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Automated or computer-assisted tools are needed for estimating the proportion of species and their biomass in echosounder surveys
of marine ecosystems. Operational systems rely mainly on school morphologies or the frequency responses of scatterers to identify
target species in echograms. This paper presents two complementary methods for classifying schools and estimating their species pro-
portion in a multispecies, pelagic environment. One method relies on the training of probabilistic school classifiers; the other exploits
echogram similarities to infer species proportions directly from the proportions known at trawled sites. The methods are demon-
strated with empirical and simulated data. School classifications and species-proportion estimates are compared to demonstrate
the effectiveness of the proposed methods.
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Introduction
Echosounders mounted on oceanographic and fishing vessels provide
remote sensing of the spatio-temporal characteristics of pelagic popu-
lations (MacLennan and Simmonds, 1992; Petitgas et al., 2001;
Bertrand et al., 2003; McQuinn et al., 2005; Johnsen and Godø,
2007). Methods are needed for estimating the proportion of pelagic
species in the acoustic data (Korneliussen, 2004). Isolated and aggre-
gated fish and plankton layers can sometimes be classified by their
echo amplitudes and their aggregation morphologies (MacLennan
and Simmonds, 1992; Haralabous and Georgakarakos, 1996;
Scalabrin et al., 1996; Doray et al., 2006). These methods are based
on various school features, including morphology or shape, acoustic
energy, and associated habitat, such as depth and seabed type. More
recently, features derived from multifrequency echoes have also been
used to identify acoustic targets (Kloser et al., 2002; Gorska et al.,
2005; Fässler et al., 2007; Jech and Michaels, 2007).

In addition to characteristic features, the classification model
and training methods are important. Some classification models
include naive Bayes classifiers, linear discriminant models, and
neural networks (Haralabous and Georgakarakos, 1996;
Scalabrin et al., 1996; Hammond and Swartzman, 2001). These
methods require “supervised training” with a dataset where all
schools have been assigned to a species. However, in a multispecies
environment, e.g. in the Bay of Biscay (Petitgas et al., 2003), trawl
catches generally comprise a mixture of several species, for which
an associated fish school cannot be assigned a single species or
class. Hence, datasets with validated, single-species school classifi-
cations are often not available and supervised classification

techniques cannot be applied (Haralabous and Georgakarakos,
1996; Scalabrin et al., 1996; Hammond and Swartzman, 2001).

This limitation is mitigated here with new methods for classify-
ing schools and estimating their species proportions in a multispe-
cies environment. As outlined in Figure 1, two complementary
approaches are proposed. In both cases, the continuous acoustic
record along the survey track was first divided into successive seg-
ments 3 nautical miles long, referred to hereafter as echograms.
Fish schools are then extracted in all echograms, and each school
was characterized by a set of features (Scalabrin et al., 1996).
The two approaches then differed as follows.

(i) The school-level approach extends school-classification models
for application to a multispecies environment. It relies on training
these classification models from the data given at trawled sites, i.e.
echograms with the associated relative species proportions.
Trained classification models can then be applied to classify
schools and estimate species proportions in all echograms.

(ii) The echogram-level approach, extended from Petitgas et al.
(2003), first proceeds to a global characterization of any echo-
gram from school statistics. The similarities between an echo-
gram and the echograms at trawled sites then provide the basis
for directly estimating species proportions, without an actual
classification of individual schools.

The performances of these two approaches are quantitatively
compared here using real and simulated schools datasets.

# 2009 International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

1136

 at IF
R

E
M

E
R

 on M
arch 17, 2010 

http://icesjm
s.oxfordjournals.org

D
ow

nloaded from
 

http://icesjms.oxfordjournals.org


Methods
This section details the school-level and echogram-level approaches.
Let I denote an echogram, SP the associated species proportions,
i the index of the schools in the echogram, Xi the feature
vector of school i, Yi its species or group of species, and k a species
index.

