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The spatial dynamics of spawning fish are crucial because they influence the survival rates of eggs and larvae and ultimately impact the
reproductive success of populations. The factors that control these dynamics are complex and potentially many, and they interact. A
model-selection-based approach was developed to confront various hypotheses of control of the spatial distribution of spawning popu-
lation of North Sea plaice (Pleuronectes platessa). For each hypothesis or combination thereof, statistical models were constructed. These
were then ranked and selected based on their ability to adjust and predict observed spatial distributions. The North Sea plaice popu-
lation seems to have developed strong attachment to specific spawning sites, where geographic location and population memory are
important controlling factors. Temporal changes in spatial distribution patterns appear to be influenced primarily by population size
and demography. Variations in hydrographic conditions such as temperature and salinity do not appear to control interannual fluctu-
ations in spatial distribution. This means that, for reproduction, applying conventional habitat models may falsely attribute major
controlling effects to environmental conditions. It is concluded that a multiple-hypothesis approach is essential to understanding
and predicting the present and future distribution of the North Sea plaice population during its spawning season.
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Introduction
Plaice (Pleuronectes platessa) are flatfish that are heavily exploited
in the North Sea (Rijnsdorp and Millner, 1996). Its status has been
evaluated by stock assessment, and information is available for the
period 1957–2007 (ICES, 2008). Its spawning distribution has
been studied mainly through the spatial distribution of eggs
(Harding et al., 1978; ICES, 2005), and little attention has been
paid to the distribution of spawning adults (though see Cushing,
1990; Hunter et al., 2004; Metcalfe, 2006).

Many processes play a role in the control of a population’s
spatial distribution. Environmental control finds its ecological
basis through the ecological niche theory of Hutchinson (1957),
which is delimited by a hypervolume of n dimensions, each an
environmental factor that limits species survival, growth, and/or
reproduction. Spawning populations have ecological preferences
for particular environmental ranges and, because the environment
displays positive spatial autocorrelation, i.e. is more similar in
adjacent than in distant locations (Legendre, 1993; Fortin and
Dale, 2005), the distribution of spawners is also autocorrelated.
Fish distribution is also affected by attracting or repulsing inter-
actions such as during the spawning period, when males and
females tend to concentrate at relatively small spatial scales to

minimize gamete loss and to maximize reproductive success.
Such conspecific attraction may also lead to the distribution of
fish being autocorrelated in space.

Internal controls on spawning distribution are related to the
status of a population, mainly its size and its demography.
Differences in spatial location of the preferred spawning grounds
can exist between young and old spawning fish (Rijnsdorp,
1989). One can therefore reasonably expect that the spatial distri-
bution of spawning will fluctuate dependent on the demographic
structure of the adult population. Population size can influence
the spatial distribution through spatial density-dependence. This
issue was formalized by Fretwell and Lucas (1970), Sutherland
(1983), and MacCall (1990) using the concept of ideal free distri-
bution. Under that concept, individuals possess a complete knowl-
edge of their surrounding environment and are able to select their
habitat in an ideal way to maximize their fitness. In density-
dependent habitat selection (Rosenzweig, 1991; Marshall and
Frank, 1995; Shepherd and Litvak, 2004), fish distribution
contracts to refuge defined by an environmental preference at a
low population size and extends to less suitable areas at high
levels. This phenomenon can lead to a species abundance–area
relationship (Swain and Morin, 1996; Fisher and Frank, 2004;
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Blanchard et al., 2005). Moreover, the spatial distribution of fish
populations tends to have a degree of persistence over years, and
spawning grounds tend to be recurrent for many fish stocks
(Hunter et al., 2003; Solmundsson et al., 2005). The maintenance
of a spatial population pattern across years and generations is
likely driven by conservatism at a population level, determined
by individual memory as well as social behaviour between individ-
uals of the same population (Corten, 2002; Petitgas et al., 2006). In
summary, the spatial distribution of spawning fish may be con-
trolled, possibly simultaneously, by a number of processes that
include environmental conditions, spatial dependence, density-
dependent habitat selection, demographic structure, population
conservatism, and site attachment.

Investigating the role of such a variety of hypotheses on the
control of spawning fish spatial distribution can be achieved
using multi-inference model and information theoretic approach,
as suggested by Hilborn and Mangel (1997), Burnham and
Anderson (2002), Johnson and Omland (2004), Stephens et al.
(2007), and Diniz-Filho et al. (2008). In such an approach,
several models reflecting various hypotheses of control are com-
pared based on a distance metric between model predictions and
observations. The selection procedure can result in several
models being reasonably good candidates for “best model”.
Hypotheses contained in the models can thus be inferred to influ-
ence the spatio-temporal variability of the population’s distri-
bution pattern.

The aim of the present study is to develop such an approach
based on statistical models to identify the processes, among
those that have been previously cited, that control the spatial dis-
tribution of spawning North Sea plaice.

Material and methods
The first quarter of the International Bottom Trawl Survey (IBTS)
is carried out each year in the North Sea from January to March to
collect the data necessary for the stock assessment of several
important demersal fish (ICES, 2007, 2008). The network of
sampling stations is based on ICES statistical rectangles of 18 longi-
tude by 0.58 latitude (Figure 1). Each rectangle is visited by two
countries which carry out a standardized trawl of 30 min using a
36/47 GOV trawl. Trawl locations are selected randomly by the
country among a predefined set of three or four sites inside the
rectangle. This results in a minimum of two sites per rectangle
being trawled each year. For each trawl, the catch is sorted by
species and counted. Length measurements and sexual maturity
stage are recorded, and otoliths are removed for several key
species, on a proportion of fish for seven standard “roundfish”
areas (ICES, 2004; Figure 1). Fish are classified into four stages
of maturity, for which stage 3 is “spawning individuals” with
fluent gonads (ICES, 2004). From 1980 to 2007, 11 343 bottom
trawls were made, an average of 405 bottom trawls annually.
The data are available through the DATRAS database (DAta
for TRAwl Surveys, http://datras.ices.dk/Home/Default.aspx),
which is coordinated by ICES.

Biological response
Abundance data on plaice spawners in IBTS first quarter data were
extracted for the years 1981–2007. Abundance was computed
from the available proportion of spawning adults within a given
length class (Figure 2). As sexual maturity of plaice has only
been recorded since 2001, there were insufficient data to estimate
the proportion of spawning adults within each size class for each

year and each area. Therefore, data on sexual maturity from
2001 to 2007 were pooled to calculate these proportions for the
combined northwest (2, 3, and 4) and southeast (5, 6, and 7)
areas. No data on the sexual maturity of plaice in area 1 were avail-
able. Data on males and females were also combined because there
were too few data to calculate the proportions of spawning adults
for each sex. This reduced the total number of trawl station results
available to 7317 (Figure 1). For each of these station, the abun-
dance of spawning adults was calculated from the product of the
total abundance within each size class and the corresponding pro-
portions of spawning adults in that size class.

