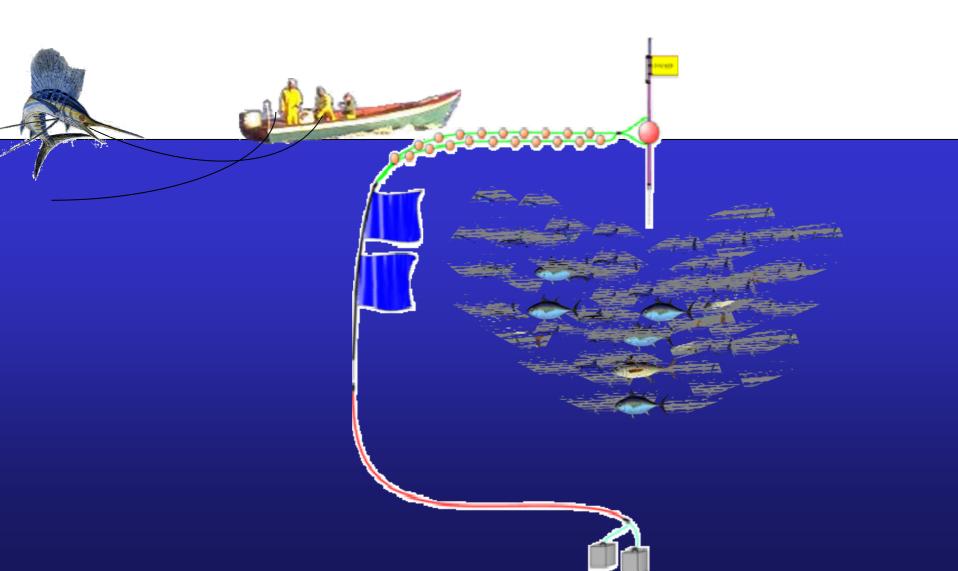
L'agrégation de thons de sub-surface au sein du système

[DCP ancré-macronecton-environnement-pêche] en Martinique :

étude hiérarchique par méthodes acoustiques, optiques et halieutiques.


Mathieu Doray







## Qu'est ce qu'un Dispositif de Concentration de Poissons ancré ?

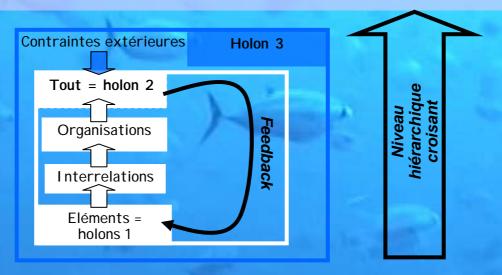


### Introduction

- → Contexte de l'étude
  - → Début 90 : développement des pêcheries associées aux DCP ancrés aux Antilles Françaises
  - → Durabilité de l'activité?
  - → Agrégations macronecton autour des DCP très peu connues

