Ecological Modelling Vol. 197, Issues 3-4 , 25 August 2006, P. 461-477 http://dx.doi.org/10.1016/j.ecolmodel.2006.03.016 © 2006 Elsevier B.V. All rights reserved

Comparative analysis of trophic structure and interactions of two tropical lagoons

M.C. Villanueva^{a,c,*}, P. Lalèyè^b, J.-J. Albaret^c, R. Laë^d, L. Tito de Morais^e and J. Moreau^a

^aLaboratoire d'Agronomie, Environnement et Éco-toxicologie, Institut National Polytechnique de Toulouse (INPT), B.P. 32 607 F, 31326 Castanet Tolosan, Cedex, France
^bFac. des Sci. Agr. de l'Université d'Abomey Calavi-Bénin, B.P. 526 Cotonou, Bénin
^cInstitut de Recherche pour le Développement (IRD), B.P. 1386, Dakar, Sénégal
^dCentre de Recherche Halieutique IFREMER/IRD, Brest Cedex, France
^eCentre de Recherche Halieutique IFREMER/IRD, Avenue Jean Monnet, B.P. 171 34203, Sète Cedex, France

*: Corresponding author : Ching.Villanueva@ifremer.fr

Abstract

A comparative study of the Ébrié lagoon (Ivory Coast) and Lake Nokoué (Benin) was made based on ecotrophic model outputs that describe each system's structure and functioning. Two models were constructed using the Ecopath software to differentiate main biomass flows in the systems.

Results indicate that biomasses and productions in both ecosystems are concentrated in trophic levels (TL) 2 and 3. Higher TL biomasses and productions in Lake Nokoué compared to Ébrié lagoon may be explained by the presence of acadjas. High production per biomass (P/B) and food consumption per biomass (Q/B) values indicate the high productivity of these systems and the abundance of juveniles in most groups which utilize these systems as refuge zones and nurseries. The difference, however, lies between the principal source of energy and how it is incorporated in the food web of each ecosystem. Lake Nokoué is a detritus-driven ecosystem while Ébrié lagoon is dominated by the phytoplankton pathway. System indicators suggest different levels of ecosystem stability and maturity. Relevance of other observations on ecosystem functioning and indicators in relation to perturbation is discussed.

Keywords: Tropical lagoons; West Africa; Transfer efficiency; System maturity; Ecopath

23 Introduction

25	Coastal lagoons are considered as some of the most productive aquatic
26	ecosystems due to high levels of primary production, intense reserve of organic matter
27	and habitat diversity that offer optimal niches for numerous aquatic species which utilize
28	these areas as refuge and/or breeding grounds (Yáñez-Arancibia et al., 1994; Silvestre
29	and Pauly, 1997; Baran and Hambrey, 1998; Berger et al., 1999; Baran, 2000; Blaber,
30	2002; Krause and Glaser, 2003; Lalèyè et al., 2003c; Glaser and da Silva Oliveira,
31	2004). According to Duarte (1995), productions in coastal lagoons are 10-15 times
32	higher than those of other continental shelves.
33	
34	On the West African coastline, these ecosystems are generally shallow with
35	highly varying gradients. As transitional areas with intense fluctuations of environmental
36	conditions, these ecosystems influence complex multi-species dynamics and impose
37	physiological constraints on biota (Baran, 2000). The ecosystem structure has been
38	observed to depend on freshwater bio-geographic regions, as well as on river discharges
39	and hydrological regimes (Écoutin, 1992; Winemiller, 1995; Baran and Hambrey, 1998;
40	Guiral, 1999; Welcomme, 1999; Baran, 2000). The occurrence and production of the
41	system's living resources are seasonally variable in relation to the marine and/or
42	continental water flows into these 'intermediate' systems. Regional climate trends seem
43	to influence the species diversity of the lagoon community where communities of
44	estuarine species decrease as the species of salt marshes increase.
45	
46	The establishment of increasing human populations near lagoons, gulfs and bays
47	has resulted in significant degradation and loss of coastal wetlands (Adingra and Arfi,

48	1998; Entsua-Mensah, 2002; Ibe and Sherman, 2002; Scheren et al., 2002; Glaser,
49	2003). Construction and practice of traditional forms of low-technology aquaculture,
50	such as brush-parks or acadjas, in coastal lagoons and brackish waters in many areas of
51	the world were to alleviate fish production to meet increasing demand for national
52	consumption and export (Beardmore et al., 1997; Welcomme, 2002; Lalèyè, 2000;
53	Lalèyè et al., 2003c). Changes in environmental conditions generally provoke diverse
54	biological processes or responses (i.e. competition or food depletion) leaving more
55	tolerant species to persist while less tolerant species are eliminated (Berger et al., 1999;
56	Baran and Hambrey, 1998; Laegdsgaard and Johnson, 2001; Glaser, 2003).
57	
58	For this study, two West African lagoons, Ébrié lagoon and Lake Nokoué, are
59	considered. Previous ecological and biological information on these ecosystems exist
60	such as Durand et al (1994), Adité and Winemiller (1997) and Lalèyè et al (2003c).
61	However, as far as we know, no broad general synthesis of a multi-specific analysis and
62	the combined influence of their characteristics (i.e. production, mortality, trophic
63	interactions, adaptations) following environmental changes has yet been published to
64	date.
65	
66	This study attempts to summarize and integrate existing data and to depict a
67	larger picture of interactions among biological components and how abiotic conditions
68	mould their structure, metabolism and function in the ecosystem using a mass-balanced
69	modelling software, Ecopath (Christensen et al., 2000). Focus is attributed on
70	quantification of biomass flows and transfer efficiencies among trophic levels (TLs) and
71	identification of significant trophodynamic links occurring between groups (Christensen,
72	1998). Modelling ecological systems can be useful in describing how an ecosystem is