Hypotheses of control
Ten possible control factors were modelled: persistence and non-
persistence of the environment, three scales of spatial dependence,
population size, the annual and the spatial age structure, geo-
graphic location, and population memory. Persistence of the
environment is the environmental factor that is spatially struc-
tured, but it did not change during the period of study (depth,

Figure 1. Map of the North Sea, showing the trawl stations of the
first quarter (January–March) of the IBTS from 1980 to 2007 for
which the abundance of spawning adult North Sea plaice is given.
Countries involved in the IBTS, ICES statistical rectangles, standard
roundfish areas, and main locations are also indicated.

Figure 2. Proportions of adult stage 3 (spawning adults) North Sea
plaice per size class. Left, areas 2–4 pooled. Right, areas 5–7 pooled.
No data are available for area 1. The datapoints represent the
proportions observed, and the lines the adjusted proportions using a
smoothing spline for missing size classes.
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mean annual bottom shear stress, and sediment type at each
location). Non-persistence of the environment is another environ-
mental condition that is spatially structured, and it has changed
during the period of study (bottom temperature and salinity).
Spatial dependence (also termed spatial autocorrelation) describes
the spatial structure present in the distribution of plaice.
Potentially, it may be shared with other controls such as persist-
ence and non-persistence of the environment. Population size is
the annual population estimate, in biomass and numbers. The
annual age structure (referred to as annual demography) is the
proportion of each cohort each year, and the spatial age structure
(referred to as spatial demography) is the distribution of each
cohort at each trawling station in each year. Geographic location
corresponds to the absolute coordinates (latitude and longitude),
and population memory is the degree of persistence of plaice dis-
tribution from one year to the next. Geographic location supposes
that plaice return to the same spawning site each year, whereas
population memory reflects the understanding that current
spatial distribution depends on past distribution.

Five environmental variables were used in the analysis: depth
(m), bottom temperature (8C), bottom salinity, seabed stress
(N m22), and sediment type. Depth and bottom temperature
and salinity were measured at each trawling location from 1981
to 2007. Salinity was transformed using the equation exp(sali-
nity)/1015 to be closer to normality. Seabed stress is a measure
of the shear friction of water on the seabed caused by the tidal
current. It was estimated using a two-dimensional hydrodynamic
model (Aldridge and Davies, 1993) maintained by the Proudman
Oceanographic Laboratory, and running on a regular grid of 1/88
of longitude by 1/128 of latitude (WGS 1984 datum). The grid of
points was then interpolated using ArcMap’s Spatial Analyst
extension (ESRI, 2005) to create a continuous raster layer of resol-
ution 1 km2. The seabed stress was log-transformed to be closer to
normality. Sediment type originated from the seafloor sediment of
the North Sea built during the MARGIS project (Schlüter and
Jerosch, 2008). Sediment classification was summarized into five
classes: fine sand, coarse sand, mud, pebbles, and gravels. A
value of seabed stress and sediment type was allocated to each
trawl by resampling the corresponding maps at trawl locations
using ArcMap’s Hawth’s Analysis Tools extension (Beyer, 2004).
Depth, seabed stress, and sediment type were grouped to represent
persistence of the environment, whereas bottom temperature and
salinity were retained to represent non-persistence of the
environment.

Spatial dependence in the distribution of spawning plaice was
modelled using principal coordinates of neighbour matrices
(PCNMs). PCNMs are specifically designed to describe the
spatial structure present in the distribution of an organism over
a wide range of scales (Borcard and Legendre, 2002; Dray et al.,
2006; Bellier et al., 2007). Extraction of these PCNMs was made
following Borcard and Legendre (2002). A Euclidean distance
matrix was built using latitude and corrected longitude of the
7317 trawling stations. The longitude correction [longitude�
cos({latitude�p}/180)] transforms decimal degrees of longitude
into decimal degrees of latitude that are of constant distance
using a Mercator-type projection formula. The resulting distance
matrix was then truncated by recoding all distances above a par-
ticular threshold to four times that threshold. The threshold was
taken as the maximum distance between two neighbouring
stations to keep all stations connected. A principal coordinate
analysis was then performed on this truncated distance matrix,

leading to 7317 potential PCNMs from which only positive
PCNMs (eigenvectors with positive eigenvalues) were retained.

PCNMs that described the spatial structure present in plaice
distribution were then selected. Following Borcard and Legendre
(2002), log-transformed abundances were detrended before selec-
tion to remove the significant spatial trend (adjusted r2 ¼ 0.196,
p , 0.001) that could not be modelled using PCNMs. This was
accomplished using a quadratic trend based on latitudinal and
corrected longitudinal coordinates of the trawl stations. PCNMs
were then confronted with these detrended log-transformed abun-
dances following Blanchet et al. (2008). In the first step, a global
test including all positive PCNMs was performed to model the
biological response. As that test was significant, the analysis was
carried on to the next step, which consists of forward selection.
In forward selection, the significance of each PCNM is assessed
using a test of 999 Monte Carlo permutations and according to
a p-value and the adjusted r2 (explained variance) of the model
calculated with all the PCNMs. PCNMs are successively tested
and the selection procedure stops if either the newly added
PCNM is not significant at the chosen p-value threshold or it
makes the adjusted r2 of the whole model increase more than
that calculated for the model with all PCNMs. To avoid building
spatial models with too many variables (and so to risk biasing
the weight of the different hypotheses), only highly significant
PCNMs that explained most of the variability in the biological
response were retained. In this context, the adjusted r2 was not
restrictive enough (too high) to reduce the final number of
PCNMs effectively, so a very low value (p , 0.001) for the alpha
criterion was chosen. Once this value of the alpha criterion had
been chosen, the adjusted r2 did not play a significant role in redu-
cing the number of selected PCNMs.

The spatial scale of these PCNMs was determined following the
method outlined in Bellier et al. (2007). A variogram with a
Gaussian model was adjusted, using least-square regression
(Webster and Oliver, 2001), to determine the range of the vario-
gram that represented the spatial scale described by each PCNM.
The eigenvalue of each PCNM was plotted against their range
(Figure 3) to group PCNMs describing equivalent spatial scales
into three submodels: broad, medium, and fine scale (Bellier
et al., 2007). These submodels were used as three distinct hypoth-
eses of control. The free software R combined with the PrCoord
Tool 1.0 of CANOCO 4.5 software (ter Braak and Smilauer,
2002) was used for PCNM extraction. The “forward.sel” function
of the “packfor” package (Dray et al., 2009) was used for forward
selection of the PCNMs. Experimental and theoretical variograms
were calculated using the geoR package (Ribeiro and Diggle,
2001).

Control through demography was expressed through both
spatial (at each trawl) and annual (each year) demography using
the percentage of each cohort from 1 to 5 years old. These have
been provided annually since 1957 (ICES, 2007) by an ICES
Working Group charged with stock assessment using virtual popu-
lation analysis. The proportion of each age in each size class was
applied to the total number of fish caught in each trawl.

Control through population size was integrated using the
spawning-stock biomass of the year as well as total population
size. These indices are also provided by ICES (ICES, 2008) for
each year for the period 1957–2007 (Figure 4).