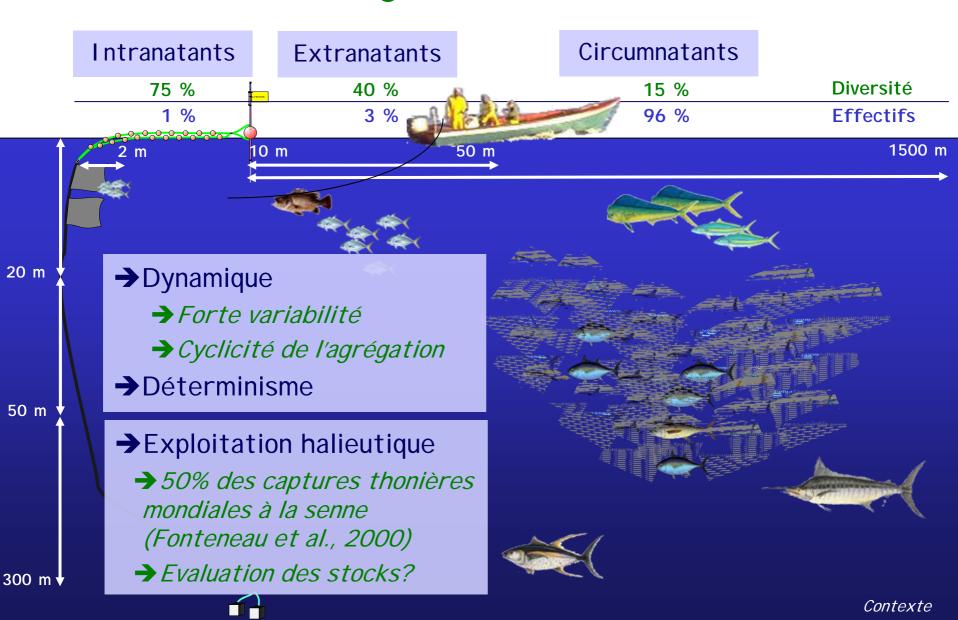
#### ♥ Projet DAUPHIN

- → Objectifs de l'étude
  - → Typologie des agrégations de macronecton
  - → Impact de l'environnement et de la pêche
  - → Estimation de la biomasse des agrégations de macronecton
- → Démarche
  - → Approche Ecosystémique de la Pêche (AEP) associée aux DCP ancrés en Martinique
  - → Etude d'un système complexe en 3D, approche hiérarchique
  - → Echosondeur comme outil d'investigation principal

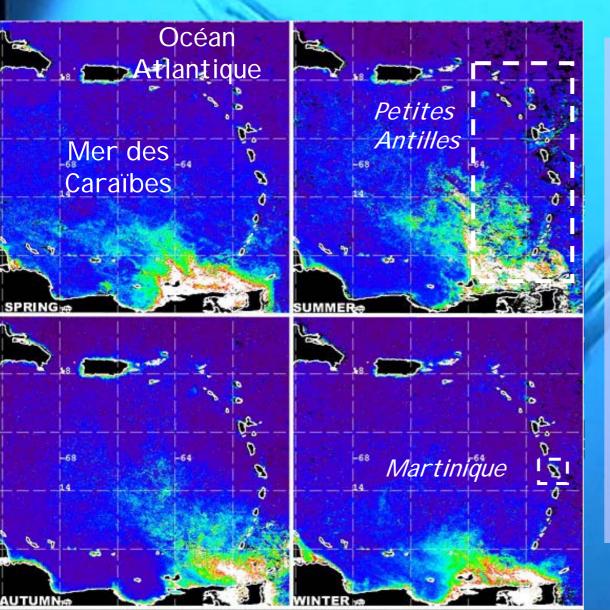

## Plan de l'exposé

- → Poser une question : contexte de l'étude
- → <u>Définir des entités et collecter les données</u> : les campagnes DAUPHIN
- → <u>I dentifier les phénomènes</u> : description hiérarchique du système dans le plan vertical
- → <u>Développer des modèles</u> : dynamique et biomasse de l'agrégation de thons de sub-surface
- → Synthèse et conclusions

### La théorie de la hiérarchie


(Allen et Starr, 1982; Ahl et Allen, 1996)

- → Complexité apparait quand divers processus interagissent à différentes échelles
- → Théorie de la hiérarchie pour l'étude des systèmes complexes
  - → Rôle de l'observateur
  - → Découpage du système étudié en unités quasi-autonomes hiérarchisées : les holons
  - → Niveau hiérarchique ⇔ échelle spatio-temporelle caractéristique




- → Etude d'un holon à son niveau hiérarchique possible en :
  - → négligeant les dynamiques des niveaux inférieurs ;
  - → lissant les dynamiques des niveaux supérieurs ramenées à un terme correctif

