
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 319: 237–249, 2006 Published August 18

INTRODUCTION

Studying variability in ecological systems over time
and space is an extensive area of research which has
gained considerable interest in recent years (Gurney
& Nisbet 1998, Turchin 2003). Quantifying the rela-
tive importance of biotic and abiotic processes on
free-ranging marine populations has, however, been
hampered by several limitations, including: (1) the
lack of long ecological time series, (2) the presence
of observation errors, especially when populations
are sampled blindly, and (3) the complexity of the
interactions between deterministic and stochastic
mechanisms (Ripa et al. 1998, Cazelles & Boudjema
2001, Fromentin et al. 2001, Turchin 2003). When
conducting exploratory data analysis, the alternation
and combination of stochastic and deterministic peri-
ods, which possibly involve non-linear interactions

and non-stationary noise, renders many standard lin-
ear methods inadequate (such as the Fourier- and
correlation-based approaches, Dale et al. 2002).
Moreover, fitting standard population models often
supposes prior knowledge of the underlying mecha-
nisms and that any ‘uninformative’ noise is simply
additive (uncorrelated) and can be assimilated to
observation error. Recent studies have, however,
demonstrated that these assumptions are not often
valid: large-scale coherent patterns can emerge from
stochastic internal processes (e.g. from interactions
between individuals or age classes, Bjornstad et al.
2004), while environmental noise tends to be auto-
correlated over space and time (especially in marine
ecosystems, Steele 1985, Vasseur & Yodzis 2004).
Lastly, little information may be available on the pro-
cesses that govern population dynamics over the
studied time scales.
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In this context, Atlantic bluefin tuna Thunnus thyn-
nus L. poses a challenging problem. The exploitation
of this pelagic migratory species dates back to anti-
quity, and has reached critically high levels during
the past decades (see Fromentin & Powers 2005 for
a review). Despite continuous documentation efforts,
detailed information on key processes (i.e. migratory
behaviour, population structure, habitat use, growth
and reproduction) required to elaborate and fit an
accurate population model is still not available.
Furthermore, extreme events, such as bursts and/or
disappearance of bluefin tuna in given areas, have
been reported in the past (Tiews 1978, Mather et al.
1995), while apparent shifts in spatial distribution
and/or migration continue to be an actual and acute
problem (Lutcavage et al. 1999, Fromentin & Powers
2005). These observations suggest that the dynamics
of bluefin tuna may include several potential mecha-
nisms operating at different spatial and temporal
scales. The recent collection of long time series from
the coastal trap fisheries in the Mediterranean greatly
helped in describing patterns of variations, which were
largely dominated by low-frequency signals (Ravier &
Fromentin 2001). In this previous study, we showed
that medium- to long-term fluctuations (~20 and ~100
to 120 yr–1) were particularly synchronous over the
whole studied area (>2000 km), whereas inter-annual
variability was only synchronous at a local scale. Using
linear regression techniques and stochastic simulation,
Fromentin (2002) and Ravier & Fromentin (2004) pro-
posed a set of hypotheses to explain these medium-
to long-term fluctuations (from time-delayed effects
related to a long life span and numerous age classes
to climate-induced effects), but we did not investigate
the potential causes of inter-annual variability.

In this study, we performed a reanalysis of a set of
these historical time series to: (1) extract patterns of
variability that may have remained hidden when using
linear techniques, and (2) examine whether we could
further discriminate between deterministic and stoch-
astic processes. For this purpose, we applied a non-
linear exploratory technique, namely recurrence
analysis (RA) (Zbilut et al. 2002). RA is based on recent
strategies derived from the signal processing and
chaos theory field and was first applied to various
issues in optics, finance, physiology, hydrology and
chemistry (Eckmann et al. 1987, Marwan et al. 2002). It
relies on quantifying self-similarity in the data and de-
tecting recurring patterns over time, with no assump-
tions on their statistical nature. RA can thus character-
ize the dynamical properties of the observed system,
regardless of its non-linearity or non-stationarity (Gao
& Cai 2000). Such a technique appears particularly
suited for complex ecological systems, for which little
mechanistic knowledge exists and where only 1 vari-

able is measured (e.g. abundance or catch, as is the
case here). There has been few applications of this
technique in ecology: Dippner et al. (2002) employed
RA to uncover deterministic (periodic) fluctuations and
non-linear interactions in a controlled mesocosm
experiment, while Parrott (2004) showed how RA
could help in visually detecting disturbances in a sim-
ulated ecosystem. 

As RA is still relatively new to ecology, we here
describe the basic steps of this technique (i.e. phase-
space embedding, recurrence plotting and recurrence
quantification) and then apply it to simple examples for
illustration. We then show how the use of surrogate
data may help to extract ecological information from
RA outputs. A specific limitation of RA was identified
in the case of finite, noisy data (a common situation in
ecology) and an additional step based on partial corre-
lation (Berryman & Turchin 2001) was proposed to
address this issue. Finally, we applied RA to time series
of Atlantic bluefin tuna trap catches and present
results on previously hidden patterns. These new find-
ings are discussed in the light of current knowledge on
Atlantic bluefin tuna’s intriguing population dynamics,
and new modes of variability are proposed.

