The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance

Type Article
Date 2006-09
Language English
Author(s) Major Candace O.1, 2, Goldstein Steven L.2, Ryan William B.F.2, Lericolais GillesORCID4, Piotrowski Alexander M.2, 3, Hajdas Irka6
Affiliation(s) 1 : Woods Hole Oceanog Inst, Dept Geol & Geophys, Woods Hole, MA 02543 USA.
2 : Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA.
3 : Columbia Univ, Dept Earth & Environm Sci, Palisades, NY 10964 USA.
4 : IFREMER, Ctr Brest, F-29280 Plouzane, France.
5 : Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England.
6 : Institut für Teilchenphysik, (IPP), HPK H 27, ETH-Hoenggerberg, CH-8093 Zurich, Switzerland
Source Quaternary Science Reviews (0277-3791) (Elsevier), 2006-09 , Vol. 25 , N. 17-18 , P. 2031-2047
DOI 10.1016/j.quascirev.2006.01.032
WOS© Times Cited 132
Keyword(s) Sea level changes, Black Sea, Deglaciation, Glaciation, Palaeoclimate, Palaeoceanography
Abstract The Black Sea was an inland lake during the last ice age and its sediments are an excellent potential source of information on Eurasian climate change, showing linkages between regionally and globally recognized millennial-scale climate events of the last deglaciation. Here, we detail changes from the last glacial maximum (LGM) through the transition to an anoxic marginal sea using isotopic (strontium and oxygen) and trace element (Sr/Ca) ratios in carbonate shells, which record changing input sources and hydrologic conditions in the basin and surrounding region. Sr isotope records show two prominent peaks between similar to 18 and 16 ka BP cal, reflecting anomalous sedimentation associated with meltwater from disintegrating Eurasian ice sheets that brought Black Sea level to its spill point. Following a sharp drop in Sr isotope ratios back toward glacial values, two stages of inorganic calcite precipitation accompanied increasing oxygen isotope ratios and steady Sr isotope ratios. These calcite peaks are separated by an interval in which the geochemical proxies trend back toward glacial values. The observed changes reflect negative water balance and lake level decline during relatively warm periods (Bolling-Allerod and Preboreal) and increasing river input/less evaporation, resulting in higher lake levels, during the intervening cold period (the Younger Dryas). A final shift to marine values in Sr and oxygen isotope ratios at 9.4 ka BP cal corresponds to connection with the global ocean, and marks the onset of sedimentation on the Black Sea continental shelf. This date for the marine incursion is earlier than previously suggested based on the appearance of euryhaline fauna and the onset of sapropel formation in the deep basin.
Full Text
File Pages Size Access
publication-2006.pdf 37 4 MB Open access
Top of the page

How to cite 

Major Candace O., Goldstein Steven L., Ryan William B.F., Lericolais Gilles, Piotrowski Alexander M., Hajdas Irka (2006). The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance. Quaternary Science Reviews, 25(17-18), 2031-2047. Publisher's official version : https://doi.org/10.1016/j.quascirev.2006.01.032 , Open Access version : https://archimer.ifremer.fr/doc/00000/2006/