## L'agrégation des poissons pélagiques autour d'objets flottants




### L'écosystème pélagique des Petites Antilles

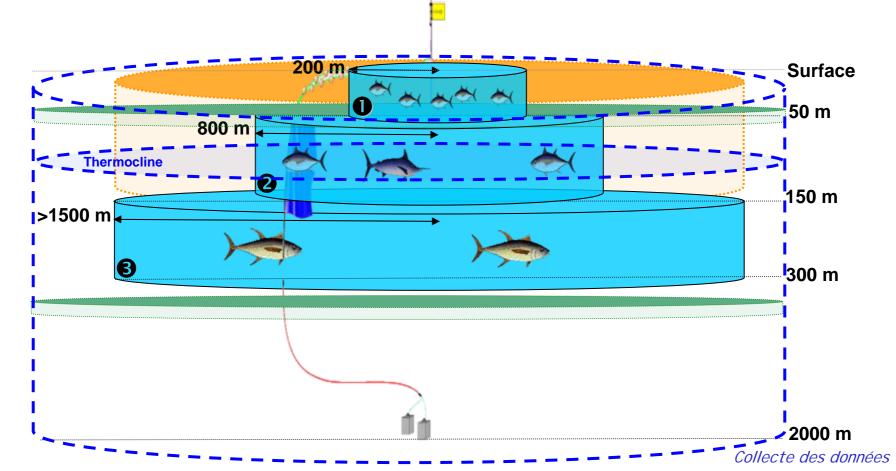


- → Archipel frontalier
- → Zone globalement oligotrophe
- → Enrichissement

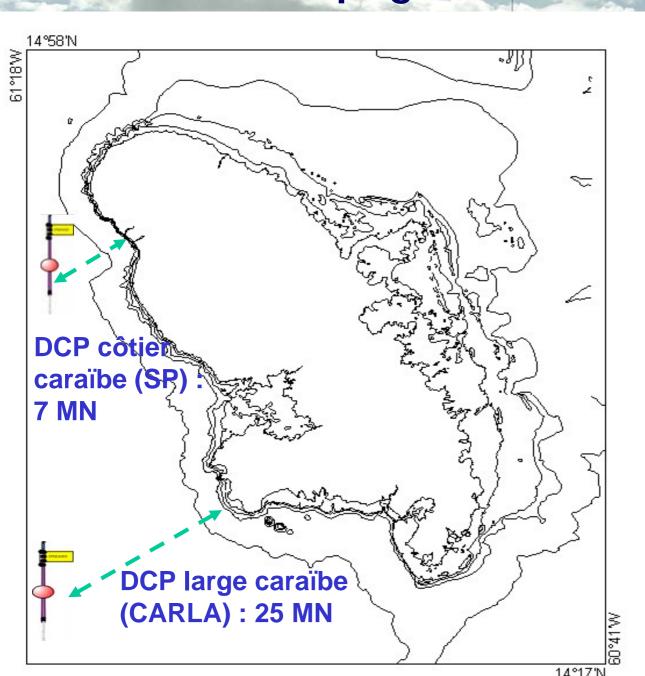
   saisonniers par les
   panaches des fleuves
   amazoniens
- → Hydrologie et courantologie relativement complexes
- → ZEE étroites, stocks partagés

## La pêche associée aux DCP ancrés aux Petites Antilles




## Plan de l'exposé

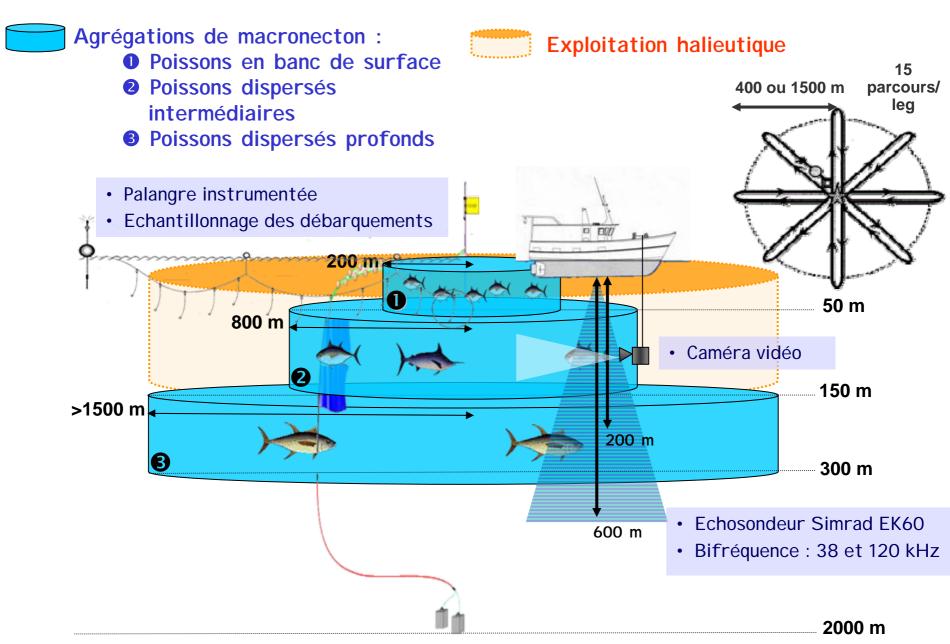
- → Poser une question : contexte de l'étude
- → <u>Définir des entités et collecter les données</u> : les campagnes DAUPHI N
- → <u>I dentifier les phénomènes</u> : description hiérarchique du système dans le plan vertical
- → <u>Développer des modèles</u> : dynamique et biomasse de l'agrégation de thons de sub-surface
- → Synthèse et conclusions