MATERIALS AND METHODS

Recurrence analysis. Phase-space embedding: Eco-
logists often study population dynamics using a small
number of observed variables, often no more than 1
(e.g. abundance, density or catch). Such data can be
greatly informative under a basic assumption, i.e. that
the sampled period is sufficiently long to encompass
most of the system’s possible states. It is then possible
to reconstruct the dynamics of hidden processes from
a single time series, thus uncovering some aspects of
their structure; this can be done using time-delay
embedding or equivalently time-delay coordinates. Let
us write the population size at time t, Nt, as a function
ƒ of its past abundances (of time order d):

Nt + 1 = ƒ(Nt, Nt – 1, Nt – 2, …, Nt – d) (1) 

Such an approach is common in quantitative ecology
and can be seen as a generalized delay-difference
population model where neither the exact relationship
ƒ nor the order d are known. If ƒ is considered linear,
an autoregressive model (of an estimated order d)
could be fitted to the data (Box & Jenkins 1976). In the
non-linear case, embedding and recurrence analysis
provide a tool to characterise the complexity and shape
of ƒ (Boudjema & Chau 1996, Zbilut et al. 2002).

We must first define what a ‘proper’ embedding is.
Given the time series of measures Nt, with t = 1, 2, 3, …,
T, an embedding procedure will form a new series of
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points Xi of coordinates (Ni, Ni + L, …, NT – (m – 1)L) with m
the embedding dimension and L the lag. The succes-
sion of Xi now represents the multidimensional process
of the time series as a trajectory in a m-dimensional
space, subsampled every L time step. The lag, L, or
time delay, corresponds to the memory of the process.
L must be chosen so as to avoid neighbouring points
being too close in the m-space and to maximize the in-
formation provided by each measure. The embedding
dimension m relates to the complexity (the order) of
the hidden ecological process. For example, a simple
2-dimensional embedding will detect patterns in the
growth rate of a single population (Turchin 2003).
Higher dimensions will reveal more complex dynamics
and interactions with other variables or pseudo-cyclic
features (more points being needed to ‘capture’ such
oscillations). Very high dimensions (15 to 20+) are in-
dicative of high order randomness, i.e. we would be
unable to capture their dynamics through a finite num-
ber of equations (see Hsieh et al. 2005). Takens’ theo-
rem (Takens 1981) states that optimal m and L values
will yield a one-to-one mapping between the recon-
structed phase-space and the phase-space of the
hidden system. In other words, the dynamics of the re-
constructed system are the same as the dynamics of the
original true system: characteristic invariants are pre-
served (e.g. the number of controlling variables), thus
allowing identification of the possible processes under-
lying a noisy, apparently random data series. In prac-
tice, L is chosen as the first minimum in the average
‘mutual information’ function (which quantifies the de-
pendence between states taken at different lags),
while m is derived using the Euclidean false nearest
neighbours method (see Kantz & Schreiber 1997).

The recurrence plot: A qualitative description of the
observed dynamics can be obtained by plotting the
(m-dimensional) states that repeat themselves in the
data and which are called recurrent states (Eckmann
et al. 1987). A recurrence plot (RP, Zbilut et al. 2002) is
constructed by placing a point at coordinates (i, j) on
matrix of size [T – (m – 1)L, T – (m – 1)L] whenever a
state Xi on the trajectory is considered close to another
state Xj. The closeness between Xi and Xj is expressed
as the Euclidean distance ||Xi – Xj || < r, where r is a
fixed radius. The resulting matrix is symmetrical
(a point at [i, j] is also present at [j, i]), with the x- and
y-axes being the new time coordinates. RPs display
patterns that can be qualitatively interpreted (Gao &
Cai 2000, Parrott 2004). For example, diagonals are
formed by different parts of the trajectory that evolve
in a similar manner: such portions repeating them-
selves after a certain period of time indicate determin-
istic behaviour. Horizontal and vertical lines indicate
states that do not change over successive time steps.
Isolated dots, on the other hand, are likely to indicate

states that repeat themselves by chance (randomly).
However, RPs remain hard to read, and a formal
description and quantification of these patterns is
needed for further analysis. The value of r may also
affect their sensibility to observation noise, and the
overall number of detected recurrences; this could be
a limitation, and we addressed it later in this section.

Recurrence quantification: The structure of an RP
is usually defined through a number of statistics (Gao
& Cai 2000, Zbilut et al. 2002): (1) the recurrence rate
(%REC) is the ratio of all recurrent states to all possible
states, and is therefore the probability of the recur-
rence of a certain state Xi; (2) the determinism (%DET)
is the ratio of recurrence points forming diagonals to
all recurrence points, and shows the likelihood of hav-
ing a piece of trajectory close to another at different
times; (3) the average diagonal length (ADL) is the
average time span that diagonals will be close to each
other and thus can be interpreted as a mean prediction
time; (4) the average and longest diagonal length (ADL
and LDL): the inverse of the longest diagonal length is
related to the largest Lyapunov exponent of the system
(a measure of its predictability, Eckmann et al. 1987);
(5) laminarity (LAM) quantifies the amount of vertical
and horizontal lines in the RP, thus characterising the
probability of having the system ‘locked’ in a certain
state; and finally (6) the trapping time (TT) measures
the average time spent in such laminar phases (Mar-
wan et al. 2002). These statistics (or probes, in the
sense of Turchin 2003) are of great value for character-
izing the complexity of non-linear dynamics, as their
interpretation is relatively straightforward. Table 1
summarizes these 7 statistics and their interpretation.