Spatial persistence of population distribution over years was
expressed using geographic location and population memory.
The identity of the ICES statistical rectangles was used as
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a categorical variable to represent the geographic location. The
memory of the population was expressed through the observed
abundance of spawning adults in the previous year. Each trawl
station was allocated the observed abundance of the previous
year using the spatial joining tools of ArcMap 9.1. For trawl

positions for which there was no observation in the previous
year for reasons of time constraints or poor weather, the observed
abundance at the closest location was used instead. This reduced
the total number of trawling stations available from 1981 to
2007 to 6313.

Model structure
Generalized additive models (Hastie and Tibshirani, 1990; Guisan
et al., 2002) were used to build the models. They allow one to
relate, in a non-linear way, a biological response to several expla-
natory variables using smoothing functions. As is often the case
with ecological data, the abundance of spawning adults displayed
a zero-inflated distribution. The modelling procedure had to be
split into two steps: a binomial model with a logit link and a
Gaussian model with an identity link were constructed on pres-
ence/absence and non-null log-transformed abundance. For the
binomial model, the various hypotheses of control were tested:
geography, persistence and non-persistence of the environment,
the three spatial submodels, annual demography, population
size, and memory. For the Gaussian model, spatial demography
was also added.

Model adjustment and prediction
Models were fitted (adjusted) to one part of the dataset and
applied to predict another part of the dataset to investigate the
effect of the dataset on the models and hypothesis selection. In
strategy (a), Predict 2000s, models were fitted to data from the
beginning of the study period (1981–1999) and applied to
predict the spatial distribution of plaice for the later part of the
study period (2000–2007). In all, 4410 and 3190 trawls were
used to fit binomial and Gaussian models, respectively, and 1088
and 843 trawls, for binomial models and Gaussian models,
respectively, were used for prediction. In strategy (b), Predict
1980s, models were fitted at the end of the study period (1990–
2007) and applied to predict the situation at the beginning of
the study period (1981–1989). In this instance, 4268 and 3229
trawls were used to fit binomial and Gaussian models, respectively,
and 962 and 647 trawls were used for prediction.

The degrees of smoothing were adjusted simultaneously on the
corresponding fitting period for all variables of the same hypoth-
esis (Table 1). Finally, for each class of model (binomial or
Gaussian), all combinations of the hypotheses were calculated,
resulting in 2n candidate models (where n is the number of
hypotheses). Models were implemented using R (R Development
Core Team, 2008). The “gam” package (Hastie, 2006) was used
to construct the binomial and Gaussian models. The “step.gam”
function of the MASS library (Venables and Ripley, 2002) was
used to adjust the degrees of smoothing of the explanatory
variables.

Model-selection procedures
For each strategy, two selection procedures were adopted. Models
were selected through both their ability to fit and to predict the
spatial distribution of plaice and were compared based on their
goodness-of-fit using the Akaike Information Criterion (AIC;
Akaike, 1974) and AIC differences (Burnham and Anderson,
2002; Johnson and Omland, 2004), which are calculated according
to the following formulae:

AICi ¼ �2 log Li þ 2pi; ð1Þ

Figure 4. ICES estimation (by the IBTS Working Group) of North Sea
plaice population size (thousands of fish) and spawning-stock
biomass (’000 t) from 1980 to 2007.

Figure 3. Plot of the values of the 23 selected PCNMs against their
eigenvalue. Ranges were obtained by fitting a Gaussian model as a
theoretical variogram to each spatial predictor. Three scales were
determined: broad scale, eigenvectors with a range between 111 and
233 km (1–2.1 decimal degrees of latitude); medium scale,
eigenvectors with a range between 55 and 111 km (0.5–1 decimal
degrees of latitude); and fine scale, eigenvectors with a range
between 0 and 55 km (,0.5 decimal degrees of latitude).
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Table 1. The formulae for the hypotheses.

Hypotheses Binomial models Gaussian models

Strategy (a) “Predict 2000s”
G as.factor(StatisticalRectangle) as.factor(StatisticalRectangle)
Ep s(Depth, 4) þ s(Bedstress, 4) þ as.factor(Sediments) s(Depth, 4) þ s(Bedstress, 4) þ as.factor(Sediments)
Enp s(Temperature, 4) þ s(Salinity, 4) s(Temperature, 4) þ s(Salinity, 4)
Bs s(Ax1, 4) þ s(Ax3, 4) þ s(Ax4, 4) þ s(Ax5, 4) þ Ax6 þ s(Ax8, 4) Ax1 þ s(Ax3, 4) þ s(Ax4, 4) þ s(Ax5, 4) þ s(Ax6, 4) þ s(Ax8, 4)
Ms Ax9 þ s(Ax10, 4) þ s(Ax11, 4) þ s(Ax14, 4) þ s(Ax15, 4) þ s(Ax16, 4) þ s(Ax18,

1) þ s(Ax21, 4) þ s(Ax23, 4)
s(Ax9, 4) þ s(Ax10, 4) þ Ax11 þ s(Ax14, 4) þ s(Ax15, 4) þ s(Ax16, 4) þ s(Ax18,

4) þ s(Ax21, 4) þ s(Ax23, 2)
Fs s(Ax26, 4) þ s(Ax32, 4) þ s(Ax41, 4) þ s(Ax43, 4) þ s(Ax47, 3) þ s(Ax49, 4) þ s(Ax84,

4) þ s(Ax88, 3)
s(Ax26, 4) þ s(Ax32, 4) þ s(Ax41, 4) þ s(Ax43, 4) þ s(Ax47, 4) þ s(Ax49, 4) þ s(Ax84,

4) þ Ax88
Ps s(PopulationSize, 4) þ SpawningStockBiomass s(PopulationSize, 4) þ s(SpawningStockBiomass, 4)
Da s(Age1a, 2) þ s(Age2a, 4) þ s(Age3a, 4) þ Age4a þ Age5a Age1a þ s(Age2a, 4) þ s(Age3a, 4) þ Age4a þ s(Age5a, 4)
Ds – s(Age1s, 4) þ s(Age2s, 4) þ s(Age3s, 4) þ s(Age4s, 4) þ s(Age5s, 4)
M s(PreviousYearAbundance, 4) s(PreviousYearAbundance, 4)

Strategy (b) “Predict 1980s”
G as.factor(StatisticalRectangle) as.factor(StatisticalRectangle)
Ep s(Depth, 4) þ s(Bedstress, 4) þ as.factor(Sediments) s(Depth, 4) þ s(Bedstress, 4) þ as.factor(Sediments)
Enp s(Temperature, 4) þ s(Salinity, 3) s(Temperature, 4) þ s(Salinity, 4)
Bs s(Ax1, 4) þ Ax3 þ s(Ax4, 4) þ s(Ax5, 4) þ s(Ax6, 4) þ s(Ax8, 4) s(Ax1, 4) þ s(Ax3, 4) þ s(Ax4, 4) þ s(Ax5, 4) þ s(Ax6,) þ s(Ax8, 4)
Ms Ax9 þ s(Ax10, 4) þ s(Ax11, 4) þ s(Ax14, 4) þ s(Ax15, 4) þ s(Ax16, 4) þ s(Ax18,

1) þ s(Ax21, 4) þ Ax23
s(Ax9, 3) þ s(Ax10, 4) þ s(Ax11, 4) þ s(Ax14, 4) þ s(Ax15, 4) þ s(Ax16, 4) þ s(Ax18,

