FN Archimer Export Format PT J TI Associations between tissue fatty acid composition and physiological traits of performance and metabolism in the seabass (Dicentrarchus labrax) BT AF CHATELIER, Aurelien MCKENZIE, David PRINET, Aurelie GALOIS, Robert ROBIN, Jean ZAMBONINO-INFANTE, Jose-Luis CLAIREAUX, Guy AS 1:2,3;2:1,2;3:1;4:1,2;5:2;6:2;7:1,2; FF 1:;2:;3:;4:;5:PDG-DOP-DCB-PFOM-ARN;6:PDG-DOP-DCB-PFOM-ARN;7:; C1 Ctr Rech Ecosyst Marins & Aquacoles, CNRS UMR 10, IFREMER, F-17137 Houmeau, France. IFREMER, Ctr Brest, Unite Mixte Nutr Aquaculture Genom, INRA,Lab Adaptat Reprod Nutr Poissons, F-29280 Plouzane, France. C2 CNRS, FRANCE IFREMER, FRANCE UNIV LA ROCHELLE, FRANCE SI LA ROCHELLE BREST SE PDG-DOP-DCN-AGSAE-CRELA PDG-DOP-DCN-AGSAE-CREMA PDG-DOP-DCB-PFOM-ARN IN WOS Ifremer jusqu'en 2018 copubli-france copubli-univ-france IF 2.631 TC 48 UR https://archimer.ifremer.fr/doc/2006/publication-1860.pdf LA English DT Article DE ;Diet;Fatty acid;Cardiovascular performance;Metabolism;Swimming;Dicentrarchus labrax;Seabass AB Seabass were fed for 4 months with diets where the lipid was provided as either canola oil (CO), palm oil ( PO) or fish oil (FO), to generate diversity in their tissue fatty acid (FA) composition and investigate how this influenced major traits of exercise performance, cardiac performance and respiratory metabolism. In particular, based upon previous observations, we investigated the hypothesis that enriching the fish tissues with oleic and linoleic acids (OA, 18:1n-9 and LA, 18:2n-6, respectively) from the CO and PO diets would improve maximum exercise and cardiac performance, and increase aerobic metabolic scope. This proved to be the case; exercise respirometry on bass fitted with cardiac flow probes revealed that those fed CO and PO diets had a significantly higher critical swimming speed (U-crit) than those fed the FO diet. The improved swimming performance in the CO and PO groups was accompanied by a higher maximum cardiac output (Q) and net cardiac scope, and a higher active metabolic rate (AMR) and aerobic scope (AS) than in the FO group. Analysis of tissue FA composition revealed that the fish fed the CO and PO diets had accumulated significantly higher levels of OA and LA in their heart and muscle than the fish from the FO group, which had significantly higher levels of highly unsaturated FA of the n-3 series, such as EPA and DHA (20:5n-3 and 22:6n-3, respectively). Principal components analysis revealed significant positive associations between tissue OA and LA content and Ucrit, maximum Q, the increase in Q during exercise, AMR and aerobic scope. There was a negative association between these physiological traits and tissue content of EPA. Therefore, diet composition is an environmental factor that can generate significant phenotypic diversity in major physiological traits of performance and metabolism in the seabass, with increased intake of FAs such as OA and LA leading to improved cardiorespiratory performance. PY 2006 PD SEP SO Journal of Experimental Biology SN 0022-0949 PU The Company of Biologists VL 209 IS 17 UT 000239836000026 BP 3429 EP 3439 DI 10.1242/jeb.02347 ID 1860 ER EF