Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions

Type Article
Date 2006-08
Language English
Author(s) Pouvreau StephaneORCID1, Bourles Yves1, 2, Lefebvre Sebastien3, Gangnery AlineORCID4, Alunno-Bruscia MarianneORCID2
Affiliation(s) 1 : IFREMER, UMR 100, F-29840 Argenton, France.
2 : IFREMER, CNRS, UMR 010, CREMA, F-17137 LHoumeau, France.
3 : Univ Caen, Lab Biol & Biotechnol Marines, UMR 100, F-14032 Caen, France.
4 : IFREMER, Lab Environm Ressources Normandie, F-14520 Port En Bessin, France.
Source Journal of Sea Research (1385-1101) (Elsevier), 2006-08 , Vol. 56 , N. 2 , P. 156-167
DOI 10.1016/j.seares.2006.03.007
WOS© Times Cited 147
Keyword(s) Reproductive effort, Reproduction, Growth, Ecophysiology, Dynamic energy budget, Crassostrea gigas
Abstract The Dynamic Energy Budget (DEB) model (Kooijman, S.A.L.M., 1986. Energy budgets can explain body size relations. J. Theor. Biol. 121, 269¿282; Kooijman, S.A.L.M., 2000. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge, 424 pp.) has been adapted to describe the dynamics of growth and reproduction of the Pacific oyster (Crassostrea gigas) reared in different areas under conditions ranging from controlled to natural. The values of the model parameters were estimated from available physiological data and from published information. The sets of data used to validate the model came from three long-term growth experiments (> 5 months) performed on Pacific oysters reared under different conditions of food and environment. The forcing variables were temperature and phytoplankton densities, the latter being assessed from in vivo fluorescence and chlorophyll-a concentration measurement. The successful validation of the model on the three data sets demonstrated its ability to capture the dynamics of the energy budget in the Pacific oyster in various environments with the same set of parameters. The only parameter that varied between simulations was the half-saturation coefficient (XK), because of a different diet composition between the three environments under test. The model successfully reproduced quantitatively the growth and reproduction and the timing of spawning. These first simulation data led us to propose several promising perspectives of application for this model in shellfish ecosystems.
Full Text
File Pages Size Access
publication-1817.pdf 20 255 KB Open access
Top of the page

How to cite 

Pouvreau Stephane, Bourles Yves, Lefebvre Sebastien, Gangnery Aline, Alunno-Bruscia Marianne (2006). Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions. Journal of Sea Research, 56(2), 156-167. Publisher's official version : , Open Access version :