4) þ s(Ax21, 4) þ Ax23
Fs s(Ax26, 4) þ s(Ax32, 4) þ s(Ax41, 4) þ s(Ax43, 4) þ s(Ax47, 4) þ s(Ax49, 4) þ s(Ax84,

4) þ s(Ax88, 4)
s(Ax26, 4) þ s(Ax32, 4) þ s(Ax41, 4) þ s(Ax43, 4) þ s(Ax47, 4) þ s(Ax49, 3) þ s(Ax84,

4) þ s(Ax88, 3)
Ps PopulationSize þ s(SpawningStockBiomass, 4) PopulationSize þ s(SpawningStockBiomass, 4)
Da Age1a þ s(Age2a, 4) þ s(Age3a, 3) þ Age4a þ Age5a Age1a þ Age2a þ s(Age3a, 4) þ Age4a þ s(Age5a, 4)
Ds – s(Age1s, 4) þ s(Age2s, 4) þ s(Age3s, 4) þ s(Age4s, 4) þ s(Age5s, 4)
M PreviousYearAbundance s(PreviousYearAbundance, 4)

The explanatory variables for each hypothesis for the binomial and the Gaussian models were fitted on the corresponding fitting period for strategy (a), Predict 2000s, and strategy (b), Predict 1980s. An s means
that a smoothing function has been used, and the corresponding degree of smoothing is indicated in parentheses. PCNMs are denoted by the term Ax. Hypotheses: G, geography; Ep, persistence of the
environment; Enp, non-persistence of the environment; Bs, broad-scale submodel; Ms, medium-scale submodel; Fs, fine-scale submodel; Ps, population size; Da, annual demography; Ds, spatial demography; M,
population memory.
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where AICi is the AIC of the ith model, log Li the log-likelihood of
the ith model, and pi the number of parameters (explanatory vari-
ables) of the ith model. Then

Di ¼ AICi � AICmin; ð2Þ

where Di is the AIC difference for the ith model, and AICmin is the
lower AIC over all candidate models (i.e. the AIC of the “best”
model).

In the binomial model, the log-likelihood of formulation (1) is
calculated between predicted probabilities of presence (from 0 to
1) and binary observed presence/absence (0 or 1) using the follow-
ing formula (McCullagh and Nelder, 1989):

� 2� log Li ¼ �2

�
Xn

j¼1

Yj � log Ŷi;j þ ð1� YjÞ � logð1�Ŷi;jÞ

 !
;

ð3Þ

where Y is the vector of observed presence/absence and Ŷi the
vector of predicted probabilities of presence of the ith model for
j observations and predictions. In the Gaussian model, the
log-likelihood is calculated between predicted and observed log-
transformed abundances using the formula (McCullagh and
Nelder, 1989)

� 2� log Li ¼ �2

�
Xn

j¼1

ðYj � Ŷi;jÞ
2

s2
� 2� j� logðsÞ þ C

 !
; ð4Þ

where Y is the vector of observed non-null abundances, Ŷi the
vector of predicted abundances of the ith model, s2 the residual
sum of squares between predicted and observed abundances, j
the number of observations, and C is a constant.

According to formulations (1) and (2), the best among all can-
didate models is that with the lowest AIC, and Di ¼ 0. It is the
model with the best adjustment to observed data and parsimony
in the number of explanatory variables. Models were ranked in
increasing order of Di. Only binomial and Gaussian models with
Di , 10 were selected because models with higher values of Di

are unlikely to include the best model (Burnham and Anderson,
2002).

Models were also compared in terms of their ability to predict
using the log-likelihood between observations and prediction
according to formulations (3) and (4). The log-likelihood value
being negative, the best model is that with the highest
log-likelihood. Other models were compared with this best
model using a likelihood ratio test (LRT; Burnham and
Anderson, 2002):

LRTi ¼ �2ðlog Li � log LmaxÞ; ð5Þ

where LRTi is the LRT of model i, and log Lmax is the
log-likelihood of the best model (hence with a value of LRT of
0). Models were ranked according to their LRT from smallest to
largest. The same selection threshold of 10 as for Di was used to
retain only a reduced set of selected models.

The AIC was calculated with the AIC function of the “stats”
package in R (R Development Core Team, 2008), and the
log-likelihood using the “dbinom” and “dnorm” functions in R.

Model evaluation
Binomial and Gaussian models selected based on the LRT were
reapplied to the corresponding prediction dataset of each strategy
within the same range used to fit the Gaussian models (more
restrictive, because they are based on fewer observations). The pre-
dicted probabilities of presence and predicted log-transformed
abundance were then combined in a delta approach where they
are multiplied (Stefánsson, 1996) to predict spatial distribution.
This resulted in several predicted distributions, through combi-
nation of binomial and Gaussian models. Predicted distributions
were compared graphically with observed distributions by a
Taylor diagram (Taylor, 2001), through the use of three similarity
indices. These were standard deviation, root-mean-squared error
(RMSE), and a Spearman correlation coefficient. Plot of the stan-
dard deviation allows one to establish whether the model is able to
reproduce the same variability in its prediction as those in the
observations. The RMSE is computed as the root of the mean of
the squared differences between each prediction and each obser-
vation. It incorporates both the variance of the model and its
bias. The Spearman correlation coefficient and the RMSE allow
one to quantify the correspondence between the observed and pre-
dicted patterns. Delta model predictions were compared with
observations over the whole study period of 1981–2007. Also, pre-
dictions from a pure environmental delta model and a control
delta model (a combination of the worst determined binomial
and Gaussian models) were plotted for comparison with selected
models. The Taylor diagram was computed using the “plotrix”
package (Lemon et al., 2008) in R.

Results
PCNM extraction and selection
PCNMs were used to depict spatial dependence in the distribution
of spawning plaice. A threshold of 1.13 (decimal degrees of lati-
tude) was used to truncate the distance matrix between stations.
In all, 2965 positive PCNMs were extracted from the principal cor-
respondence analysis, and 23 were determined as significant by
forward selection (p , 0.001; adjusted r2 ¼ 0.26). From these 23
PCNMs, three submodels representing three spatial scales were
identified (Figure 5): broad scale (111–233 km), medium scale
(55–111 km), and fine scale (,55 km). Six PCNMs accounted
for the broad scale, nine for the medium scale, and eight for the
fine scale.

Model selection
Nine hypotheses were confronted using binomial models, and ten
using Gaussian models, which resulted, respectively, in 511 and
1023 possible models. Based on the selection procedures, 41
models were selected (Table 2). The selected models depended
on the selection criterion, which means that the best-fitted
models to the data were not those with the best predictive
power. Models selected based on their predictive power were
more numerous (Table 2) and less complex in terms of the
number of hypotheses and explanatory variables than those
selected based on their adjustment to the data (Figure 6). The
selected models were also not the same according to the strategy
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and type of model (Table 2); binomial models were less complex
than Gaussian models (Figure 6).