School-classification models in a multispecies
environment
The training of school-classification models in a multispecies
environment was based on methods recently introduced in Bishop
and Ulusoy (2005), and Ulusoy and Bishop (2005). Probabilistic
models are trained to classify objects according to the presence or
absence of each object class in each training image. Similarly, school-
classification models can be trained according to the presence or
absence of each species in trawl catches. In addition, the training
can be improved by substituting the proportions of species for the
presence–absence data. Two types of probabilistic school-
classification model were considered: a conditional model and a gen-
erative model (GM).

The probabilistic-conditional model is an extension of tra-
ditional discriminant classifiers, where discrete classifications are
replaced by decisions based on probabilities. The classification
likelihood P(YijXi) is defined as

PðYi ¼ kjXiÞ ¼
exp½Wt

kXi þ Bk�P
l exp½Wt

l Xi þ Bl�
; ð1Þ

where Wk and Bk are the model parameters for species k. Equation (1)
describes the linear conditional model (LCM) as Wk

t Xi þ Bk linear
discrimination functions for each class. An extension to a non-linear
conditional model (NLCM) was considered (Schölkopf and
Alexander, 2002). The original feature space was mapped to a new
space, where class separation was improved. In this case, using
kernel principal component analysis (details in Schölkopf and
Alexander, 2002), the parameterization of P(YijXi) is similar to
Equation (1), except that the original Xi is replaced by the corre-
sponding feature vector in the mapped space. The linear and non-
linear models are trained with a set of echograms at trawl sites
with known SPs; equal catchability being assumed for all species.

More precisely, Wk and Bk are calculated by minimizing the error
of the estimation of SPs, i.e. the sum over all training echograms of
the squared differences between the known and the estimated SP
values issued from school-classification likelihoods as follows:

SPðkÞ ¼

P
i lksagðiÞPðYi ¼ kjXiÞP
i;l llsagðiÞPðYi ¼ ljXiÞ

; ð2Þ

where sag(i) is the acoustic energy of school i (mV2; Scalabrin et al.,
1996) and lk a conversion coefficient (kg mV22) from acoustic
energy to biomass. The logarithm of l is proportional to the target
strength.

The second type of probabilistic-classification models, referred
to as GMs, uses Bayes’ rule to compute the classification
likelihood:

PðYi ¼ kjXiÞ ¼
PðYi ¼ kÞPðXijYi ¼ kÞP

l PðYi ¼ lÞPðXijYi ¼ lÞ
; ð3Þ

where P(Yi ¼ k) is the prior likelihood of k, and P(XijYi ¼ k) is the
distribution of the feature vector Xi for species k. This model is an
extension of the model considered in Hammond and Swartzman
(2001) and Hammond et al. (2001). The P(XijYi ¼ k) are modelled
as a Gaussian mixture of, typically, five Gaussian components.
The P(Yi ¼ k) and the parameters of the Gaussian mixture
P(XijYi ¼ k) are estimated using an adaptation of the expectation-
maximization procedure exploiting the information provided by
the known SP values in training echograms (Bishop and Ulusoy,
2005; Ulusoy and Bishop, 2005).

Echogram-level inference of species proportions
in a multispecies environment
The echogram-level method computes the SP values as a weighted
sum of known SP values at trawl sites. For a given I, SPI are esti-
mated as

SPIðkÞ ¼
X

j

wjðIÞSPjðkÞ; ð4Þ

where SPj are the species proportions in trawl j, and wj(I) the
assigned weights of echogram I– j, with

P
jwj(I) ¼ 1.