### Conceptualisation du système

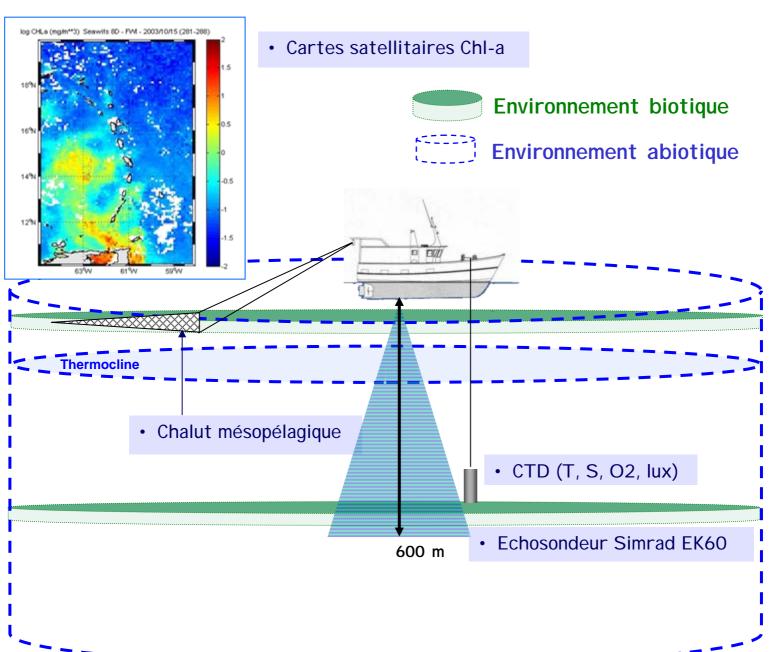
(d'après Josse et al., 2000)






## Les campagnes DAUPHIN




- 2 DCP
- 16 campagnes mensuelles de janvier 2003 à avril 2004
- 1 leg = 3 jours autour de chaque DCP/mois

Collecte des données

### Observation du macronecton



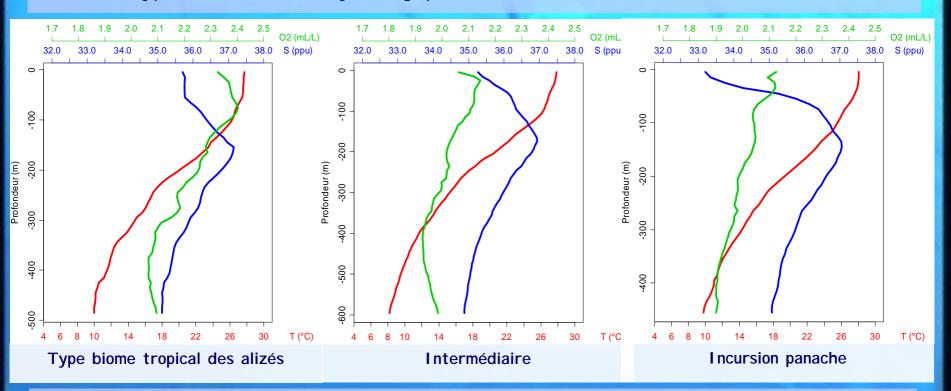
### Suivi de l'environnement



## Plan de l'exposé

- → Poser une question : contexte de l'étude
- → <u>Définir des entités et collecter les données</u> : les campagnes DAUPHIN
- → <u>I dentifier les phénomènes</u> : description hiérarchique du système dans le plan vertical
- → <u>Développer des modèles</u> : dynamique et biomasse de l'agrégation de thons de sub-surface
- → Synthèse et conclusions

### **Objectifs**


- → Etudier indépendamment chacun des holons empiriques du système
  - → I dentifier leurs limites ⇔ identifier les structures pérennes
  - → Caractériser et établir une typologie des holons
  - → Etude dans le plan vertical
- → I dentifier le phénomène majeur au sein du système
  - → Comportement du holon le plus important <u>pour répondre aux</u> <u>questions posées</u>
  - → Nombre d'observations suffisant
- → Positionnement du phénomène majeur au sein du système
- → Proposer une nouvelle représentation empirique du système [DCP ancré - macronecton - environnement - pêche]

## <u>Méthodes</u> : caractérisation de l'environnement biotique et abiotique

| Echelles<br>d'analyse | Environnement abiotique                                                                                 | Environnement biotique                                                                                                                                                                                                    |
|-----------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 mois               | Analyses multivariées (ACP, ACR):  Profils de température, salinité et oxygène (1 valeur tous les 10 m) | Analyse visuelle :  • Producteurs I : cartes ChI-a                                                                                                                                                                        |
| 4 mois                |                                                                                                         | Analyses multivariées (ACP, ACR):  • Producteurs II : micronecton • Profils acoustiques i.e. réponse acoustique par unité de surface (s <sub>a</sub> ) (1 valeur tous les 10 m) • Variabilité verticale du s <sub>a</sub> |