The frequencies of each hypothesis within the set of selected
models were estimated (Table 3). Three hypotheses dominated:
population size, population memory, and spatial demography.
Persistence of the environment and broad- and medium-scale sub-
models were also important, but less frequent. Geography, non-
persistence of the environment, fine-scale submodel, and annual
demography were the less frequent hypotheses and the ones that
showed strong differences in the selected models according to
the type of model and selection procedure (Table 3). Geography

was more frequent in models selected from prediction, and
especially in Gaussian models. Non-persistence of the environ-
ment and fine-scale submodel were more frequent in Gaussian
models selected from fitting and more frequent in binomial
models selected from prediction. Annual demography was more
frequent in selected Gaussian than in selected binomial models.

Model evaluation
For strategy (a), Predict 2000s, combinations of the nine binomial
and four Gaussian models, selected from prediction, were reap-
plied to the period 2000–2007 and resulted in 32 predicted distri-
butions. For strategy (b), Predict 1980s, combinations of the
unique binomial model with the 12 Gaussian models, selected
from prediction, were reapplied to the period 1981–1989 and
resulted in 12 predicted distributions. The Taylor diagram com-
paring these predicted distributions with the observed distribution
is presented in Figure 7. A pure environmental model and a
control model (determined as the worst among all models) are
also shown. For strategy (a), Predict 2000s, the control model is
the combination of the binomial model containing non-
persistence of the environment and annual demography, and the
Gaussian model containing annual demography. For strategy
(b), Predict 1980s, it is the combination of geography, non-
persistence of the environment, medium- and fine-scale submo-
dels, and annual demography with the annual demography.
Maps of the corresponding predicted distributions are presented
in Figure 8.

The models selected were clearly distinct from the pure
environmental and the control models. Predictions from the
selected models have better correlation, higher standard devi-
ations, and lower RMSEs with observations than the environ-
mental and the control model, confirming that the selected
models have greater predictive power. The predicted distribution
patterns from the best model are more similar to the observed dis-
tribution than to the others (Figure 8). The selected models had
similar correlations, standard deviations, and RMSEs, which
make them hard to distinguish using the Taylor diagram.
Selected models of strategy (a), “Predict 2000s”, and strategy (b),
“Predict 1980s”, can be distinguished on the diagram, although
they have similar values of correlation (r2 close to 0.7), RMSE
(�0.7), and standard deviation (0.75–0.80).

Discussion
The influence of the selection procedure
The selection procedure based on either fitting (measured using
the AIC) or prediction (based on LRT) performances had an
impact on model selection. Models selected based on their
fitting performances were usually more complex than those
selected on their prediction performances, suggesting that selec-
tion based on the AIC tends to promote more complex models
that are possibly overfitted to the data. This may arise because
data are autocorrelated in both space and time, with the true
number of independent observations being smaller than the
number of empirical ones. Such a phenomenon would artificially
inflate the weight of the first term of the AIC (the model adjust-
ment) compared with the second term (the parsimony of the
model), so promoting fitting performance over model parsimony.
Moreover, whereas PCNMs are constructed to account for auto-
correlation (Dray et al., 2006; Bellier et al., 2007), it seems that
their use as explanatory variables does not solve the statistical

Figure 5. PCNM spatial submodels (arbitrary units): top, broad-scale
submodels; centre, medium-scale submodels; and bottom, fine-scale
submodels. Black lines denote zero values. See Figure 3 for more
detail on the scales of the submodels.
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Table 2. The formulae for the models selected.

Selection procedure Model formulae Di LRT Selection procedure Model formulae Di LRT

Strategy (a) “Predict 2000s” Strategy (b) “Predict 1980s”
Fitting (n ¼ 6) Binomial (n ¼ 4) Fitting (n ¼ 9) Binomial (n ¼ 5)

Ep þ Enp þ Bs þ Ms þ Ps þ Da þ M 0 40.9 Ep þ Enp þ Bs þ Ms þ Ps þ M 0 61.4
Ep þ Enp þ Bs þ Ms þ Da þ M 0.7 71.6 Ep þ Bs þ Ms þ Ps þ M 2.3 79
Ep þ Bs þ Ms þ Ps þ Da þ M 3.9 39.7 Ep þ Enp þ Bs þ Ms þ Fs þ Ps þ M 6.6 66.3
Ep þ Bs þ Ms þ Da þ M 8.9 103.5 Ep þ Bs þ Ms þ Fs þ Ps þ M 7.8 83.2
Gaussian (n ¼ 2) Ep þ Bs þ Ms þ Ps þ Da þ M 8.9 40.5
Ep þ Enp þ Bs þ Ms þ Ps þ Da þ Ds þ M 0 157.3 Gaussian (n ¼ 4)
Enp þ Bs þ Ms þ Ps þ Da þ Ds þ M 7.5 153.6 Ep þ Enp þ Bs þ Ms þ Fs þ Ps þ Da þ Ds þ M 0 28

Prediction (n ¼ 13) Binomial (n ¼ 9) Ep þ Bs þ Ms þ Fs þ Ps þ Da þ Ds þ M 3 13.3
Ep þ Enp þ Bs þ Ps þ M 130.3 0 Ep þ Enp þ Bs þ Ms þ Fs þ Ps þ Ds þ M 3.8 31.4
Ep þ Enp þ Bs þ M 149.4 1.2 Ep þ Bs þ Ms þ Fs þ Ps þ Ds þ M 6.8 18.5
Ep þ Enp þ Bs þ Fs þ Ps þ M 128.3 3.6 Prediction (n ¼ 13) Binomial (n ¼ 1)
Ep þ Enp þ Bs þ Fs þ M 148.2 4.6 Ep þ Ms þ Fs þ Ps þ Da þ M 149.7 0
Enp þ Bs þ Ms þ Ps þ M 74.3 8.2 Gaussian (n ¼ 12)
Enp þ Bs þ Ms þ M 97.5 8.6 G þ Ep þ Ms þ Ps þ Da þ Ds þ M 105.5 0
Ep þ Enp þ Bs þ Ms þ Ps þ M 56.3 9.1 G þ Ms þ Ps þ Da þ Ds þ M 109.7 2
Ep þ Enp þ Bs þ Ms þ M 81.2 9.5 Ep þ Bs þ Ms þ Ps þ Da þ Ds þ M 23.4 3.3
Enp þ Bs þ Ms þ Fs þ Ps þ M 87.1 9.6 G þ Ep þ Ps þ Da þ Ds þ M 82.6 4.7
Gaussian (n ¼ 4) G þ Ep þ Bs þ Ms þ Ps þ Da þ Ds þ M 118.3 4.7
Bs þ Ms þ Fs þ Ps þ Ds þ M 55.2 0 G þ Bs þ Ms þ Ps þ Da þ Ds þ M 120.1 6.8
Ep þ Bs þ Ms þ Fs þ Ps þ Ds þ M 50.6 1.5 G þ Ep þ Bs þ Ps þ Da þ Ds þ M 83.8 7
Bs þ Ms þ Ps þ Ds þ M 45.5 4.9 G þ Ep þ Ms þ Ps þ Ds þ M 106.8 7.3
Ep þ Bs þ Ms þ Ps þ Ds þ M 38.1 6.0 G þ Ep þ Ms þ Ps þ Da þ Ds 157.9 7.8
Bs þ Ms þ Ps þ Da þ Ds þ M 45.1 8.9 G þ Ps þ Da þ Ds þ M 88.1 8.2
Ep þ Bs þ Ps þ Da þ Ds þ M 51.1 9.6 Bs þ Ms þ Ps þ Da þ Ds þ M 45.1 8.9