Quantile-based representations of the school features describe
the content of each echogram (Petitgas et al., 2003). In all, 20
school features are used, including geometric, energetic, and pos-
itional features (Scalabrin et al., 1996). The dissimilarity D
between two echograms is then computed as a Kullback–Leibler
distance between the quantile-based distributions of the school
features (Kullback, 1951; Karoui et al., in press). To encode both
echogram similarities and spatial proximities, the dissimilarity
dj(I) between echogram I and trawl j is defined as

djðIÞ ¼ min
G[VðPð jÞ;PðIÞÞ

X

p[G

DðIp; IjÞ; ð5Þ

where V(P( j),P(I)) is the set of all paths on the spatial mesh
defined by the survey track from the spatial position P( j) of j to
the spatial position P(I) of I. Ij is the echogram corresponding
to trawl j, p is a point on the survey track G in the echogram Ip.
Minimum paths are commonly computed in image processing,
and efficient numerical algorithms have been developed (Cohen

Figure 1. The data-processing steps in the school-based (left) and
echogram-level (right) approaches to estimating species proportions.
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and Kimmel, 1997; Deschamps and Cohen, 2001). The wj(I) are
computed as normalized versions of the inverse of dj(I) to increase
the importance of echograms at trawl sites most similar to I in
Equation (4). Using this formulation, wj(I) is maximal only if
there is a spatial path linking I and j such that all echograms
along this path are very similar to the I at j. This constraint elim-
inates spatially incoherent weights that might occur if reliance is
placed solely on D. The SP values can vary smoothly, because
species habitats can overlap.

Compared with Petitgas et al. (2003), the advantages of the pro-
posed interpolation are twofold:

(i) the wj(I) are not binary and the calculations depend on D, so
better account is taken of both smooth and sharp transitions
from one SP to another, and

(ii) the wj(I) account for both echogram similarities and proximi-
ties. In contrast, spatial coherence is not required in the
method used by Petitgas et al. (2003).

Performance evaluation
To evaluate the performances of these methods, the following
datasets were considered truthed.

(i) D1: Echograms of monospecific fish schools in the Bay of
Biscay collected with a 38-kHz, single-beam echosounder
and validated with trawl catches (Scalabrin et al., 1996).
This dataset comprises 1419 schools: 179 sardine, 478
anchovy, 667 horse mackerel, and 95 blue whiting.

(ii) D2: Echograms of sardine, anchovy, and horse mackerel
schools (Gajate et al., 2004) simulated with OASIS (Diner,
2001) to resemble the school-feature distributions reported
by the SIMFAMI project (EU project QLRT-2000-02054).
This dataset comprises 4406 schools: 1187 sardine-like, 1360
anchovy-like, and 1859 horse mackerel-like. The simulated
data were from 38- and 200-kHz, single-beam echosounders
with 78 beam widths.

School features were extracted by MOVIES+ software (Weill et al.,
1993). Simulated echograms were generated with randomly
selected schools having prescribed SP values for mixtures of one
to four species. Using D1, for example, simulated echograms
with a two-species mixture were generated by randomly selecting
schools from two of the four species, in accordance with the
target SP values.

For school-classification experiments, 75% of the schools were
used to train the model, and 25% were used to test the model. The
training dataset consisted of 18 simulated echograms. The overall
procedure (echogram simulation, model training, and model
testing) was repeated 100 times.

Three experiments were conducted to evaluate the school-
classification models:

1. Using D2, school-classification rates were compared for models
trained with presence or absence modes and proportion data
(Figure 2). Training echograms with three species ranged
from slightly mixed (80% of one species and 10% each of the
other two) to highly mixed (33% of each species).

2. Using D1, school-classification rates were compared for one- to
four-species echograms [Figures 3 and 4 (top) and Table 1].
Training echograms were uniformly chosen from slightly

mixed (90–10, 80–10–10, and 70–10–10–10% for the two-,
three-, and four-species mixtures, respectively) to highly
mixed (50–50, 33–33–33, and 25–25–25–25% for the two-,
three-, and four-species mixtures, respectively).

Figure 2. Comparison of classification models trained using species
presence –absence data vs. species proportion data. Mean correct-
classification rate on D2 vs. three-class mixtures (from unmixed, 10%
for each of two classes and 80% for the third class, complexity 0; to
highly mixed, 33% for the three species, complexity 1). The GM
(square), the LCM (diamond), and the NLCM (circle) were trained
using species-proportion data (solid line) and presence–absence
data (dashed lies).