73	organized and assessing species relationship stability and diversity through complex but
74	tractable depictions of energy transfers, trophic fluxes, assimilation efficiencies and
75	dissipation. Results can provide critical insights that can be further utilized to evaluate
76	the impacts of changes in abundance of a particular group on other groups (Arreguín-
77	Sánchez, 2000) and verify multi-species management decisions and conservation (Baird
78	and Ulanowicz, 1993; Beck et al., 2001; Glaser and da Silva Oliveira, 2004).
79	
80	Research approach
81	
82	Study sites
83	Ébrié lagoon (Ivory Coast) (Fig. 1, left) is a complex, elongated, open coastal
84	lagoon system located between longitudes $3^{\circ}47$ 'W and $5^{\circ}29$ W and latitudes, $5^{\circ}02$ 'N
85	and 5°42'N. It has a total area of 566 $\rm km^2$ and the lagoon stretches to about 130 km and
86	a maximum width of 7 km. Annual precipitation in Abidjan is about 1 800 mm. The
87	average water depth is 4.8 meters though depths of 20 m can be observed near Abidjan.
88	The average water temperature is 28°C. Water from the Atlantic Ocean penetrates the
89	lagoon through the Vridi canal (300 m) and mixes with freshwater discharges from three
90	connecting rivers: Comoé, Agnéby and Mé (Laë, 1997a; Pagano et al., 2003).
91	
92	Lake Nokoué (Fig. 1, right) is a shallow, sub-tropical coastal lagoon (6°25'N,
93	1°56'E) with a surface of 150 km ² and stretches 20 km in its east-west direction by 11
94	km in the north-south direction. Lake Nokoué opens directly into the Atlantic Ocean by
95	a channel at Cotonou (4.5 km) and it is connected with the Porto-Novo lagoon to its East

- 96 by the 5 km Totché channel. Saltwater and marine organisms gain access into the lake
- 97 through the Cotonou channel. Annual precipitation in Cotonou was recorded at 1 300

- 98 mm. The average depth of the lake varies from 1 m (dry season) to 3 m (rainy season).
- 99 The average water temperature is 29°C. Spatial and temporal variations of hydrological
- 100 parameters were studied in detail by Adité (1996) and recently by Adounvo et al. (2003)
- 101 and by Lalèyè et al. (2003a).
- 102
- 103 Model construction
- 104

105 The Ecopath software is a model based on a set of simultaneous linear equations 106 for each group considered in an ecosystem and assumes a mass balance where the 107 production of the group is equal to the sum of all predations, non predatory loses and 108 exports (Christensen et al., 2000). Integration of different ecological levels (i.e. 109 individual, population and community) is pertinent in ecosystem modelling. In order to 110 minimize information loss and taxonomic biases, biological components are pooled 111 according to similarities of species trophic properties (i.e. diets, predators and metabolic 112 activity) and distribution (Yodzis and Winemiller, 1999). Each trophic group has an 113 energy balance expressed as: 114

$$\begin{array}{l} 115 \\ B_i \left(\frac{P}{B_i}\right) = \sum_{j=1}^n B_j \left(\frac{Q}{B_i}\right) - DC_{ji} + \left(B_i\right) \left(\frac{P}{B_i}\right) \left(1 - EE_i\right) + EX_i \tag{1}$$

117 where B_i is the biomass of group *i*, P/B_i is the production rate of *i* equal to the total 118 mortality coefficient (Z) (Allen, 1971); O/B_i is the relative consumption rate; B_i is the 119 biomass of the predating group j; DC_{ii} , the proportion of the predated group i in the diet 120 of the predating group j; EE_i is the ecotrophic efficiency representing the part of the total 121 production transferred to higher TLs through predation or captured in the fisheries; EX_i 122 export or catch in fisheries of group *i*, assumed exploited in fisheries.