Hypothesis testing using surrogates: The statistics
describing the recurring points and patterns on an RP
can then be used for hypothesis testing against ele-
mentary random processes. The method of surrogates
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Name Acronym Interpretation

Recurrence %REC Ratio of all recurrent states 
rate to all possible states

Determinism %DET Ratio of diagonal recurrent 
states to all recurrent states

Average  ADL Mean prediction time of 
diagonal length time series

Longest LDL Largest prediction time of 
diagonal length time series

Laminarity LAM Quantity of laminar phases (same
state occurring consecutively)

Trapping time TT Average time spent in 
laminar phases

Table 1. Names, acronyms and definitions of statistics used in
recurrence analysis (RA) (from Gao & Cai 2000, Zbilut et al. 

2002)
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is used here for the detection of determinism or highly
recurring patterns. Linear surrogate techniques have
been introduced by Theiler et al. (1992) to determine
whether experimental time series are consistent with
various classes of simple linear systems. Each surro-
gate is consistent with a specific null hypothesis about
the underlying system (e.g. a random variable or an
autoregressive-like process) while retaining at the
same time some of the statistical features of the origi-
nal time series (e.g. mean and variance, power spec-
trum, complete empirical distribution). Statistics are
computed for the original data and the surrogates, thus
allowing to test (in a statistically rigorous way) if the
data is consistent with the null hypothesis. 

This method thus relies on both the algorithm
employed to generate the surrogates and the ecologi-
cal relevance of the hypothesis one wants to test for
characterising the system (Royama 1992, Hilborn &
Mangel 1997, Gurney & Nisbet 1998). The surrogates
discussed in the following section are based on various
‘colored’ noise models (by analogy with the light spec-
trum, see e.g. Halley 1996). ‘White noise’ refers to a
time series spectrum where all frequencies are equally
represented, meaning that successive values are un-
correlated. A ‘blue noise’ implies that the time series
spectrum is dominated by short-term fluctuations (high
frequencies), whereas ‘reddened noise’ are dominated
by long-term fluctuations (low frequencies). Some
phenomena are known to have deeply reddened
spectra, leading to ‘brown’ or even ‘black’ noises (Cud-
dington & Yodzis 1999). Note that most environmental
noises are reddened, especially in marine systems
(Steele 1985, Vasseur & Yodzis 2004).

The simplest null model would be that the data origi-
nates from ‘white noise’ (i.e. an independent and identi-
cally distributed variable, possibly non-gaussian). Corre-
sponding surrogates are often generated by simply
shuffling the data, thus preserving the original empirical
distribution but destroying any time correlation. This al-
gorithm is often referred to as ‘Type 0’ in the literature
(Theiler et al. 1992, Small & Tse 2003) and is mainly seen
as an autocorrelation test of the data prior to more ad-
vanced testing. It is worth noting that the white noise
null hypothesis is generally unsuited to geophysical or
ecological problems, because few processes are able to
generate white noise outputs (Hasselmann 1976, Rohani
et al. 2004). In ecological time series, white noise is often
restricted to the observation process. However, assum-
ing a white noise for the dynamical process itself (e.g.
population growth) is equivalent to specifying the null
model of an almost perfectly compensated population (as
the mean and variance remain constant, see Royama
1992, Berryman & Turchin 2001).

A more complex null model (‘Type 1 surrogate’) cor-
responds to the generation of ‘reddened noise’, which

is the usual way of trying to capture endogenous fluc-
tuations in populations (Royama 1992). In such case,
the linear properties of the time series are fully de-
scribed by its autocorrelation function or equivalently
by its power spectrum. Surrogate data are therefore
build by adding random phases in [0,2π] to the compo-
nents of the Fourier transform of the observed time
series, and then computing its inverse Fourier trans-
form (Theiler et al. 1992). The resulting surrogates are
Gaussian and have the same mean, variance and
power spectrum as the original data. Applying this
algorithm to a time series of abundance is particularly
interesting when attempting to detect regulation (i.e.
density-dependence) in population dynamics, as it is
equivalent to the null model of an unregulated popu-
lation growth (Berryman & Turchin 2001). Testing
against coloured noise further allows the assessment of
the significance of pseudo-oscillations/trends in the
data, since univariate autoregressive processes cannot
per se support deterministic low-frequency oscillations
(Rohani et al. 2004). Statistical testing of series with
reddened spectrum is still the subject of research and
debate in ecology, as many tests rely on the assump-
tion of white noise and lose their power for auto-
correlated or non-stationary series (see Morales 1999,
Rudnick & Davis 2003).

An even more complex null model (‘Type 2 surro-
gate’) will preserve both the original non-Gaussian
distribution and the power spectrum of the data (V.
Venema et al. unpubl. data). Such surrogates can be
generated using the amplitude adjusted fourier trans-
form (AAFT) algorithm. Such calculation slightly
distorts the spectrum, but generally yields to satisfying
surrogates for sufficiently long data sets, e.g. more than
100 points (Schreiber & Schmitz 1996). This is equiva-
lent to producing non-Gaussian data from an auto-
regressive process combined with a monotonic and
static non-linear observation function. Strictly speak-
ing, any non-linearity here is non-dynamic, i.e. attrib-
uted to the measurement function. Such formulation is
very convenient in time-series analysis, and ecological
studies in general, where a major task is to separate
sampling error from dynamical noise (Turchin 2003).