Figure 3. Classification performances for single-species to
multispecies mixtures. Mean correct-classification rates for D1 (top)
and D2 (bottom). Acronyms are defined in the caption of Figure 2.
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3. Using D2, school-classification rates were compared for one-
to three-species echograms [Figures 3 and 4 (bottom) and
Tables 2 and 3]. The training echograms were generated as in
Experiment 2.

The SP values in Experiments 2 and 3 simulate the variability
observed in trawl catches in multispecies environments. For
example, in the Bay of Biscay, trawls commonly catch 80%
anchovy and 20% sardine, or vice versa.

To evaluate the echogram-level procedure, 128 � 128 grids
were generated, with grid points corresponding to simulated

Table 2. School classification for D2.

Class I Class II Class III

Class I NLCM 88% 7% 3%
LCM 79% 12% 8%
GM 62% 18% 19%

Class II NLCM 6% 75% 18%
LCM 8% 73% 18%
GM 13% 45% 41%

Class III NLCM 7% 24% 68%
LCM 12% 25% 62%
GM 22% 12% 64%

Mean correct classification: 77% (NLCM), 71% (LCM), 57% (GM)

Class I Class II Class III
Class I NLCM 83% 8% 7%

LCM 84% 8% 6%
GM 32% 34% 32%

Class II NLCM 7% 66% 26%
LCM 11% 65% 22%
GM 33% 34% 32%

Class III NLCM 8% 27% 63%
LCM 14% 28% 57%
GM 30% 35% 33%

Mean correct classification: 71% (NLCM), 69% (LCM), 33% (GM)

Confusion matrices are reported for the training data involving two- (top) and
three-class (bottom) mixtures. Acronyms are defined in Table 1. Classes I, II,
and III refer to sardine-, anchovy-, and horse mackerel-like schools, respectively.

Table 3. School classification for D2 using only school features at
38 kHz.

Class I Class II Class III

Class I NLCM 83% 8% 8%
LCM 72% 10% 17%
GM 37% 21% 41%

Class II NLCM 6% 76% 16%
LCM 8% 71% 20%
GM 17% 45% 37%

Class III NLCM 13% 23% 63%
LCM 18% 26% 54%
GM 25% 13% 60%

Mean correct classification: 74% (NLCM), 66% (LCM), 48% (GM)

Class I Class II Class III
Class I NLCM 70% 13% 15%

LCM 69% 13% 17%
GM 32% 34% 33%

Class II NLCM 7% 66% 25%
LCM 10% 64% 24%
GM 32% 34% 33%

Class III NLCM 13% 26% 60%
LCM 20% 23% 55%
GM 30% 35% 33%

Mean correct classification: 66% (NLCM), 63% (LCM), 33% (GM)

Confusion matrices are reported for the training data involving two- (top)
and three-class (bottom) mixtures. Acronyms are defined in the caption of
Table 1.

Figure 4. Estimations of class proportions. Mean estimation error as
a function of the number of classes in the training mixture data for
the three models for D2. Acronyms are defined in the caption of
Figure 2.

Table 1. School classification for D1.

SA AN HM BW

SA NLCM 60% 19% 18% 1%
LCM 65% 17% 16% 0%
GM 30% 48% 21% 0%

AN NLCM 7% 77% 14% 0%
LCM 12% 70% 13% 3%
GM 2% 87% 8% 0%

HM NLCM 9% 27% 59% 4%
LCM 14% 31% 45% 7%
GM 5% 65% 25% 3%

BW NLCM 3% 2% 9% 85%
LCM 5% 2% 2% 90%
GM 1% 7% 17% 73%

Mean correct classification: 70% (NLCM), 68% (LCM), 52% (GM)