124	Mass-balanced models used here were those previously developed by Villanueva
125	(2004). A total of 42 and 31 functional groups were considered for Ébrié and Nokoué,
126	respectively (Tables 1 and 2). For these models, input data used were mainly from
127	primary data collected and complemented by existing literatures (Niyonkuru et al., 2003;
128	Simier et al., 2003) from specific study sites and considering the same period to achieve
129	proper model synchronization. The choice of the study period was based on the
130	availability and abundance of data for each ecosystem considered, as well as on periods
131	marked by considerable fishing and hydrologic variations. For trophic groups with
132	several species, estimates were derived from properties of the dominant species
133	summarized in table 1.
134	
135	Biomasses were expressed and standardized as annual average in tons of wet
136	weight (ww) km ⁻² . Production and consumption rates were compiled from a variety of
137	sources and detailed in tables 1 and 2. Flows between compartments are given in tons of
138	wet weight km ⁻² yr ⁻¹ .
139	
140	Diet composition of functional groups considered for each models was compiled
141	by Villanueva (2004) and are summarized in tables 3 and 4. It should be highlighted that
142	most of these data were based on biological and ecological studies made in each

143 ecosystem. The landings data used for the Ébrié and Nokoué models were taken from

144 Écoutin et al. (1994) and the Department of Fisheries in Cotonou surveys, respectively.

145

146 The Ecoranger routine was used to test the sensitivity of each models

147 constructed. This routine limits possible technical errors as it adjusts accordingly

possible input parameters that can be modified depending on the data source and
calculates the impact on the resulting estimates. This is useful in refining less accurate
data, such as in the case of the Ébrié model where most qualitative data on diet
composition were modified accordingly to decrease uncertainties or to achieve an
ecotrophic efficiency (*EE*) value of less than 1.

153

154 Network description analysis

155 A. structural analyses

156

Group omnivory index (*OI*) is a concept introduced by Pauly et al (1993) which incorporates the TL variations of different preys consumed by a predator. *OI* values near 0 indicate a highly specialized predator while 1 indicates groups with considerable versatility.

161

162 Lindeman (1942) introduced the concept of describing food webs based on 163 grouped taxa and quantified energetic flows of organic matters by TLs which allow 164 assessment of energy transfer efficiency. TL is a dimensionless index that identifies 165 what kinds of food an organism uses. This is a simplification of the food-web to 166 determine the distribution of net input and output flows in each group that has 167 contributed to the next TL. This concept is a useful abstraction to clarify and organize 168 understanding of energy transfer in ecosystems and overcome bias in differing number 169 of biological components when comparing ecosystem state and functioning. In Ecopath, 170 group aggregations into discrete TLs (Ulanowicz, 1986) were carried out based on 171 approach suggested by Ulanowicz (1995). TLs are represented as fractions (Odum & 172 Heald, 1975) rather than integers (1, 2, 3...) as initially proposed by Lindeman.

1	7	3

B. Network analyses

176	The fishery gross efficiency is computed as the ratio between the total catch
177	(landings and discards) and the total primary production in the system. The value is
178	higher for systems with a fishery harvesting mainly in low TLs than for systems whose
179	fisheries concentrate on high TLs. This index may increase with fisheries 'development'
180	as indicated by Pauly et al. (1998).
181	
182	The total system throughput (TST) is defined as the sum of all flows in a system.
183	It represents the "size of the entire system in terms of flow" (Ulanowicz, 1986). As such,
184	it is an important parameter for comparisons of flow networks.
185	
186	The ratio of total system biomass to the total system throughput (B/TST)
187	(Christensen, 1995) is directly proportional to system maturity where estimated value
188	tends to be low during ecosystem development phase and increases as a function of
189	maturity. Energy is conserved through component energy stocking (Odum, 1971;
190	Ulanowicz, 1986).
191	
192	The ratio of Net Primary Production to Total Respiration (PP/TR) is another
193	system maturity index (Odum, 1969; Pérez-España and Arreguín-Sánchez, 1999) where
194	values of this ratio close to 1 indicate mature ecosystems.
195	
196	The net production of the system (NPP-TR) is another index of system maturity
197	(Odum, 1969) and should be zero out in a truly balanced ecosystem.

199 The system omnivory index (*SOI*) is computed as the average omnivory index of 200 all consumers weighted by the logarithm of each consumer's food intake (Christensen et 201 al., 2000).

202

The connectance index (*CI*) for a given food web is the ratio of the number of actual links between groups to the number of theoretically possible links. Feeding on detritus (by detritivores) is included in the count, but the opposite links (i.e., detritus 'feeding' on other groups) are disregarded. This index is correlated with the maturity of the ecosystem because a food chain structure changes from linear to web-like as a system matures (Odum, 1969; 1971).

209

210 Initially considered by Finn (1976), the Finn's cycling index is the proportion of 211 the total system throughput (TST) recycled in the system. According to Monaco and 212 Ulanowicz (1997), cycling is considered to be an important indicator of an ecosystem's 213 ability to maintain its structure and integrity through positive feedback and can be used as 214 an indicator of stress (Ulanowicz, 1986) or system maturity (Christensen, 1995; 215 Vasconcellos et al., 1997). This is similar to the predatory cycling index, which is 216 calculated by excluding the cycling through detritus. Disturbed systems are characterized 217 by short and fast cycles while complex trophic structures have long and slow ones 218 (Odum, 1969; Kay et al., 1989; Christensen, 1995). A manner of quantifying the length 219 of each cycle is through the Finn's mean path length which accounts for the number of 220 groups involved in a flow. Finn's straight-through path length (excluding detritus) is 221 another indicator of ecosystem health wherein a low value translates a stressed ecosystem 222 and a short food chain controlled by bottom-up forces.