## Résultats : environnement biotique et abiotique

- → Principal phénomène hydrologique : incursions des panaches des fleuves amazoniens (juillet à octobre 2003)
- → Trois types de situations hydrologiques



- → Décalage temporel compartiments abiotique/biotique
  - → Productivité primaire surface maximale en phase intermédiaire (12 mois)
  - → Productivité micronectonique maximale avant ou après passage des panaches (mai-août 03)

### Méthodes : caractérisation du macronecton

| Etonos                                  |                                                                                                                                                                                                                        | Poisson individuel                                                                                                                                                                                                                                                     |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Etapes                                  | Agrégation de macronecton                                                                                                                                                                                              | Poisson maividuei                                                                                                                                                                                                                                                      |
| 1/2                                     | <u>Acoustique</u> <u>Vidéo</u>                                                                                                                                                                                         | <u>Acoustique</u> <u>Pêche</u>                                                                                                                                                                                                                                         |
| Limites des<br>holons de<br>macronecton | <ul> <li>Analyse visuelle (12 mois)</li> <li>Echo-intégration par banc (mai-août 03)</li> <li>Descripteurs moyens des agrégations</li> </ul>                                                                           | > Sélection des<br>cibles individuelles<br>(12 mois)                                                                                                                                                                                                                   |
| Typologies des holons de macronecton    | <ul> <li>➤ Analyses multivariées ➤ Analyse visuelle</li> <li>➡ Types de groupes d'espèces observées</li> <li>➡ Distribution spatio-temporelle des agrégations</li> <li>➡ Distribution bathymétrique moyenne</li> </ul> | <ul> <li>Classification en → Classification K-         arbre means</li> <li>Distribution spatio-         temporelle des types de cibles individuelles</li> <li>Distribution capturés (12 mois)</li> <li>Distribution spatio-         temporelle des groupes</li> </ul> |
| Comparaison                             | <ul> <li>Comparaison des distributions spati</li> <li>Validation des typologies acous</li> <li>Composition des types d'agréga</li> <li>Types d'agrégations ciblées par</li> </ul>                                      | tiques tions                                                                                                                                                                                                                                                           |

### Résultats : agrégations de macronecton



## Influence de l'environnement sur l'agrégation de thons de sub-surface

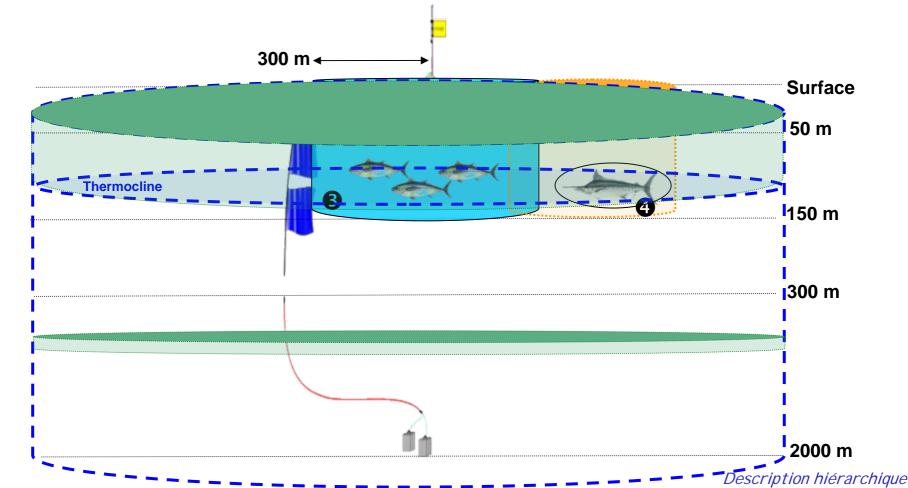
#### → Méthode

→ Analyse multivariée des descripteurs des agrégations en fonction de descripteurs synthétiques de l'environnement biotique et abiotique