SA AN HM BW
SA NLCM 48% 20% 27% 3%

LCM 62% 18% 17% 1%
GM 33% 39% 26% 0%

AN NLCM 5% 67% 26% 0%
LCM 15% 55% 26% 2%
GM 8% 65% 25% 0%

HM NLCM 9% 24% 60% 4%
LCM 19% 28% 42% 9%
GM 10% 53% 34% 0%

BW NLCM 4% 2% 23% 70%
LCM 5% 3% 12% 81%
GM 1% 7% 21% 70%

Mean correct classification: 62% (NLCM), 60% (LCM), 51% (GM)

Classification rates are reported for the training data involving two- (top)
and three-class (bottom) mixtures. Three models were considered: the GM,
the LCM, and the NLCM. The following is an example of how the
classification rates should be read row-wise: for class SA (sardine) and model
NLCM, 60% of the samples were classified in class SA, 19% in class AN
(anchovy), 18% in class HM (horse mackerel), and 1% in class BW
(blue whiting).
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echograms with target SP values (Table 4). Two more experiments
were conducted:

4. using D2, three two-class regions were simulated (typically
20–80%), and

5. using D2, four regions were simulated where one was nearly
monospecific and the other three included balanced two-class
mixtures (nearly 50–50%).

In each case, smooth transitions of the SP values from one region
to the other were simulated.

Two performance measures were considered: mean school-
classification rates (i.e. the percentage of schools of each species
correctly classified) and the error of the estimation of SP values.

Results
School classifications
Experiment 1 clearly shows that models trained from proportion-
based data perform better than those trained from presence or
absence data (Figure 1). For slightly to moderately mixed schools,
approximately 30–40% correct classification was achieved for the
NLCM and LCM. For the GM, proportion-based training only
improves the classification performance at low complexities.
Because all species were present in all echograms, the presence or
absence training was unsupervised, and the classification rate was
random.

Mean correct-classification rates are reported for Experiments 2
and 3 (Figure 2). For all models, classification performances
decrease from the single-species case to the three- or four-species
mixtures. NLCM and LCM were, however, more robust to increas-
ing species mixtures, whereas correct classifications with GM
declined more than 10% between one- and two-species cases.
The variability in SP values of the simulated, multispecies mixtures
resulted in classification rates greater than those reported in
Experiment 1, for moderate mixtures. NLCM performed better
than the two other models for both D1 and D2 always, with
gains of up to 7% compared with LCM, and 30% compared
with GM. The main difference became evident with the relatively

weak classification performance of the GM compared with the
conditional models. Species-by-species classification rates are
reported for D1 and D2 in the two- and three-class mixture
cases (Tables 1 and 2). They emphasize that classification perform-
ances are class-dependent. Note that classification results evalu-
ated for D1 and D2 are similar. For D2, the multifrequency
features (38 and 200 kHz) significantly improved the mean
correct-classification rate for all models (Table 2 vs. Table 3).
The main improvement was observed in the discrimination
between the first and third classes. Note, the first class was horse
mackerel-like, which was difficult to distinguish from sardine
and anchovy. Similar conclusions can be drawn from the analysis
of the estimation errors of SP values, as illustrated for D2
(Figure 4).

Species proportions
Visually, the interpolation-based method produced more consist-
ent spatial estimates than the method of Petitgas et al. (2003). It
also performed better than the latter method for overall and
class-by-class, mean-square estimation errors of the proportions
(Table 4).

The NLCM and GM were applied independently or in combi-
nation with the echogram-level method, using its estimated SP
values. For both examples and all classes, the echogram-level
method provided better estimates of the SP values. For the two
school-based classifiers, NLCM performed better than the GM and
the additional information from the estimated SP values resulted
in small improvements in the estimations of species proportion
and school classification. Regarding classification performance, this
improvement was minor for NLCM (69 vs. 70% of mean correct
classification), but more significant for GM (from 33 to 42%).

Discussion
School-based classifications
This paper proposes conditional and generative probabilistic
models and their training procedures for classifying schools in a
multispecies environment. It constitutes an original advance
over earlier methods, which require a significant number of single-
species trawl catches to train the models. In addition, the
probabilistic models are more flexible and could be effective in
preprocessing fishery-acoustic data.