224	Macro-descriptors are typically applied for large and complex ecosystems whose
225	aim is to present ecosystem growth and development (Ulanowicz, 1997). Ascendancy, A,
226	(Ulanowicz, 1986) and mutual information, I , (Hirata, 1995) are examples of quantitative
227	descriptors that differ from those used in classical food webs. Ascendancy is a measure of
228	system growth (i.e. age, size) and development (i.e. organization) of network links. The
229	fraction of a system's capacity not considered as ascendancy is considered as the systems
230	overhead, which is the energy in reserve of an ecosystem (Monaco and Ulanowicz,
231	1997), especially in case of perturbations (Ulanowicz, 1986). The relative ascendancy
232	(A/C) is the fraction of possible organization that is actually realized (Ulanowicz, 1986)
233	and it is negatively correlated with maturity (Christensen, 1995).
234	
235	Results
236	
237	After integrating all the basic inputs, both models were balanced. Basic
238	parameterization results for the Ébrié and Nokoué models are shown in tables 1 and 2,
239	respectively, whereas the feeding matrices are displayed in tables 3 and 4.
240	
241	Model sensitivity
242	Pedigree indices of 0.79 and 0.75 for Nokoué and Ébrié models, respectively
243	were obtained from the model. Both values conform to the gauge of the overall quality
244	of an Ecopath model as discussed by Christensen et al. (2000). The Ecoranger routine
245	was then used for each model in order to assess their viability. For the Ébrié model, 33
246	acceptable runs out 10 000 were obtained with a least sum of deviation equal to 16.06. A

248	least sum of deviation equal to 11.27. These values indicated that both models are
249	tightly-fitted. The initial inputs and outputs based on our field data were very close to the
250	mean values generated by Ecoranger. Ratios of respiration to assimilation (R/A) ,
251	production to respiration (P/R) and estimated <i>EEs</i> for all considered group are less than
252	1.
253	
254	Structural analyses
255	
256	The TL of each group varied between 3.9 and 1.0 in Ébrié with the higher values
257	corresponding to groups 1, 4 and 5 and with most fish groups (75 %) at TL3 (Table 1).
258	In Nokoué, individual TL varied between 3.5 and 1.0 with the highest value
259	corresponding to group 5 followed by groups 2, 4, 13 and 15 (Table 2).
260	
261	The cumulative biomass of major fish groups was lower in Ébrié lagoon (9.48
262	tkm ⁻²) than in Lake Nokoué (132.43 tkm ⁻²). The obvious reason is the development of
263	acadjas which are artificial fish aggregating devices built using branches that act both as
264	a insatiable food source for detritivores (such as tilapias and benthic organisms), as well
265	as lowering predation and competition pressure by limiting access of carnivores or
266	piscivores (Welcomme, 1999).
267	
268	Group OI values obtained are quite low and may be due to the specialization and
269	predation rates of some groups depending on the environmental conditions and
270	availability of preys in each ecosystem (Tables 1 and 2). Higher group OI values in Lake
271	Nokoué may be due to possible feeding of non- or less-detritivorous groups on detritus
272	because of eutrophication and limited access to other prey types due to acadjas

273	installations, covering most of the lake's surface. It is interesting to note that eight
274	groups in Ébrié lagoon occupy higher TLs and have OI values greater than 0.25,
275	compared to only 5 groups in Lake Nokoué. Among these are the mobile epibenthos,
276	such as the blue swimming crab (Callinectes latimanus) and pink shrimps (Penaeus
277	duorarum), which consume plankton, benthos, crustaceans and organic materials.
278	
279	Trophic network analysis
280	
281	It is important to note that, in terms of fish and crustacean, biomasses and
282	ecological production in TL3 are higher than in TL2 for the Ébrié lagoon model,
283	whereas, the opposite is observed in Lake Nokoué (Table 5 and Figure 2). The
284	proportions of species of these various groups are quite similar in both systems and fish
285	assemblages seem to have common patterns even if their relative importance, in terms of
286	biomass, is highly variable. In the Ébrié model, 71.5 % of the fish biomass is at TL3 or
287	higher such as Sardinella maderensis (6.0 %), Gerres spp (3.0 %), Chrysichthys
288	nigrodigitatus (11.0%), Dasyatis spp (3.0%) and Tylochromis jentinki (4.0%). In Lake
289	Nokoué, on the other hand, only 38.0 % of the total fish biomass belongs to TL3 or
290	higher. The key groups are below TL2.5: the tilapiine fish (55.0%), Gobiids (12.0%)
291	and <i>E. fimbriata</i> (32.0 %).
292	
293	Transfer efficiencies decline at higher TLs in both ecosystems considered (Figure
294	3) which is similar to observations of Manickchand-Heileman et al. (1998) and Zetina-
295	Rejón et al. (2003). The transfer efficiency is higher in Ébrié than in Nokoué for TL2, 3
296	and 4. This is in relation to the difference of structure of the fish community in both
297	ecosystems as noted in table 5 and figure 3. The geometric mean transfer efficiency was

15.5 and 10.3 % for Ébrié lagoon and Lake Nokoué, respectively. Proportion of total
flow originating from detritus is 44 % in Ébrié lagoon compared to 72.0 % in Lake
Nokoué.