For each test, the generation of a large number of
surrogates allowed the derivation of a distribution of
the RP-based statistics. As most distributions were
non-Gaussian, the significance level was assessed in
a non-parametric manner, i.e. by counting up the
fraction of realizations that produce a value greater
than the observed one. The threshold ≥(2α–1 – 1) was
chosen, where α is the residual probability of false
rejection (see Marwan 2003). All the calculations were
performed using Matlab 6.5 (Matlab 2003), and the
calculation of the RPs statistics were achieved using
code made available by N. Marwan et al. (www.agnld.
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uni-potsdam.de/~marwan/toolbox/) and V. Venema
(www.meteo.uni-bonn.de/mitarbeiter/venema/themes/
surrogates/).

Observation noise and the choice of r — limitations
and solutions: We noted that time-delay embedding
allows the retrieval of real dynamics of a partially
observed system in the noise-free case or for true
(additive) observational noise only, but that there is no
guarantee that noise-driven dynamics will be com-
pletely reconstructed. Previous studies have, however,
shown that this technique can be powerful for diag-
nostic and identification purposes, when there is only a
little knowledge on the underlying processes of a
system (Boudjema & Cazelles 2001).

In the application case of finite, noisy time series
(a common feature in marine ecology where observa-
tional errors are common), the choice of r may limit
the detection of high frequency patterns; for example,
2 recurring system states Xi and Xj could be infinitely
close, but measurement error combined with a small
r value would misclassify them as non-recurring. On
the other hand, a more permissive (larger) r value
would increase the number of apparent recurring
states in the system, and thus the risk of false detec-
tions. We addressed this by: (1) using the same (arbi-
trary small) r values for all series and corresponding
surrogates, and (2) completing our analysis with the
partial rate correlation function (PRCF, Berryman &
Turchin 2001), analogous to a 2-dimensional embed-
ding in the RA framework. 

The PRCF has been elaborated to detect density-
dependent structures (thus high-frequency processes),
by investigating the (d-lagged) correlations between
the rate of change Rt = Nt – Nt – 1 and Rt – d, with the
effect of earlier lags removed. Computing the autocor-
relation of the rate of change (Rt) rather than of the
abundance (Nt), as with the partial rate autocorrelation
function (PACF), avoids any masking effects caused by
positive autocorrelation due to reproduction (Berry-
man & Turchin 2001). Its significance can be assessed
directly without bootstrapping, using Bartlett’s crite-
rion, ±2n–0.5, with n the length of the series (Box &
Jenkins 1976, Royama 1992). As seen above, the null
model of the PRCF is a population subject to un-
bounded growth (i.e. a reddened noise), which should
be preferred to the PACF null model (i.e. white noise).
This would be further consistent with the bluefin his-
torical catches, which display long-term (reddened)
fluctuations (Ravier & Fromentin 2001). This, in addi-
tion to its ability to uncover short-scale patterns (typi-
cally over a few lags), influenced us to include the
PRCF as a complimentary step in the RA analysis of
these series.

Data. Simulated examples — three elementary sto-
chastic models: For illustration and testing purposes of

the RA, we firstly simulated time series from 3 elemen-
tary stochastic and non-linear models that are cur-
rently used or referred to in ecology. The first model is
a simple autoregressive process generating a random
walk (i.e. a brown noise): 

Nt + 1 = Nt + εt (2)

where εt is a gaussian white noise. This model simply
corresponds to a population subject to unbounded
growth (Fig. 1a) and therefore defines the null model
in the sense of Berryman & Turchin (2001). The second
time series was derived from a stochastic Order 2
autoregressive model: 

Nt + 1 = exp(aNt + bNt – 1 + εt) (3)

This model depicts how a delayed autoregressive
process can be affected by an observation process of
the exponential family (Fig. 1b). Non-linearity is attrib-
uted here to the exponential function which amplifies
the random fluctuations of the autoregressive process,
and would require log-transforming the series based
on some a priori assumptions (Fromentin et al. 2001).
Lastly, a third non-linear time series was constructed
by adding gaussian noise to a simple 2-species trophic
model, classically called NPZ model in plankton eco-
logy (e.g. Franks et al. 1986):

N = Ntot – P – Z (4)

(5)

(6)

where N is the nutrient concentration, and P and Z the
phytoplankton and zooplankton abundance, respec-
tively. Parameters are set as follows: Ntot = 5 (initial
nutrient concentration), N0 = 0.1 (nutrient threshold),
P0 = 0 (initial phytoplankton abundance), u = 0.3
(uptake factor or growth rate of P ), g = 0.2 (grazing fac-
tor), a = 0.4 (grazing conversion factor), k = 0.08 (death
rate of Z). The model is supposed to be partially
observable, i.e. only the phytoplankton variable P is
measured, and blurred with white observation noise
w ~ N (0,1). This parameterization generates an oscilla-
tory behaviour in the system and a series of cycles in
the measured (P) time series (Fig. 1c).

The embedding procedure implies that the full com-
plexity of the system may be retrieved from the data
sets. In other words, time series must be long enough
for the results to be robust. We therefore tested RA
with various lengths of each simulated time series,
from 50 points up to 500 points. 

