FN Archimer Export Format PT J TI Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions BT AF POUVREAU, Stephane BOURLES, Yves LEFEBVRE, Sebastien GANGNERY, Aline ALUNNO-BRUSCIA, Marianne AS 1:1;2:1,2;3:3;4:4;5:2; FF 1:PDG-DOP-DCB-PFOM-PI;2:PDG-DOP-DCN-AGSAE-CRELA;3:;4:PDG-DOP-LER-LERN;5:PDG-DOP-DCN-AGSAE-CRELA; C1 IFREMER, UMR 100, F-29840 Argenton, France. IFREMER, CNRS, UMR 010, CREMA, F-17137 LHoumeau, France. Univ Caen, Lab Biol & Biotechnol Marines, UMR 100, F-14032 Caen, France. IFREMER, Lab Environm Ressources Normandie, F-14520 Port En Bessin, France. C2 IFREMER, FRANCE IFREMER, FRANCE UNIV CAEN, FRANCE IFREMER, FRANCE SI ARGENTON LA ROCHELLE PORT-EN-BESSIN SE PDG-DOP-DCB-PFOM-PI PDG-DOP-DCN-AGSAE-CRELA PDG-DOP-LER-LERN IN WOS Ifremer jusqu'en 2018 copubli-france copubli-univ-france IF 1.765 TC 147 UR https://archimer.ifremer.fr/doc/2006/publication-1817.pdf LA English DT Article DE ;Reproductive effort;Reproduction;Growth;Ecophysiology;Dynamic energy budget;Crassostrea gigas AB The Dynamic Energy Budget (DEB) model (Kooijman, S.A.L.M., 1986. Energy budgets can explain body size relations. J. Theor. Biol. 121, 269¿282; Kooijman, S.A.L.M., 2000. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge, 424 pp.) has been adapted to describe the dynamics of growth and reproduction of the Pacific oyster (Crassostrea gigas) reared in different areas under conditions ranging from controlled to natural. The values of the model parameters were estimated from available physiological data and from published information. The sets of data used to validate the model came from three long-term growth experiments (> 5 months) performed on Pacific oysters reared under different conditions of food and environment. The forcing variables were temperature and phytoplankton densities, the latter being assessed from in vivo fluorescence and chlorophyll-a concentration measurement. The successful validation of the model on the three data sets demonstrated its ability to capture the dynamics of the energy budget in the Pacific oyster in various environments with the same set of parameters. The only parameter that varied between simulations was the half-saturation coefficient (XK), because of a different diet composition between the three environments under test. The model successfully reproduced quantitatively the growth and reproduction and the timing of spawning. These first simulation data led us to propose several promising perspectives of application for this model in shellfish ecosystems. PY 2006 PD AUG SO Journal of Sea Research SN 1385-1101 PU Elsevier VL 56 IS 2 UT 000240704600007 BP 156 EP 167 DI 10.1016/j.seares.2006.03.007 ID 1817 ER EF