302	Trophic interspecific reactions for Ébrié lagoon and Lake Nokoué are shown in
303	figures 3a and b, respectively. For the Ébrié model, the total consumption is estimated at
304	$1,207.68 \text{ tkm}^{-2}\text{yr}^{-1}$ (Table 6) where 71.5 % (740.4 tkm $^{-2}\text{yr}^{-1}$) of the flow from TL1 to
305	TL2 originates from the producers whereas dead decaying materials contribute only 28.5
306	% (294.6 tkm ⁻² yr ⁻¹) (Figure 3a). It results in a detrivory: herbivory ratio (D:H) of 1:2.5
307	(Figure 3a). Most phytoplanktonic production is incorporated into the food web by
308	zooplankton and zoobenthos.
309	
310	In Lake Nokoué, the total food consumption, which is higher than in Ébrié
311	lagoon, is estimated at 25,713.42 tkm ⁻² yr ⁻¹ (Table 6). Figure 3b shows that energy
312	transferred from TL1 is accessed mainly from the detritus (19,242.1 tkm ⁻² yr ⁻¹) as
313	compared to that coming from the primary production $(4,133.7 \text{ tkm}^{-2}\text{yr}^{-1})$. It results in a
314	D:H ratio of 4.6 : 1 (Figure 3b).
315	
316	The highest flow back to detritus was observed from the autotrophs, (TL1)
317	1,889.6 tkm ⁻² yr ⁻¹ , in the Ébrié lagoon and from primary consumers (TL2), 12,167.7 tkm ⁻
318	² yr ⁻¹ , in Lake Nokoué (Figure 3a and b).
319	
320	The SOI value and the connectance index (CI) are lower in Ébrié (0.145 and
321	0.191, respectively) than in Nokoué (0.156 and 0.266, respectively) (Table 6). These

indicate that Lake Nokoué has a more web-like feature of trophic structure than in Ébriélagoon.

324

325 The mean TL of catch is 2.88 in Ébrié lagoon and is 2.46 in Lake Nokoué (Table 326 6). This is mainly due to the different relative importance of key-targeted groups in the 327 fisheries occupying different TLs in each system as can be observed from tables 1, 2, 5 328 and 6. This has also an influence on the gross efficiency (GE) of the catch: lower in Ebrié 329 (0.004) than in Nokoué (0.009). Total system throughput for each ecosystem (Table 6) is 330 higher in Lake Nokoué than in Ébrié lagoon. 331 332 According to Christensen et al. (2000) a system primary production/respiration 333 (P/R) ratio near 1 indicates an ecosystem approaching maturity (Odum, 1969). 334 Comparing the values obtained in each model (Table 6), Ébrié is a less mature system 335 (5.055) than Nokoué where P/R is near 1 (1.126). Considering other attributes of

ecosystem maturity and stability (*B*/TST, TPP/TR, PP-TR, PP/*B*), values obtained for
Lake Nokoué indicates that this ecosystem is reaching a mature stage and is therefore
more stable.

339

Energy and matter recycling is considered as an important process in ecosystem functioning (Odum, 1969) and is measured as FCI. According to Heymans and Baird (2000), value of this index is between 4.0 to 15.0 % for coastal ecosystems. Estimated FCI value (Table 6) in Lake Nokoué (34.0 %) is much higher than in Ébrié lagoon (2.7 %). It is, however, relatively low compared to that obtained by Manickchand-Heileman et al. (1998). The high value of Finn's straight-through path length (excluding detritus)

in Nokoué suggests a short food chain perhaps due to shifting of diets of other groupsto wards detritivory.

348

349 Discussion

350

351 As in any Ecopath model, the outputs and the consequent uncertainties of results 352 are strongly related to input parameters integrated. The viability of the Ecopath models 353 was determined by using the sensitivity analyses, i.e. Pedigree index and Ecoranger, 354 incorporated in the software (Christensen et al., 2000). The high viability observed for 355 each model considered, as indicated by the high pedigree indices, was due to the 356 consideration of input parameters estimated mostly from specific studies in the 357 considered ecosystems (i.e. Durand et al., 1994; Adingra and Arfi, 1998; Albaret, 1999; 358 Lalèyè et al., 2003a, b, c; Simier et al., 2003; Adounvo et al., 2005). Since most of the 359 data were based on direct observations, results indicate that both models are tightly-fitted 360 as simulations give allocating values which have no remarkable difference from original 361 inputs. 362 363 Fishes and macroinvertebrates are very good environmental indicators to track

environmental health and ecological changes as adaptive response to stress, especially in
estuaries and lagoons (Paugy and Bénech, 1989; King, 1993; USEPA, 2000). Comparing
tables 1 and 2, several taxonomic groups are similarly represented in both models.
Similarities of common and endemic biological assemblages are possibly due to close
geographical location though dissimilarities, especially in biodiversity, are mainly due to
hydrologic dynamics (Winemiller, 1995; Guiral, 1999). However, these taxonomic
species occupy differing TL in each ecosystem. Winemiller (1990) indicated that similar

371 resources are utilized by species of comparable morphological traits. However,

372 according to Polis et al. (1996) resource utilization and ecological interactions are highly

373 dependent on habitat heterogeneity and may explain deviation in trophic guilds and

behaviors of similar taxonomic groups in different ecosystems.