Historical time series of bluefin tuna catches: Time
series of bluefin tuna catches (in number of fish) have
recently been collected after intensive work on
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archives and historical material (Ravier & Fromentin
2001). These were derived from the Mediterranean
and Atlantic costal trap fishery, which used a fixed
gear to intercept bluefin tuna during their spawning
migration (Fromentin & Powers 2005). This original
dataset spans a 360 yr period, from 1600 to 1960, with
notable gaps between 1820 and 1850. The configura-
tion and mode of operation of these traps remained
quite stable during that period (Farrugio 1981), and
they all displayed synchronous variations at dominant
periods of ~20 and ~100 to 120 yr, the latter accounting
for 50 to 70% of the total variance. This indicated that
a common process was likely to be observed, and that
trap catches were likely to reveal long-term fluctua-
tions in the abundance of migrating bluefin tuna
(Ravier & Fromentin 2001, 2004). 

Although we computed a synthetic, full-length time
series in previous studies (Ravier & Fromentin 2001,
2004), we chose to apply RA to the original (shorter)
series here, as recurring patterns were likely to have
been smoothed or lost during this process. Following
tests on the minimum needed length and results of
Ravier & Fromentin (2004), we selected time series dis-
playing at least 125 contiguous years without missing
values (Fig. 2). The 6 retained series came from Sicilian
traps (Formica, Favignana and Bonagia: 180 annual
values of catches from 1634 to 1813) and from Sardin-
ian traps (Porto-Paglia, Porto-Scuso and Isola-Piana:
136 values from 1825 to 1960). The unusual length of

these time series also allowed us to assume that the
bluefin tuna population varied within a large range of
abundance levels and patterns (i.e. states), which is a
prerequisite for phase-space reconstruction and non-
linear analysis. 

RESULTS

Simulated examples: analysis of elementary
stochastic models

For comparison purposes, the 3 test time series were
embedded in phase space of Dimension 2 and unit time
delay. The corresponding RPs (Fig. 1) are easily distin-
guishable, displaying a number of vertical, horizontal
and diagonal features. The random walk model is char-
acterized by checker-board like patterns (Fig. 1d), while
the exponential autoregressive process tends to fill up
the RP with neighbouring points (Fig. 1e). While the de-
terministic fluctuations of the P compartment of the last
model are clearly visible in the form of sharp structures,
once blurred by observation noise, they become more
similar to the squared patterns of the 2 previous models
(Fig. 1f). Still, the succession of the 3 cycles remains
visible, separated by horizontal and vertical white strips
indicating abrupt variations in the state vector. 

We then tested these 3 elementary time series
against the different types of surrogates using a hierar-
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Nt+1 exp(aNt + bNt+1 + εt)Nt+1 = Nt + εt NPZ model: P variable
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Fig. 1. Time series of 3 elementary stochastic models: (a) random walk, (b) exponentially transformed autoregressive process, and
(c) noisy NPZ model, together with their corresponding recurrence plots (d–f) computed with an embedding dimension of 2 and time
delay 1. (f) Recurrence plot of non-noisy (i.e. fully deterministic) NPZ model is inserted into recurrence plot of noisy NPZ model
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chical approach; i.e. we firstly tested against Type 0
surrogates: if H0 was rejected we then tested against
Type 1, and if it was rejected again we tested against
Type 2 surrogates (all the results being summarised in
Table 2). Note that a relatively low number of surro-
gates (20 to 30) proved sufficient for obtaining reliable
results. 

The test of the random walk model, which mostly
displays long-term fluctuations, against Type 0 surro-
gates (shuffling the data in time domain) led to re-
jection of the null model in all cases. When these
surrogates were then generated by randomly shuffling
the phases of the Fourier transformed data (Type 1
surrogates), the RP-based statistics were all indistin-
guishable from their surrogate counterparts, except for
the laminarity index (using the non-parametric test
introduced earlier, 2α–1 – 1, with α = 0.05; see Table 2).
Type 1 surrogates allow us to correctly identify the
stochastic nature of the random walk and, thus, to
avoid the attribution of these pseudo-cycles to deter-
ministic processes or external forcing (which may have
been tempting at first sight).

The exponential of an autoregressive process, that
appeared close to white noise but exhibited further
occasional bursts (Fig. 1b,e), led to rejection of null
model based on Type 0 or Type 1 surrogates with high
confidence (p < 0.05 for %REC, %DET, LDL, ADL,
LAM and TT). This indicated that such a time series
could not be assimilated to a ‘white’ or a ‘reddened’
noise. However, the test against Type 2 surrogates was
not rejected, as no statistic could be differentiaed from
their surrogate counterparts. Therefore, the exponen-
tial of an autoregressive process was consistent with
red noise (unregulated growth) combined with a non-
linear observation function (i.e. a static non-linearity). 