The proposed models performed better than previously
reported models tested with similar datasets (Scalabrin et al.,
1996). Using two-frequency features, the classification results for
three-species mixtures of D2 were .70%. This indicates that
useful classification performances could be expected in a multispe-
cies environment.

Overall, the classification performance emphasized that the con-
ditional models performed better than the generative ones.
Unpublished complementary experiments by the authors indicated
that the latter were also more sensitive to the choice of the school fea-
tures, i.e. their classification performance decreased significantly
when the number of correlated features was increased. In contrast,
the discriminative models were only weakly affected by the presence
of correlated features. Empirical studies using pattern-recognition
schemes reached similar conclusions (Schölkopf and Alexander,
2002).

The NLCM was also a significant improvement over the LCM.
This agreed with other comparisons between linear and non-
linear classification models (Schölkopf and Alexander, 2002).

Table 4. Estimation error for species proportions for the simulated
three- (top) and four-region (bottom) examples; overall and
class-by-class mean estimation error using the echogram-
classification method (ECM) proposed by Petitgas et al., (2003), and
the proposed dissimilarity-based interpolation (DBI).

Global Class I Class II Class III

ECM 0.11 0.08 0.13 0.11
DBI 0.09 0.07 0.11 0.09
NLCM 0.17 0.15 0.14 0.20
NLCM2 0.14 0.16 0.14 0.11
GM 0.30 0.32 0.19 0.35
GM2 0.19 0.20 0.14 0.22

Global Class I Class II Class III
ECM 0.10 0.10 0.11 0.11
DBI 0.09 0.09 0.10 0.09
NLCM 0.21 0.21 0.14 0.25
NLCM2 0.19 0.22 0.10 0.23
GM 0.30 0.23 0.28 0.37
GM2 0.25 0.25 0.16 0.33

Comparison with school-based approaches is also reported. Acronyms are
defined in the caption of Table 1. Best estimation values are emboldened.
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In addition, the greater correct-classification rates reported for
Experiment 2 than for Experiment 1 emphasize the importance
of the variability of SP values in the training dataset to reach
good school-classification performances.

Echogram-level species proportions
An echogram-level interpolation method has been proposed to
infer SP values from known proportions at trawl sites. This interp-
olation scheme was an improvement over the classification-based
method proposed by Petitgas et al. (2003). The comparison of
the school-level and echogram-level methods demonstrated that
the latter achieved lower estimation uncertainty.

School classifications were also improved using the SP values
from the echogram-level procedure in the training of the school-
classification models. Coupling these two complementary methods
proved promising and this will be investigated further. The compu-
tational costs of both methods were similar for the estimation of SP
values. The offline-training step was, however, more complex for the
school-classification models. Reported results were consistent with
those obtained from operational applications. The echogram-level
method could be preferred for estimations of SPs if no specific infer-
ence at the school level were required. The design of specific sampling
strategies should also be of use to optimize trawl durations, species
mixture in the trawl, and school-echogram representation.

Training data quality
The reported results can be regarded as the best performance that
could be expected for an operational application to survey data.
The dependence of classification performance on the quality of
the acoustic data in trawled areas and their association with
trawl catches should be assessed further. Differences were
evident between the school- and echogram-level methods. From
a statistical vantage point, the school-level method assumes that
the dataset of schools at trawled sites is representative of the
overall set of schools. In contrast, the echogram-level method
assumes that echograms at trawled sites are representative of
echograms along the survey track. Operationally, the latter
assumption might be less easily satisfied.

Both methods consider trawl catches as representative of the
observed acoustic data in the trawled areas. In practice, this
assumption might not be entirely met, depending on the type of
trawls used, e.g. pelagic vs. bottom trawls. Therefore, only those
acoustic data corresponding to the actual trawl volume in the
water column should be considered for training. Similarly, an esti-
mate of the relative species catchability is required to relate trawl-
catch analysis to SP values in the training echograms. In this study,
catchability was considered equal for all species.
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