375

Albaret and Legendre (1986) characterized *E. fimbriata* as a zooplanktivore feeder though indicated a considerable quantity of detritus in its diet in Ébrié lagoon. Charles-Dominique (1982) explained that the presence of decaying materials in its stomach coincides mainly to strong river run-offs. Observations in Lake Nokoué, on the other hand, indicate that this species is considerably feeding on decaying materials and, to a lesser degree, on plankton.

382

383 The high versatility of S. melanotheron, especially with regards to diet plasticity 384 (feeding on algae, periphyton and organic matter) has been indicated by several authors 385 (Pauly et al., 1988; Paugy, 1990), as well as its ability to adapt in terms of growth and 386 reproduction to varying and extreme environmental conditions, i.e. ability to grow in 387 reefs of undergrowth, limited oxygen supply (Adité and Winemiller, 1987; Duponchelle 388 et al., 1998; Panfili et al., 2004; Pauly 2002; Villanueva, 2004). This species has already 389 been observed to acclimate fast in several West African brackish systems such as in 390 Sakumo lagoon (Pauly, 2002), Ébrié lagoon (Konan-Brou and Guiral, 1994), Toho-391 Todougba lagoon (Adité and Winemiller, 1997) and in Sine Saloum estuary (Panfili et 392 al., 2004). The high productivity and resilience of this species to stress may also be 393 attributed to the presence of "acadjas" which act as an extensive aquaculture system 394 (Konan-Brou and Guiral, 1994) that increase trophic efficiency of the lagoon, i.e. 395 suitable places for breeding, low predation and niche competition (Adité and

Winemiller, 1997; Laë, 1997b; Welcomme, 1999; Lalèyè, 2000; Villanueva, 2004). In
Ébrié lagoon, *S. melanotheron* is present though less abundant and has a higher
probability of occurrence concentrated in stenohaline and euryhaline sectors of the
lagoon (Villanueva, 2004). Abundance and occurrence of this species may be influenced
by river discharges which increases availability of food similar to observations of Adité
and Winemiller (1997).

402

403 These ecosystems are characterized by complex food webs and high eco-404 physiological capacities of biologic communities against extremely varying 405 environmental conditions, in space and time (Carrada and Fresi, 1988; Albaret and 406 Ecoutin, 1990; Adité and Winemiller, 1997; Lalèyè et al., 2003b; Berlow et al., 2004; 407 Villanueva, 2004). Levels of fish structure organizations in these ecosystems are never 408 high (Albaret and Écoutin, 1990) though Laë (1997b) observed that re-structurization of 409 food web occurs in the case of environmental stress. Higher structural organization is 410 observed in Ébrié lagoon (highest TL 3.9) than in Lake Nokoué (TL 3.2) which is due to 411 lower biodiversity in the latter ecosystem.

412

413 Numerous studies have suggested that biodiversity reduces variability in 414 ecosystem productivity through compensatory effects (Naeem and Li, 1997; Loreau, 415 2000; Berlow et al., 2004), which means that a species increases in abundance in 416 response to the reduction of another in a fluctuating environment. A high biodiversity 417 enhances an ecosystem's reliability through increase in redundant species per functional 418 group where some groups occupying a given TL maintain ecosystem functioning by 419 compensating for temporary loss of other groups in the same TL. The system integrity of 420 Lake Nokoué seems to be assured against biodiversity loss and other perturbations

through further simplification of food web structure and increased recycling of organic
matter. According to Loreau et al (2000), low species richness does not necessarily entail
weakened ecosystem properties and services. In Ébrié lagoon, diversity and production
are positively correlated where differences in distribution and eco-physiological
characteristics increase efficiency of energy utilization thus maintain ecosystem integrity
through function replacement of some groups by others in the same TL.

427

428 The importance of the detritus and primary production pathways in such 429 ecosystems was noted by Albaret (1999). De Sylva (1985) indicated that estuarine 430 nektons follow either a detritus-based or a phytoplankton-based food chain. Primary 431 producers and detritus are energy sources that play differing roles and significance in the 432 diet of groups of higher TLs in the two ecosystems considered here. Results showed that 433 phytoplankton is the key food source in Ébrié lagoon that sustains mainly the 434 zooplanktonic secondary production similar to observations of Ray et al. (2000) in the 435 Sundarban mangrove system (India). Macrophytes, on the other hand, provide shelter for 436 crustaceans and mollusks. Paugy and Bénéch (1989) observed that in such environments, 437 the latter is less important. This is not the case, however, in Lake Nokoué where the 438 detrital pathway dominates over the grazing pathway similar to Orbetello lagoon studied 439 by Brando et al (2004) and the Terminos lagoon (Arreguín-Sánchez et al., 1993; 440 Manickchand-Heileman et al., 1998). These dead organic materials sustain large 441 biomasses of benthos by providing substrates for epiphytes and shelters for crustaceans 442 and mollusks (Zetina-Rejón et al., 2003; Moore et al., 2004). The high biomass of TL1 443 (detritus and primary producers) and its significant role in supporting the energy utilized 444 indicate a bottom-up control in both ecosystems.