The NPZ model is a mix of deterministic and stoch-
astic processes (Fig. 1c). Type 0 surrogates (time
shuffling) retain the time distribution but destroy both
the frequency distribution and any dynamic structure
(Fig. 3a). The RP of such surrogates also appear to be
quite different from that of the NPZ model (Figs. 1f &
3d) and, as expected, this null model was rejected for
all statistics (Table 2). Type 1 surrogates (phases shuf-
fling) retain the frequency distribution (Fig. 3b) and
display pseudo-cycles similar to those observed in the
NPZ model. However, such variations do not appear to
be as regular as in the original data, and the RPs also
appear to be different (Figs. 1f & 3e). Type 2 surrogates
retain the frequency distribution and the time distribu-
tion (Fig. 3c). Nonetheless, its corresponding RP also
appeared to be different from the original data, and
both null models (Type 1 and Type 2) were rejected for
the NPZ model for some statistics (Fig. 3f). Indeed, a
significantly greater number of recurring patterns
(%REC), with a higher prediction time (%LDL), were
observed in comparison to red noise surrogates
(Table 2). This indicated that the succession of the 3
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Model 1 (RW)   Model 2 (expRW) Model 3 (NPZ)
T0 T1 T2 T0 T1 T2 T0 T1 T2

%REC * – – * * – * * *
%DET * – – * * – * * *
%ADL * – – * * – * * –
LDL * – – * * – * * *
LAM * * – * * – * – –
TT * – – * * – * – –

Table 2. Significance (*, at 95%) of recurrence statistics for 3
elementary models. Each test was performed using embed-
ding dimension m = 2 and lag L = 1. RW: random walk; T: Type
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cycles (visible on the RP, Fig. 1f) did not result from
stochastic processes but from deterministic ones.

Recurrence analysis of bluefin tuna time series

Given the global synchrony between the Mediter-
ranean traps (Ravier & Fromentin 2001), embedding
parameters were set to be identical for the 6 time
series. False nearest neighbours advocated an embed-
ding dimension m of about 8, while the first minimum
in the self-mutual information function favoured small
time-delays (i.e. L ~1 to 3). As fishing activity occurred
every year during spawning migration (i.e. May to
July), it can be hypothesized that the frequencies of the
observation and the ecological processes were closely
matching; therefore, we used a time delay L of 1. This
avoided sub-sampling the data (the full time series
were used), but introduced the risk is of including
observation noise in the embedding process. Not
surprisingly, the null hypotheses of white noise (i.e.
Type 0 surrogates) was rejected for all time series and
for all recurrence statistics. 

Less trivially, the same results were obtained with
reddened noise (i.e. Type 1 surrogates). In other words,
the catch time series showed significantly more recur-

ring patterns than implied by a white null model
(uncorrelated random fluctuations) or a reddened null
model (autoregressive model). To illustrate this result,
examples of surrogates are given for the Formica time
series in Fig. 4. Type 0 and Type 1 surrogates indeed
appear to be quite different to the original structure of
the observed time series, but Type 2 surrogates look
more similar. However, the null model that preserves
both the original non-gaussian distribution of the trap
time series and their reddened power spectra (Type 2
surrogates) only allowed a partial number of recurring
features of the various trap time series to be uncovered
(Table 3). All the time series displayed significant dif-
ferences (p < 0.05) to the null model for given statistics
(bearing in mind that these were different among the
traps). For example, Formica, Favignana, Bonagia and
Piana displayed significantly more recurring vectors
than the null model (Table 3). Favignana and Piana
also displayed more deterministic structures, and Fav-
ignana and Bonagia larger laminar time periods, than
what would be expected under the null model. Note
also that Bonagia exhibited a greater average diagonal
length, which could indicate a longer mean prediction
time. Porto-Scuso displayed a significantly larger pre-
diction horizon (LDL), perhaps indicating dynamics of
lower complexity. Although the 6 trap time series
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exhibited different results, Favignana and Bonagia
displayed quite similar statistics, being different to the
third Sicilian trap (Formica) and the 3 Sardinian ones.
Among the Sardinian traps, Porto-Paglia and Porto-
Scuso appeared to be most similar, while Isola Piana
displayed some recurrent patterns close to those of the
Sicilian traps. 

Partial rate autocorrelation function

To complete the RA, the partial rate autocorrelation
was computed for the first-order finite difference of all
6 series. The PRCF plots displayed negatively corre-
lated autocorrelation in Rt over 2 successive time lags
(i.e. of Order 2). This result was true for the 6 catch

time series considered here (Fig. 5), as well as for the
other smaller series in the original data set (results not
shown). The fact that significant negative autocorrela-
tion is a common feature of all trap catch time series
would, thus, strongly advocate for density-dependent
structures in migrating bluefin tuna. The occurrence of
density-dependence could explain why we previously
found more recurring/deterministic structures than the
Type 2 null model in several time series (see above
or Table 2). Weakly significant correlations could be
detected at other lags according to Bartlett’s criterion
(e.g. Lag 11 for Formica, 10 for Bonagia, 4 for Porto
Paglia, 3 for Porto Scuso, and 3, 7 and 10 for Isola
Piana). However, only the negative direct and delayed
correlations (Lags 1 and 2) appeared significant for
all time series.

DISCUSSION

Usefulness and significance of recurrence analysis
in ecology

The recurrence statistics proposed by Zbilut (2002)
and Marwan et al. (2002) can be seen as new ‘probes’
of complexity (sensu Turchin 2003) for ecological time
series. Recurrences can be used on raw data analysis
and are complementary to standard time series tools —
such as autocorrelation functions or the Fourier
spectrum — that provide clues about the ecological
‘smoothness’ of underlying processes (Chatfield 1999).
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Statistic Formica Favignana Bonagia Paglia Scuso Piana

%REC 0.04* 0.00* 0.00* 0.16 0.14 0.02*
%DET 0.11 0.04* 0.16 0.47 0.19 0.04*
ADL 0.47 0.11 0.04* 0.28 0.35 0.28
LDL 0.39 0.11 0.18 0.12 0.02* 0.76
LAM 0.72 0.00* 0.00* 0.11 0.25 0.28
TT 0.61 0.06 0.14 0.11 0.09 0.67

Table 3. Significance (*, at 95%) of recurrence statistics for
6 bluefin tuna catch time series from coastal Mediterran-
ean traps. Each test was performed against surrogates of
Type 2 (i.e. stochastic autoregressive process with static non-
linearity) using embedding dimension m = 8 and lag L = 1. 