Ep þ Bs þ Ps þ Da þ Ds þ M 51.1 9.6

The models were selected according to their capability to fit (Di) and predict (LRT) the observed distribution; those selected from fitting are those with a Di , 10, and those selected from prediction are those with
an LRT of ,10. For selection based on fitting, the LRT is also given as an informative value as well as the Di for selection based on prediction. In both cases, Di and LRT values are .10, which show that best-fitting
models are not those that predict best. Formulae are presented for selected binomial and Gaussian models for strategy (a), Predict 2000s, and strategy (b), Predict 1980s. Hypotheses: G, geography; Ep, persistence of
the environment; Enp, non-persistence of the environment; Bs, broad-scale submodel; Ms, medium-scale submodel; Fs, fine-scale submodel; Ps, population size; Da, annual demography; Ds, spatial demography; M,
population memory.
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problem of autocorrelation for model selection. Burnham and
Anderson (2002) did not exclude the possibility that an
AIC-based selection may result in an overfitted model. They
advised users to avoid “models with a great many parameters”

more than is thought to be really needed. To preclude an unrea-
sonable number of competing models (Diniz-Filho et al., 2008),
models were constructed as the combination of hypotheses
rather than as individual explanatory variables. Moreover, all the
degrees of smoothing were not considered, but were determined
before the combination of the various hypotheses, also limiting
the final number of competing models.

Model overfitting resulting from the AIC selection is a critical
issue. It can lead to inappropriate promotion of complex hypoth-
eses that contain many variables. Such models may display a good
adjustment to the data, but low predictive power. This is illustrated
by the fine-scale submodel hypothesis (containing eight variables),
which was retained in AIC selection, but rejected when selecting
model predictive performance. Inversely, this can lead to underva-
luing hypotheses such as pure geography. When categorical factors
are used, each category is counted as one parameter in the model.
Here, geographical models based on 114 statistical rectangles
treated as factors are strongly penalized because their AIC value
is so inflated. Conversely, when a selection procedure is based
on prediction, the number of variables is not taken into account
in the LRT, so the geography is not penalized more than the
other hypotheses. For these reasons, we argue that model selection
based on prediction is more relevant to inferring the role of the
various hypotheses of control on the spatial distribution of spawn-
ing plaice.

The influence of datasets on model and hypothesis
selection
The results of the present study reveal that selected models are not
the same, according to the period on which they are adjusted and
applied. The approach has proven to be informative because it has
been shown that these differences in selected models demonstrate

Figure 6. The complexity of selected binomial and Gaussian models.
Complexity is represented by the mean number of hypotheses and
explanatory variables in the models retained. The mean and the
standard deviation of the number of hypotheses and explanatory
variables are given for strategy (a), Predict 2000s, and strategy (b),
Predict 1980s, for binomial and Gaussian models and for the two
selection procedures. No value has been calculated for the binomial
model from the prediction of strategy (b) because only one model
was selected.

Table 3. Frequencies of the different hypotheses, giving the percentage of the model in which each hypothesis is present.

Hypotheses All models Strategy (a) “Predict 2000s” Strategy (b) “Predict 1980s” Binomial models Gaussian models

Fitting-based selection
G 0 0 0 0 0
Ep þþþþ þþþþ þþþþ þþþþ þþþþ

Enp þþþ þþþ þþ þþ þþþ

Bs þþþþ þþþþ þþþþ þþþþ þþþþ

Ms þþþþ þþþþ þþþþ þþþþ þþþþ

Fs þþ 0 þþþ þ þþþ

Ps þþþþ þþþ þþþþ þþþþ þþþþ

Da þþþ þþþþ þþ þþþ þþþ

Ds þþþþ þþþþ þþþþ 2 þþþþ

M þþþþ þþþþ þþþþ þþþþ þþþþ

Prediction-based selection
G þþ 0 þþþ 0 þþþ

Ep þþþ þþþ þþþ þþþ þþþ

Enp þþ þþþ 0 þþþþ 0
Bs þþþ þþþþ þþ þþþþ þþþ

Ms þþþ þþþ þþþ þþþ þþþþ

Fs þ þþ 0 þþ þ

Ps þþþþ þþþ þþþþ þþþ þþþþ

Da þþ 0 þþþþ þ þþþ

Ds þþþþ þþþþ þþþþ 2 þþþþ

M þþþþ þþþþ þþþþ þþþþ þþþþ

Recoding was according to five levels: 0 (absence), þ (,25%), þþ (25–50%), þþþ (50–75%), þþþþ (75–100%). For each selection procedure,
results are indicated for the whole set of models selected as well as according to the model class (binomial or Gaussian) and strategy: (a) Predict 2000s,
and (b) Predict 1980s. Hypotheses: G, geography; Ep, persistence of the environment; Enp, non-persistence of the environment; Bs, broad-scale submodel;
Ms, medium-scale submodel; Fs, fine-scale submodel; Ps, population size; Da, annual demography; Ds, spatial demography; M, population memory.
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that some hypotheses have different relevance according to the
period considered. The non-persistence of the environment for
the beginning of the period (1980s and 1990s) was more relevant
to explaining the plaice distribution observed in the 2000s.

However, when models are defined from the environmental con-
ditions of 1990s and 2000s to explain observations in the 1980s,
the non-persistence of the environment is no longer relevant.
Conversely, geography and annual demography were determined
as more relevant hypotheses to predict the spatial the distribution
in the 1980s than during the 1990s and 2000s. These aspects will be
discussed below, addressing the role of each hypothesis on the
spatial distribution of plaice.

Relevance of the different factors to the spatial
distribution of spawning plaice
The analysis of the hypotheses retained in selected models from
prediction reflects differences in the relevance of some hypotheses
according to the type of model (either binomial or Gaussian). This
suggests that the presence/absence of spawning plaice at a certain
location is not controlled in exactly the same way as abundance.
According to the frequencies of the various hypotheses in
models selected from prediction, five hypotheses can be shown
to be important (present in more than 50% of selected models)
in determining presence/absence of spawning plaice: persistence
of the environment, broad and medium scale, and population
size and memory. Geographic location and population demogra-
phy (annual and spatial) appear to be additional factors in con-
trolling the abundance.