445

446	In Lake Nokoué D:H ratio is high despite the absence of micro-organisms (i.e.
447	bacteria) among the considered functional groups in the system. This high detritus
448	consumption is mainly due to the high density of S. melanotheron in this ecosystem.
449	Adité and Winemiller (1997) indicated that reduction of available resources in Lake
450	Nokoué due to environmental degradation may have contributed to changes of ecological
451	interactions and ecosystem physiography leading to a relative increase of detritivores.
452	
453	The importance of detritivory in Lake Nokoué is due to dietary shifts of carnivore
454	species such as the C. nigrodigitatus, E. fimbriata, Trachinotus ovatus and Liza
455	falcipinnis to a more detritus-based feeding when other resources are limited (Adité and
456	Winemiller, 1997) and which may compete with the true detritivores, the tilapias (S .
457	melanotheron and T. guineensis). Other fish species in TL2, as well as epibenthos (crabs
458	and shrimps) are directly utilizing this resource (Figure 3b).
459	
460	Ecosystem functioning can be better viewed in terms of biomass fluxes between
461	TLs. Predators and resource availability can cause direct changes of diversity from one
462	TL to the next (Nielsen, 2001). This suggests that the flow rates between predators and
463	preys may vary as a function of limiting conditions or variables (i.e. seasonal variations;
464	availability of food).
465	
466	In Lake Nokoué the link from TL1 to higher TLs is formed mainly by zoobenthos
467	(i.e. bivalves), decapod crustacea and fishes (i.e. tilapias) while the zooplankton
468	(dominated by rotifers) seems to be less important. According to Gnohossou (2001), the
469	predominance of rotifers among zooplank ton populations clearly indicates intense fishing
470	activity in Lake Nokoué. Similar observations have been indicated by A. Duncan

471 (RHUL, pers. comm.) in an artificial lake in Sri Lanka. Rotifers seem to be poorly
472 consumed and may contribute to the high flow of TL2 back to the detritus (Figure 4b). In
473 Ébrié lagoon, the zooplankton group has a positive effect on most other groups and
474 serves as a principal link between primary producers and higher consumers (Villanueva,
475 2004) similar to that was observed by Zetina-Rejón et al. (2003) in Huizache-Caimanero
476 lagoon complex, Mexico. Other groups, such as the decapod crustacea (i.e. shrimps and
477 crabs) and zoobenthos, feed considerably on both phytoplankton production and detritus.

479 According to Heymans et al (2002) the amount of energy flowing through the 480 detrital pathway can equal or exceed that observed from grazers. The low transfer 481 efficiencies in Lake Nokoué may be aggravated by the presence of acadjas which limits 482 predation (biomass transfer flow from TL2 mainly from S. melanotheron to higher TLs 483 is reduced) resulting significant flows back to detritus (Figure 3b) similar to indications 484 of Moore et al (2004). Poor utilization of primary production, zooplankton and even S. 485 *melanotheron* by other groups in higher TLs is indicated by the low trophic efficiency of 486 phytoplankton (Table 6) and the large flows back to detritus of TL1 (primary 487 production) and TL2 (Figure 3b). According to Gnohossou (UAC, pers. data), rotifers 488 are rarely found in food items ingested by fish, especially in plankton-feeding species 489 such as E. fimbriata. Blaber (2000) indicated that this species is a visual-filtrer and high 490 water turbidity levels in Nokoué may decrease its feeding efficiency. Inefficient grazing 491 by herbivores has already been observed in other ecosystems such as continental shelf 492 area in Sierra Leone (Longhurst, 1983) and Terminos Lagoon, Mexico (Manickchand-493 Heileman et al., 1998).