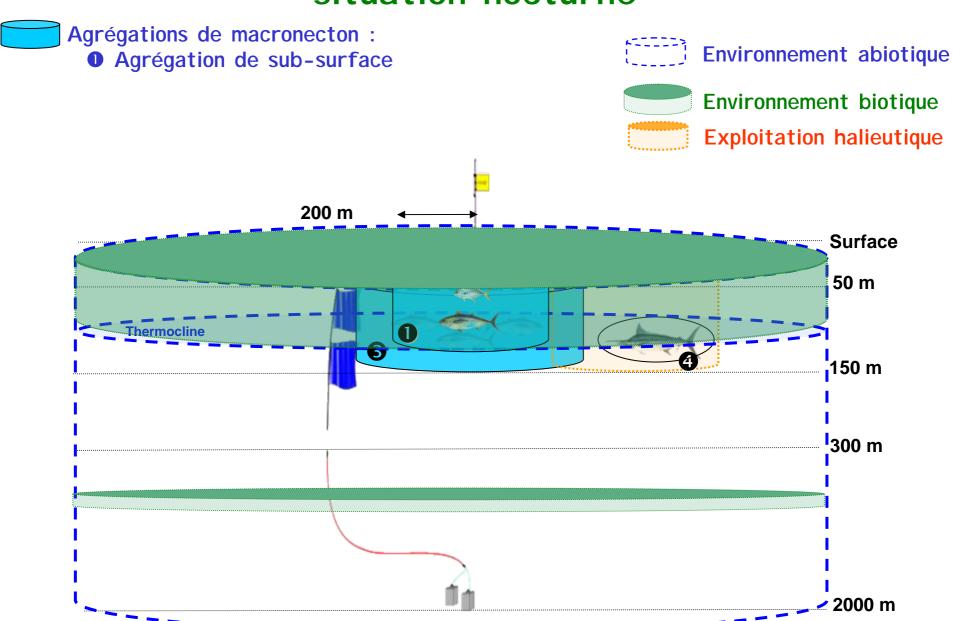
#### → Résultats

- → Corrélation positive entre abondance et dimensions agrégations diurnes et :
  - → I ndice acoustique de la richesse trophique moyenne diurne au voisinage du DCP




- → classe horaire 6h à 12h
- → Influences des classes horaires et de la densité des couches équivalentes
- → Pas d'influence significative des descripteurs de l'environnement abiotique

## Représentation empirique du système : situation diurne


#### Agrégations de macronecton :

- Agrégation de thonidés juvéniles de surface
- 2 Agrégation d'extranants de surface
- **3** Agrégation de thons de sub-surface
- **4** Grands prédateurs apicaux

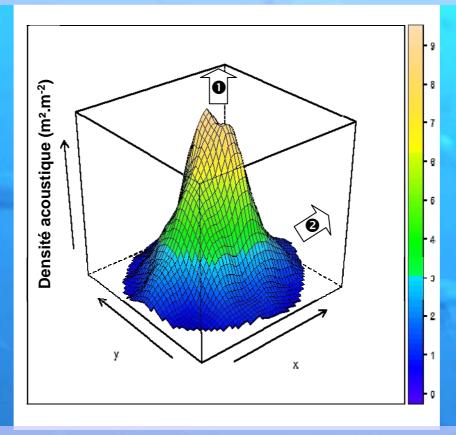




## Représentation empirique du système : situation nocturne



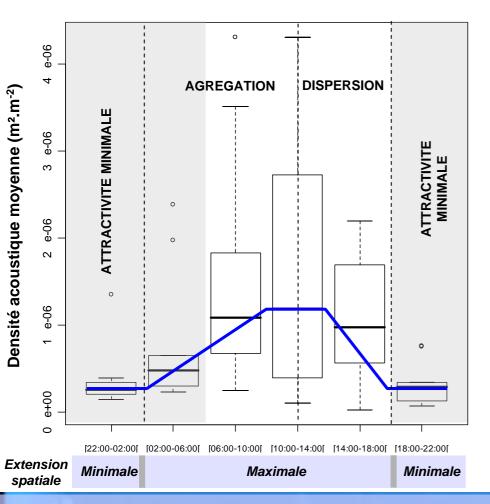
## Plan de l'exposé


- → Poser une question : contexte de l'étude
- → <u>Définir des entités et collecter les données</u> : les campagnes DAUPHIN
- → <u>I dentifier les phénomènes</u> : description hiérarchique du système dans le plan vertical
- → <u>Développer des modèles</u> : dynamique et biomasse de l'agrégation de thons de sub-surface
- → Synthèse et conclusions

### **Objectifs**

- → Etudier la <u>dynamique de la distribution spatiale de</u> <u>l'agrégation de thons</u> de sub-surface dans le plan horizontal
- →Estimer:
  - → les maxima journaliers de biomasse de l'agrégation de thons de sub-surface
  - → <u>l'erreur commise lors de cette estimation</u> (principe de précaution de l'AEP)