The importance of persistence of the environment in determin-
ing the spatial distribution of both presence/absence and abun-
dance of spawning plaice means that its spatial distribution is
primarily controlled by geographic variation in depth, seabed
stress, and sediment type. Whereas non-persistence of the environ-
ment was present in most of the models selected, we think that it is
not a hypothesis that can explain the spatial distribution of spawn-
ing plaice. We argue that the difference in frequency of both geo-
graphic location and non-persistence of the environment
according to the period considered reflects an overlapping effect
between them in the 1980s on the spatial distribution of plaice.
In the 1980s, the effect of geography was embedded in non-
persistence of the environment, and although the non-persistence
of the environment changed subsequently, the spatial distribution
of plaice did not really change, revealing the importance of

Figure 7. Plot of the Taylor diagram. Only the part representing a
positive correlation is shown. Observations and predictions of
selected (square), environmental (triangle), and control (circle)
models are compared for strategy (a), Predict 2000s (filled symbols),
and strategy (b), Predict 1980s (open symbols), using the standard
deviation, the RMSE, and the Spearman correlation. Observations are
symbolized as a point referred to as the reference point and are
normalized so that the standard deviation is equal to 1, the
correlation equal to 1 (the correlation between the observations and
themselves), and the RMSE equal to 0 (the difference between the
observations and themselves). Values of the indices for the
predictions are plotted with the standard deviation on the y-axis, the
correlation on the radii of the circle, and the RMSE on concentric
circles around the reference point.

Figure 8. Maps of the distribution of spawning adult plaice. Maps for the best selected model, the environmental model, and the control
model were computed from predicted values of these models for the years 2004 [strategy (a), Predict 2000s], and 1985 [strategy (b), Predict
1980s]. The corresponding maps of the observed distribution of spawning adults for the same two years are also shown.
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geography. This means that it is more likely the spatial structure of
the non-persistence of the environment (highlighted by the
importance of the geographic location) that is important rather
than the pure environmental effect of non-persistence of the
environment. Therefore, the present study does not provide
proof that temporal changes in temperature and salinity could
explain temporal variations in plaice spatial distribution during
the spawning season. This lesser importance of non-persistence
of the environment contrasts with the results of most studies
based on habitat modelling (Koubbi et al., 2003, 2006; Loots
et al., 2007; Planque et al., 2007; Vaz et al., 2008). In those
models, the environment was generally the only hypothesis
tested. As a result, one or several environmental variables were
often retained in the final habitat model because they explained
some variation in distribution. The results of the present study
show that when control by fluctuations in the environment is con-
fronted with other hypotheses, it may not be as important as orig-
inally thought. This means that non-persistence of the
environment may not directly control the spatial distribution of
a population, particularly during the reproductive season, but it
can be correlated spatially with other more direct factors that are
not (or not adequately) taken into account in habitat modelling
studies. This is a critical issue in the context of hypothesis infer-
ence because it reveals that classical habitat modelling may attri-
bute too much importance to non-persistent factors simply
because they consider just the environmental hypothesis. The
lesser importance of non-persistence of the environment com-
pared with factors may reflect the fact that this study focuses on
the spatial distribution of a population and not on that of the
species. This implies that the spatial scale involved is not the
same and suggests that the temporal variations in temperature
and salinity experienced by the North Sea plaice population
were within the tolerance range of the species. Also, because the
present study is restricted to the particular phase of spawning in
the plaice life cycle, this may also suggest that the North Sea pro-
vides suitable hydrographic conditions throughout for plaice
reproduction and that temperature and salinity are not as impor-
tant to the distribution of spawning adults as they may be for the
survival of eggs and larvae.

Combined with persistence of the environment, control
through the size of the population suggests a density-dependent
effect on the spatial distribution of the plaice population during
its reproductive period. At a small population size, individuals
contract their distribution to preferred areas characterized
mostly by their persistent environmental characteristics. At large
population sizes, fish tend to expand their distribution. The fact
that persistence of the environment and population size control
both the presence and abundance of plaice suggests a basin-type
model (MacCall, 1990). In the basin model, the size of the area
occupied (Shepherd and Litvak, 2004), as well as abundance,
vary according to the size of the population. Population size was
slightly more important in determining the areas of greater abun-
dance of plaice than the species’ areas of presence. This could inti-
mate that the variations in population size were not sufficient to
detect its effect on plaice occupation of spawning areas fully.
Therefore, the results reveal that temporal variations in the size
of the population are an important feature in explaining temporal
variations in the spatial distribution of spawning plaice.

We believe that the low frequency of the annual demography
hypothesis during the 2000s only reflects the limited diversity in
age structure then. This suggestion is supported by the fact that

when the age structure is more diverse (during the 1980s, the
size of the population was greater than that in the 2000s), the
role of annual demography becomes evident through its frequency
in selected models. For this reason, we argue that both the annual
and the spatial demography are important hypotheses in explain-
ing temporal variations in the distribution of spawning plaice.
Moreover, population demography seems to be more relevant in
controlling the abundance of spawning plaice than it is in control-
ling their presence/absence. This implies that with the actual age
structure of the population, spawning areas are occupied whatever
the proportion of old or young adults present in the stock each
year. The use of the “old” and “young individuals” terminology
is relative for plaice because only a small part of the natural age
pyramid is represented. The current heavily exploited population
is dominated by younger ages (1–8 years; ICES, 2008), whereas
plaice may live up to 20–30 years (Froese and Pauly, 2009). This
situation may have caused us to underestimate the overall role
of the population age structure in determining the distribution
of spawning plaice. Despite the current truncated age structure,
both annual and spatial population demography seem to be
important in explaining temporal variations in the spatial distri-
bution of abundance. Young and old plaice are not found in the
same areas; older fish are generally farther offshore than younger
fish (Cushing, 1990). There is also a difference in the time spent
on spawning grounds by plaice of different age. Old fish
arrive at the spawning grounds first, then stay longer than young
plaice (Rijnsdorp, 1989). This implies that, depending on the
annual age structure of the population observed in different
years, several areas will be occupied more or less, leading to sub-
stantial variations in the distribution pattern from one year to
the next.

Of the three spatial scales we detected in the distribution of
spawning plaice, when confronted with other hypotheses, two
are important: the broad and the medium scales. The broad
scale is more important in characterizing the areas of presence,
whereas a medium scale is more important in characterizing
areas of greater abundance. This suggests that the areas of presence
are wider than the areas of great abundance, so are not fully occu-
pied. Moreover, the lesser ability of the broad scale to explain the
distribution at the beginning of the period relative to the end of the
period suggests a difference in distribution between the two
periods. Patterns of presence were much wider towards the start
of the dataseries, when population abundance was much greater
than it was at the end. This finding also confirms what has pre-
viously been stated about the control by the size of the population
through density-dependent effects. Finally, because fine-scale fea-
tures (55 km) are similar to the scale of the surveys, the absence of
control of the fine-scale submodel could simply result from the
sampling strategy. The actual design of the survey (both sampling
strategy and gear) is not suitable for exploring processes at scales
,55 km.

The role of population memory: evidence of
conservatism in plaice?
Both the presence and the abundance of spawning plaice depend
too on the memory hypothesis. Spawning adults were abundant
mainly in the southeastern North Sea and along the east coast of
the UK, and not in the central or northern part of the North
Sea. The areas of abundance coincide with the spawning
grounds described in the literature based on ichthyoplankton
surveys (Harding et al., 1978), spawning grounds occupied by a
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distinct subpopulation identified using tags (Hunter et al., 2004).
Three main subpopulations have been identified, one in the
western part, one in the southeastern part, and another in the
northern part of the North Sea. There is also a hypothesis for
the existence of a fourth subpopulation near the Moray Firth.
The three subpopulations in the southern part of the North Sea
are located on distinct feeding grounds during summer, then
mix on the southern spawning grounds in winter (Hunter et al.,
2004). Northern and eastern subpopulations migrate predomi-
nantly to the German Bight and the Transition Area, whereas
the western subpopulation migrates to the Flamborough Head
region, the Southern Bight, and the eastern English Channel
(Hunter et al., 2003). This migration pattern seems to be repeated
annually (Hunter et al., 2003), explaining why several studies have
demonstrated from egg surveys a consistency of spawning grounds
during the 20th century (ICES, 2003). Site fidelity of spawning
plaice has also been demonstrated for the Icelandic stock
(Solmundsson et al., 2005).

