Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles

Type Article
Date 2006-03
Language English
Author(s) Sauter Eberhard1, Muyakshin Sergey2, Charlou Jean-Luc3, Schluter Michael1, Boetius Antje4, Jerosch Kerstin1, Damm Ellen1, Foucher Jean-Paul3, Klages Michael1
Affiliation(s) 1 : Alfred Wegener Inst Polar & Marine Res, D-27570 Bremerhaven, Germany.
2 : Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia.
3 : IFREMER, Ctr Brest, DRO, GM,Dept Marine Geosci, F-29280 Plouzane, France.
4 : Max Planck Inst Marine Microbiol, D-28359 Bremen, Germany.
Source Earth and Planetary Science Letters (0012-821X) (Elsevier), 2006-03 , Vol. 243 , N. 3-4 , P. 354-365
DOI 10.1016/j.epsl.2006.01.041
WOS© Times Cited 224
Keyword(s) Hydro acoustics, Gas hydrates, Gas bubbles, Submarine mud volcanoes, Methane budget, Plume, Methane sources
Abstract The assessment of climate change factors includes a constraint of methane sources and sinks. Although marine geological Sources are recognized as significant, unfortunately, most submarine sources remain poorly quantified. Beside cold vents and coastal anoxic sediments, the large number of submarine mud volcanoes (SMV) may contribute significantly to the oceanic methane pool. Recent research suggests that methane primarily released diff-usively from deep-sea SMVs is immediately oxidized and, thus, has little climatic impact.

New hydro-acoustic, Visual, and geochemical observations performed at the deep-sea mud volcano Hakon Mosby reveal the discharge of gas hydrate-coated methane bubbles and gas hydrate flakes forming huge methane plumes extending from the seabed in 1250 m depth up to 750 in high into the water column. This depth coincides with the upper limit of the temperature-pressure field of gas hydrate stability. Hydrographic evidence suggests bubble-induced upwelling within the plume and extending above the hydrate stability zone. Thus, we propose that a significant portion of the methane from discharged methane bubbles can reach the upper water column, which may be explained due to the formation of hydrate skins. As the water mass of the plume rises to shallow water depths, methane dissolved from hydrated bubbles may be transported towards the surface and released to the atmosphere. Repeated acoustic surveys performed in 2002 and 2003 suggest continuous methane emission to the ocean. From seafloor visual observations we estimated a gas flux of 0.2 (0.08-0.36) mol s(-1) which translates to several hundred tons yr(-1) under the assumption of a steady discharge. Besides, methane was observed to be released by diffusion from sediments as well as by focused outflow of methane-rich water. In contrast to the bubble discharge, emission rates of these two pathways are estimated to be in the range of several tons yr(-1) and, thus, to be of minor importance.

Very low water column methane oxidation rates derived from incubation experiments with tritiated methane suggest that methane is distributed by currents rather than oxidized rapidly.
Full Text
File Pages Size Access
publication-1345.pdf 34 1 MB Open access
Top of the page

How to cite 

Sauter Eberhard, Muyakshin Sergey, Charlou Jean-Luc, Schluter Michael, Boetius Antje, Jerosch Kerstin, Damm Ellen, Foucher Jean-Paul, Klages Michael (2006). Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth and Planetary Science Letters, 243(3-4), 354-365. Publisher's official version : , Open Access version :