Row definitions as in Table 1
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According to the algorithmic definition of randomness
(Chaitin 2001), recurring patterns are highly informa-
tive regarding the degree of stochasticity in a data set.
However, the qualitative information produced by the
RP, although useful, remains insufficient (and some-
what too subjective) to allow interpretation of time
series. Therefore, recurrent analyses must also include
the computation of RP-based statistics. Furthermore,
we think that these statistics have to be tested against
clear null models and thus proposed 3 types of surro-
gates. The use of surrogates indeed provided a conve-
nient answer to the question: ‘how much deterministic
structure is embedded in a time series?’. In that sense,
surrogate-based RA is nothing more than hypothesis
testing, i.e. we assume a ‘trivial’ option to be true
unless we can reject it by finding significant structure
in the data. Using 3 elementary and simulated time
series, we showed that this procedure was quite pow-
erful and able to distinguish between pure stochastic
process (i.e. the random walk) and the mixture of
stochastic and deterministic ones (i.e. the noisy auto-
regressive model and the NPZ model). Doing so, we
can then identify the models most likely relevant to an
ecological time series. For instance, a state-space for-
mulation may be relevant for the noisy autoregressive
example, which may not be obvious at first glance (i.e.
bursts could be interpreted as dynamic non-linearity).
Finally, we are limited by the degree of complexity
of the null hypotheses that we can propose. To date,
the simplest (or most trivial) processes we are able to

generate by constrained simulation belong to the lin-
ear or weakly non-linear class (e.g. surrogates of Type
0,1,2). Recent efforts on constrained randomization
broaden the repertoire of such null hypotheses. Gener-
ally, random processes blur deterministic dynamics
through observation noise (generally additive) and
dynamical noise (possibly propagated through the
system).

Quantifying the resulting variability through RA can
help in separating both sources, acknowledging that
no technique is noise-insensitive. RA is subject to such
noise through the choice of r; for our specific applica-
tion to bluefin tuna, we used the partial rate autocorre-
lation function to complete the analysis. Knowing that
ecological time series are often of limited length (espe-
cially with in situ data), we tested the sensitiveness of
the RA analysis to time span. Using simulated data, we
repeated the RA steps after truncating a time series of
500 values in sub-samples of length 50, 100, 150, 200,
300 and 400. Boxplots of the results (1 plot for each RP-
based statistic) were similar until a length of ~100 to
150 values (after which some structures were lost).
However, such a limit remains only indicative and
depends on the ratio of deterministic structures versus
noise. Most RP statistics appeared to be invariant over
time or displayed a plateau-like behavior, except for
statistics associated with the length of some event (e.g.
LDL and LAM), which grew almost linearly with the
series length, especially for the random walk model
(results not shown).
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Historical fluctuations in bluefin tuna catches

RA was applied to the historical time series of bluefin
tuna catches from the Mediterranean coastal traps. A
dimension of 8 was found for phase space embedding,
while testing against surrogates indicated more recur-
ring features than expected from a linear stochastic
process. While the lengths of these series were at the
lower limit of what is needed for reliable results, the
results among the 6 chosen series were globally homo-
geneous and significant. Thus, this analysis confirms
(through a quantitiative and objective test) the non-
stochastic nature of long-term fluctuations in bluefin
tuna trap catches, as postulated by Ravier & Fromentin
(2001, 2004). In particular, hypothesis testing using
Fourier-based surrogates revealed that the observed
dynamics could not be described solely by their
frequency spectrum and time distribution: most time
series displayed more recurring patterns than ex-
pected under this null hypothesis. 

These results are in agreement with the general
view that marine populations display non-linear sto-
chastic variations (Sugihara 1994, Hsieh et al. 2005). In
particular, Hsieh et al. (2005) showed that time series
of commercial landings of Pacific salmon, trout and
zooplankton (the latter obtained from CalCOFI sur-
veys) were characterized by embedding dimensions of
3 to 8, an indication of low dimensional non-linear
processes. On the other hand, physical variables such
as sea surface temperature and climatic oscillation
indices were characterized by high and very high
dimensions (10 to 20), indicating that high-order linear
stochastic processes are better at capturing their varia-
tions. A dimension of 8 for the bluefin tuna time series
is coherent with the range computed by these authors
for their biological series, and would advocate for
low dimensional non-linear processes. This view is in
partial agreement with the hypothesis of ‘cohort re-
sonance’ as a possible mechanisms to generate low
frequency oscillations when many age classes interact
(Fromentin 2002, Bjornstad et al. 2004). 

