria, NND-clustering procedure
	Simulations of a cluster process with homogeneous distribution of parent events (Matern process)
	Simulations of a cluster process with inhomogeneous distribution of parent events

	Results
	School occurrence and pair-correlation function along transect lines
	Multicriteria, NND-clustering procedure
	Simulation of a Matern process
	Simulations of a cluster process with inhomogeneous parent events

	Discussion and conclusion
	Acknowledgements
	References