Conservatism has been proposed as an explanation of why a
population maintains its spawning location over time (Corten,
2002). The theory implies that fish have learned a behaviour that
has been transformed into a habit, which is then transmitted
across generations. Whereas conservatism has been suggested for
several pelagic species (McQuinn, 1997; Corten, 2002; Petitgas
et al., 2006), the concept may not be so easily advanced for demer-
sal species. For plaice, the habit has become the annual migration
from northern summer feeding grounds to southern winter
spawning grounds. Whereas the habit-forming portion of conser-
vatism could be explained by the use of external clues such as phys-
ical characteristics of migrations routes and tidal currents (Hunter
et al., 2003), the orientation mechanisms implied in plaice
migration remain unclear. Corten (2002) argues that to prove
the existence of habit formation, it must be demonstrated that
(i) the same fish visit the same location in successive years, (ii)
this behaviour is not genetically determined, and (iii) the return
of the fish is not simply a consequence of environmental con-
straints. Point (i) is supported for plaice by the fact that tagging
experiments have shown that the different subpopulations of the
North Sea stock tend to return to their same spawning grounds
from one year to the next (Hunter et al., 2004). The results of
this study allow us to validate point (iii), because they have
proved that space, persistence of the environment, and population
memory are the key factors and that non-persistence of the
environment is not as critical because the distribution does not
appear to follow any changes in the environment. We believe
that because the persistence of the environment is spatially struc-
tured but does not vary in time, it acts more as a spatial constraint
than a pure environmental constraint (i.e. in the sense of the direct
physiological effect that temperature and salinity may have on
spatial distribution). For this reason, we argue that the importance
of persistence of the environment does not call into question the
role that conservatism may play in the spatial stability of North
Sea plaice spawning areas. The mechanism of transmission of
this habit between generations still remains unclear for plaice,
but the meeting of first-time spawners and spawning adults on
spawning or nursery grounds (Cushing, 1990) could be prelimi-
nary supporting evidence for the existence of tradition (sensu
Corten, 2002).

Three main circumstances may alter the habits associated with
conservatism (Corten, 2002). The first is if the environmental con-
ditions result physiological extremes for the fish (Rindorf and

Lewy, 2006). During our study period, we found no evidence of
dramatic change in the main pattern of spawning distribution
because spawning plaice are still found in the western and
southern part of the North Sea. This could suggest that up to
now, plaice have not experienced sufficiently disruptive environ-
mental change to modify spawning behaviour. However, this
view can be biased by the fact that conservatism creates a certain
inertia in spawning behaviour, which can result in a time-lag
between environmental change and the change in fish migration
(Corten, 2002). It is highly probable that the present distribution
of North Sea plaice reflects the environmental conditions of the
past rather than of the present. Traditional habits may also
change following the collapse of a stock. North Sea plaice have
been assessed since 1957 (ICES, 2008), and there has been no
stock collapse, perhaps explaining why the distribution pattern
has been consistent across many generations. Finally, a change in
traditional habits could follow an abnormal distribution of the
recruiting year class or a scarcity of older individuals. However,
older individuals are not sufficiently abundant to influence the be-
haviour of all the younger fish, which would lead to the loss of a
part of the population recruitment that could colonize past or
new spawning areas. As Rijnsdorp (1989) noted, plaice age and
size at maturity have decreased since the beginning of the 20th
century. The fact that all fish do not mature at the same age
greatly limits the risk of non-entrainment and the loss of a
portion of first-time spawners. This statement is true only under
the condition that older fish are still sufficiently numerous to
entrain young ones even in the situation where recruitment is
low. For plaice, several important recruitment events to the spawn-
ing population have been documented since 1957 (ICES, 2008). If
conservatism in plaice is a true theory, the fact that spawning tra-
dition has been maintained across generations could suggest that
the pool of older individuals has always been sufficient to
entrain most young fish onto the spawning grounds. However,
as said above, the term “old” is relative for plaice, and the plaice
spawning stock is nowadays dominated by younger fish. In the
context of global warming, this can have a major impact on the
future distribution of North Sea spawning plaice population if,
as Corten (2002) suggested, young fish are expected to respond
more directly to environmental change than older ones.

Conclusions
Although considered simple, a multiple-regression approach is an
elegant way to model single hypotheses using explanatory vari-
ables, then to combine them to construct models of increasing
complexity. The method has also revealed itself to be useful in con-
fronting and selecting models that are best able to reproduce the
observed distribution of spawning plaice. The results of the
present study have shown some discrepancies between selected
models depending on the selection criteria, and it has been said
that inference of the various hypotheses of control should be
based on models selected from prediction rather than from cali-
bration. If this method is taken further, the period considered as
well as the data variability encompassed are crucial features in eval-
uating the importance of the hypotheses because applying models
across a wide range of ecological variability can reveal a hidden
effect between collinear variables. Some key questions raised in
the study deal with the size of the predictive dataset. Here, the cali-
bration dataset was much larger than the prediction dataset, which
can lead to more complex models being needed to fit the data.
However, we believe that determining the hypotheses of control
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should not depend on the size of the dataset. Processes that control
the distribution of a species should be able to reproduce an
observed pattern whatever the number of years. For plaice, it
proved impossible to build a larger predictive dataset that would
include the whole range of variability of the calibration dataset.
However, that particular aspect should be studied further to
verify the stability of the selected set of hypotheses.

Although the use of binomial and Gaussian models may appear
to be a priori restrictive, the approach does make it possible to sep-
arate what controls the presence/absence of plaice from what con-
trols its abundance. From the predictive models selected, we have
demonstrated that more factors intervene in the control of the
abundance of spawning plaice than in the control of its pres-
ence/absence. Our results confirm the fidelity of North Sea plaice
to its traditional spawning areas through the importance of the
hypotheses of geographic attachment, population memory, and
spatial dependence. If the spatial structure of a persistent environ-
ment seems to be a key factor in determining the spatial distri-
bution of plaice, variations in population size and demography
govern the changes in the spatial pattern of plaice distribution
over time. In this context, interannual variability in environmental
factors such as temperature and salinity are poorly related to the
interannual variations in the spawning areas of plaice. For now at
least, the North Sea seems to offer a reasonable environment for
plaice spawning. However, because the distribution of spawning
plaice is restricted to known areas, the distribution itself is the
driving feature for the life cycle rather than a response to environ-
mental constraints. However, this may not be the case in the future
context of global warming owing to the strong reliance on young
fish to ensure reproductive success.
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