Following this, the bluefin tuna population would act
as low-pass filter (a smoother) of variability affecting
critical processes, such as recruitment or growth at
early stages. However, such autoregressive process
still posses a linear basis and produce random long-
term variations rather than deterministic (recurrent)
patterns. This hypothesis can be extended in light of
our results: it is suggested that a blend of environmen-
tal forcing and non-linear biological responses occurs
at time scales of 10 to 30 yr, which is in the order of
the life span of Atlantic bluefin tuna (Mather et al.
1995). Atmospheric forcing (synthesized through e.g.
the North Atlantic Oscillation) could therefore affect
bluefin tuna population through the occurrence and

strength of meso-scale processes where spawning is
known to occur (Garcia et al. 2003). As bluefin tuna
displays a ‘homing-like’ behavior and quickly switches
from a wide geographical distribution to restricted
spawning areas (Fromentin & Powers 2005), such
atmospheric forcing is likely to induce non-linear
responses. These delayed interactions may remain
hidden to classic correlation-based analysis and would
therefore need to be investigated through mechanistic
age-structured models. Possible interactions with local
units in a metapopulations context could also lead to
non-linearity in the response to climate forcing (Fro-
mentin & Powers 2005).

As RA may yield less reliable results at very small
scales (due to e.g. high observation noise), we com-
pleted the methodology with the computation of
PAFC (a simplified form of phase-space embedding).
A significant negative feedback was uncovered for all
6 time series, at Lags 1 and 2. Such feedback is usu-
ally defined in ecological theory as a density-depen-
dence, and is seen as a necessary condition for
population regulation in general (Berryman 2002).
Density-dependence theory supposes a negative rela-
tionship between population abundance (Nt) and its
growth rate (Rt, a function of per-capita birth, death,
immigration and emigration rate). As Atlantic bluefin
tuna spawn in restricted areas in the Mediterran-
ean (Fromentin & Powers 2005), one could first see
resource/space limitations as a possible explanation
(bluefin larvae reach an active and voracious swim-
ming stage after only 2 wk, see Mather et al. 1995) or
even through cannibalism (within early stages or
through predation by adults on age-0 classes). High
densities of Atlantic bluefin tuna larvae or cannibal-
ism have not been reported, but such observation is
difficult to collect and remains scarce (Garcia et al.
2003, Fromentin & Powers 2005). Note, however, that
high density of tuna larvae has been already observed
for a neighbouring species, the southern bluefin tuna
Thunnus maccoyii (T. Smith pers. comm.). Density-
dependent processes appear to be less probable
within the adult stages because of their wide spatial
distribution and highly migratory behavior, so that
local depletion in forage or changes in predation (e.g.
by killer whales Orcinus orcas) are more likely to
induce changes in migration patterns than in abun-
dance (e.g. Tiews 1978). Also. the naturally high
unpredictability of small pelagic populations (Spencer
& Collie 1997) does not lend much support to such
deterministic hypothesis. An alternative to density-
dependence in early stages would involve non-yearly
spawning (a feature that has been observed in bluefin
tuna in captivity, see Lioka et al. 2000).

According to the observed Order 2 negative feed-
back, a significant portion of migrants coming from the
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Atlantic would therefore only spawn in the Mediter-
ranean every 3 yr, which can be related either to: (1) a
physiological inability of adults to perform gonad
maturation every year, or (2) the frequentation of other
spawning grounds (as already postulated by various
authors, e.g. Lutcavage et al. 1999, Ravier & Fromentin
2004). This hypothesis can be further interpreted in
the framework of marine metapopulations, a concept
shown to be highly relevant in the case of bluefin tuna
(Fromentin & Powers 2005). Synchrony within the
fraction of migrants may then be explained through
stabilizing mechanisms similar to the ‘school-trap hy-
pothesis’ (Bakun & Cury 1999). However, there is little
knowledge on the maturation costs of gonads in spawn-
ing bluefin tuna. While there is evidence of rapid matu-
ration in relation to warmer temperatures once tuna are
in the Mediterranean (Medina et al. 2002), year-to-year
changes have not been reported and may lack physio-
logical basis (M. Lutcavage pers. comm.). Nonetheless,
such delayed negative feed-back remains highly signif-
icant, and hypotheses need now to be built and tested
using alternative sources of data.

CONCLUSION

Disentangling the effects of endogenous and exo-
genous processes in ecology is an important field of
research. In this study, we presented a method that can
uncover deterministic features in ecological time
series. Recurrent features form part of the most basic
clues about the structure of a biological system (e.g.
reproduction patterns). Using phase-space embedding
and recurrences as a signature for determinism, we
could test whether observed fluctuations were consis-
tent with linear stochastic surrogates. Such analysis
can provide clues on the underlying complexity of
measured signals (e.g. whether a linear or non-linear
model should be used, whether internal stochastic pro-
cesses suffice to induce the observed variability…).
The application of this method to historical time series
of bluefin tuna catches revealed that long-term fluctu-
ations could not be assimilated to simple stochastic or
autoregressive processes. Small-scale variability was
addressed using PAFC, and we further uncovered
negative feedback of Orders 1 and 2 in all time series,
indicating either density-dependence processes dur-
ing early stages, or non-yearly spawning. We provided
suggestions for further research into the modelling of
these patterns. In particular, the mechanistic model-
ling of responses of bluefin tuna to oceanic variability
should be considered, using age structured and time-
delay formulations. On the other hand, the origin of
density-dependent patterns should be investigated
using a hypothesis testing approach.
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