## Méthodes : étudier la dynamique de la distribution spatiale de l'agrégation

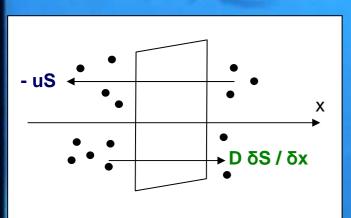

- → Etude des fluctuations de la surface de densité de l'agrégation
  - → abondance globale
  - → distribution spatiale



- → Relation entre abondance globale et distribution spatiale
  - → Courbes d'agrégation géostatistiques

## Résultats : dynamique de la distribution spatiale de l'agrégation de thons de sub-surface

→ Constance du phénomène d'agrégation des thons de sub-surface autour des DCP ancrés



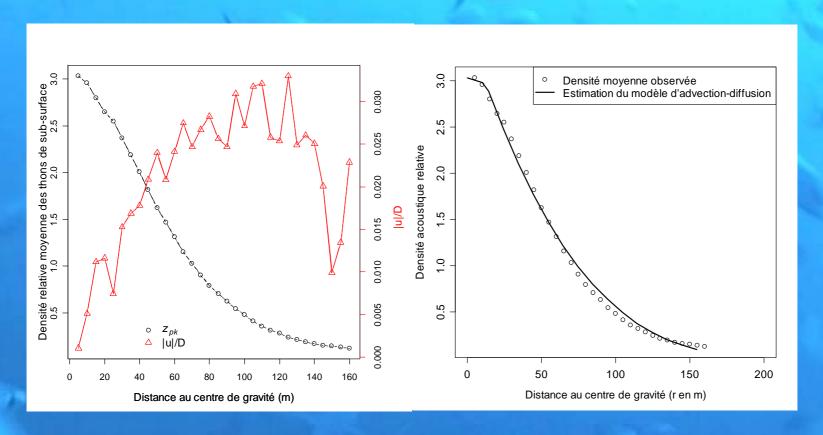

- → Agrégation dynamique
  - → Influence du courant
  - → Fluctuations importantes de l'abondance globale (facteur 4), aux échelles nycthémérale, interjournalière et mensuelle
  - → Fluctuations de l'attractivité du DCP
    - → Découplées des variations d'intensité lumineuse
    - → Effet comportement trophique
  - → Deux phases de stabilité de l'extension spatiale

- → Fluctuations simultanées abondance globale / distribution spatiale de l'agrégation
  - → Processus densité-dépendants à l'origine de l'auto-organisation de l'agrégation

## <u>Méthodes</u>: biomasse maximale journalière de l'agrégation et erreur d'estimation (1)

- → Estimation par géostatistique
  - → Utilisation d'un modèle de krigeage universel
  - → Estimation de la surface de densité diurne moyenne de l'agrégation
    - → Prospections répétées dans même zone
    - → Calcul de la surface de densité moyenne
    - → Modèle d'advection-diffusion appliqué aux groupes d'animaux (Okubo et Chiang, 1974)




Pour un groupe quasi-stationnaire :

D 
$$\delta S / \delta x = uS$$
  
 $\Leftrightarrow D/|u| = S / (\delta S / \delta x)$ 

- D: coefficient de diffusion
- u: coefficient d'advection

## Résultats : estimation de la surface de densité moyenne de l'agrégation

- → Constance de l'organisation spatiale au sein de l'agrégation
- → Modèle d'advection-diffusion appliqué aux groupes d'animaux
- → Erreur sur l'estimation de la surface de densité moyenne = 3%

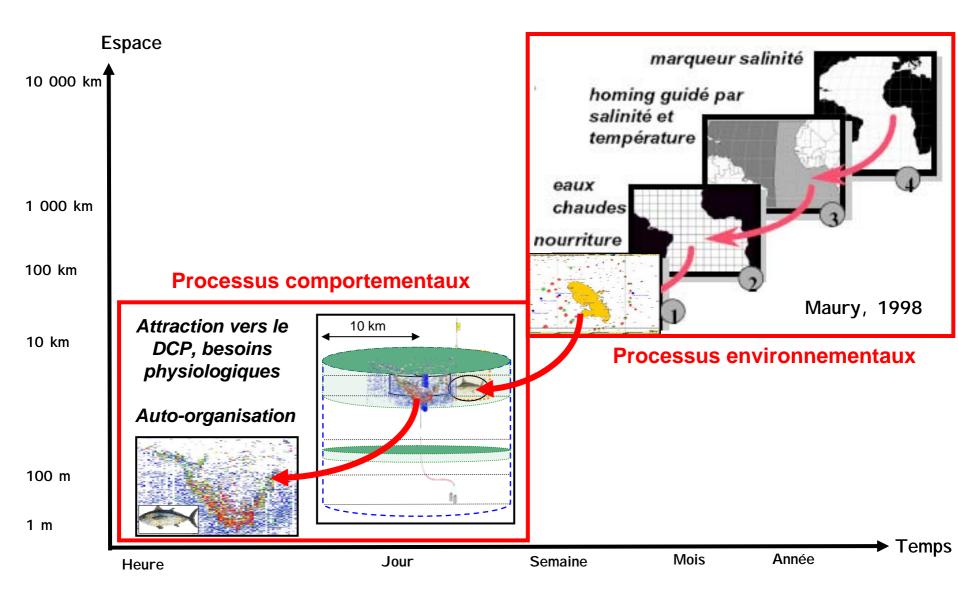


## <u>Méthodes</u>: biomasse maximale journalière de l'agrégation et erreur d'estimation (2)

- → Résultats du modèle de krigeage universel
  - → Modèle de corrélation spatiale de l'agrégation (variogramme)
  - → <u>Variance d'estimation</u> diurne moyenne
    - → Erreur commise lors de l'interpolation spatiale
    - → Erreurs aléatoires de mesure
  - → Pour les maxima de biomasse journaliers (mai-août 2003) :
    - → Densité acoustique moyenne de l'agrégation
    - → Variance d'estimation
- → Calcul de la biomasse
- → Comparaison de différents parcours d'échantillonnage

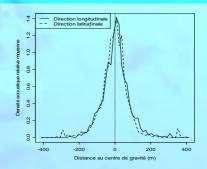
## <u>Résultats</u>: biomasse de l'agrégation et erreur d'estimation

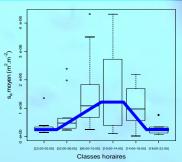
- → Erreur d'estimation de la densité moyenne diurne de l'agrégation
  - → Coefficient de variation d'estimation : 33%
- → Maxima de biomasse journaliers
  - → Coefficient de variation d'estimation moyen : 25% (13-40%)
  - → Biomasse de thons de sub-surface autour d'une tête de DCP :


| Biomasse de l'agrégation (tonnes) |         |         |  |
|-----------------------------------|---------|---------|--|
| Minimum                           | Moyenne | Maximum |  |
| 1                                 | 11      | 30      |  |

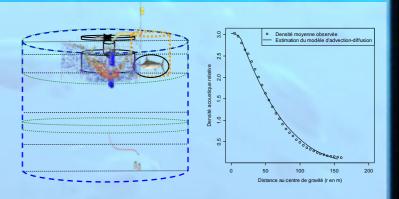
- → Coefficient de variation moyen au cours d'un leg : 58%
- → Comparaison des parcours d'échantillonnage acoustiques
  - → Parcours en étoile utilisé présente le meilleur compromis erreur estimation / effort d'échantillonnage

## Plan de l'exposé


- → Poser une question : contexte de l'étude
- → <u>Définir des entités et collecter les données</u> : les campagnes DAUPHIN
- → <u>I dentifier les phénomènes</u> : description hiérarchique du système dans le plan vertical
- → <u>Développer des modèles</u> : dynamique et biomasse de l'agrégation de thons de sub-surface
- → Synthèse et conclusions


# Organisation spatio-temporelle hiérarchique d'une sous-population de thons de sub-surface fréquentant des DCP ancrés




## L'agrégation des thons de sub-surface autour de DCP ancrés

→ Un phénomène <u>récurrent et dynamique</u>





→ Un phénomène observable et modélisable à l'échelle des agrégations



→ Un phénomène influencé par la <u>richesse</u> <u>trophique</u> de l'environnement







### **Perspectives**

- → Gestion durable des pêcheries associée aux DCP ancrés
  - → Eléments scientifiques pour gestion durable aux Petites Antilles
  - → Modélisation d'une population de thons dans un réseau de DCP ancrés
    - → Relations avec l'environnement et la pêche
    - → Valorisation base de données
- → Etude de l'agrégation des thons dans les écosystèmes pélagiques exploités
  - → Adapter méthodes à d'autres types d'agrégateurs
    - → Étude et modélisation agrégations autour DCP dérivants
  - → Etude comportement trophique autour de DCP
  - → Développement d'observatoires océaniques (bouées instrumentées)
    - → Relation abondance locale/globale
    - → Evaluation directe abondance thons à échelle écosystème



L'agrégation de thons de sub-surface au sein du système

[DCP ancré-macronecton-environnement-pêche] en Martinique :

étude hiérarchique par méthodes acoustiques, optiques et halieutiques.

Mathieu Doray