494

495	Estimated total system throughputs (Table 6) in both ecosystems are rather high
496	compared to that obtained by Carrer and Optiz (1999) in the Palude della Rosa lagoon,
497	Venice. TST in Ébrié lagoon (6,240 tkm ⁻² yr ⁻¹) is comparable to that estimated by
498	Manickchand-Heileman et al (1998) in Terminos lagoon (Mexico). For Lake Nokoué;
499	TST value (57,967 tkm ⁻² ·yr ⁻¹) is high compared to the two ecosystems mentioned above
500	and also with comparable systems for instance some coastal ecosystems reported by
501	Christensen and Pauly (1993) though relatively lower than that obtained by Lin et al
502	(1999) in a Chiku lagoon, Taiwan.
503	
504	Estimated production levels in both ecosystems, however, are higher than those in
505	ecosystems such as Terminos Lagoon, Mexico (Arreguín-Sánchez et al., 1993;
506	Manickchand-Heileman et al., 1998). Recent surveys made by the Department of
507	Fisheries in Cotonou (Benin) showed that annual yield in Lake Nokoué alone reaches
508	about 19,500 tyr ⁻¹ (1.5 tha ⁻¹) which is 10 times more than in Ébrié lagoon. S.
509	melanotheron forms about 77.0 % of this catch (Lalèyè, 2000). This may explain the
510	higher gross efficiency (GE) value calculated in Nokoué (0.009) compared to Ébrié
511	(0.004) (Table 6). Écoutin et al. (1994) indicated that considerable fish and crustacean
512	exploitations already occurred from the late 1970s to the early 1980s which resulted in a
513	remarkable depletion of annual catch in the Ébrié lagoon (Laë, 1997a). GE values are,

bowever, lower than the values obtained by Lin et al. (1999) for a sand barrier lagoon in

515 Chiku, Taiwan. According to Jarre-Teichmann (1998), cost of fish exploitation in

516 ecological terms is less at lower TLs than those at higher ones.

517

Assemblages in Lake Nokoué had shown a greater interspecific resource
partitioning than in Ébrié lagoon though it is important to consider that factors

520 in fluencing dietary diversity (seasonal dietary shifts, spatial variations in dietary habits, 521 etc.) which may have influenced our analyses. According to Heymans et al. (2004), a 522 low value of CI coupled with a slightly elevated SOI value may indicate an ecosystem 523 less dependent on detritus as a source of energy. This is essentially the case in Ébrié 524 lagoon (Table 6). The higher CI and SOI values estimated in Lake Nokoué indicate that 525 it is more stable and has a higher resilience to stress than in Ébrié lagoon despite a 526 higher biodiversity of the latter.

527

528 Coastal systems such as lagoons are characterized by complex food webs and 529 high eco-physiological capacities of biologic communities against extremely varying 530 environmental conditions, in space and time (Carrada and Fresi, 1988; Albaret and 531 Écoutin, 1990; Adité and Winemiller, 1997; Lalèyè et al., 2003b; Berlow et al., 2004; 532 Villanueva, 2004). They are dynamic rather than static systems where change and 533 disturbance are seen as natural features of these ecosystems (Bengtsson et al., 2000) 534 which seem paradoxal when described as stable systems. Ecosystem stability can be 535 quantified from changes and dynamics (i.e. thermodynamics, productivity) of its 536 components and dimensions where stability is seen as a basis against which ecosystem's 537 responses to perturbation is measured (Christensen, 1995; Nilsson and Grelsson, 1995; 538 Gunderson 2000), such as in mature systems (Odum, 1969). It is argued that the stability, 539 of an ecosystem is high if the connectance (weighted number of nonzero entries in the 540 flow matrix) of the energy flow network is high (Grimm et al., 1992; Berlow et al., 541 2004). 542

543 Lake Nokoué may be more stable due to the increased re mineralization of organic 544 materials in this ecosystem compared to that in the Ébrié lagoon. High detrivory in

545 Nokoué may mitigate resource limitations caused by environmental change. Moore et al 546 (2004) indicated that a detritus-based ecosystem is more stable both in terms of energy 547 fluxes and consumer population dynamics. Detritus can alter energy and effect nutrient 548 transfer efficiencies across trophic levels and increase persistence and food web stability. 549 According to Hairston and Hairston (1993) detritus impinge on the trophic structure and 550 community dynamics as well as supports a vast diversity of species supporting larger 551 predator biomass and longer food chains compared to ecosystems supported merely by 552 living autotrophs.

553

554 The implantation of acadjas in many Asian and African countries is mainly due to 555 its great potential in enhancing technologies, annual yield as well as alleviating social and 556 economic welfares by providing food, employment and livelihood rapidly to the growing 557 population (Costa and Wijeyaratne, 1994; Wahab et al., 1999; COFAD GmbH, 2002; 558 Lalèyè, 2000; Lorenzen et al., 2001; Ekram-Ul-Azim et al., 2002). According to Sokorin 559 et al (1996) and Lalèyè (2000), the high productivity of coastal lagoons is due to the 560 intense bacterial re-mineralization of organic matters and the continuous circulation of 561 water and sediment nutrients. The presence of the acadjas contributes to the production of 562 organic materials to support the ecosystem despite low primary production from 563 phytoplankton and terrestrial vegetations (Konan-Brou and Guiral, 1994; Welcomme, 564 1999) and replicates artificially favored habitats by certain species offering shelter from 565 predators, suitable breeding grounds (Lalèyè, 2000) aside from the high abundance of 566 food. 567 568 While this type of periphyton-based aquaculture can be conducted in sustainable

569 ways, increasing productivity has been achieved with considerable environmental costs,

threatening many aquatic and marine ecosystems (Lalèyè et al., 2001). Nutrient addition in ecosystems which increases productivity often lead to lower species richness as more productive species outcompete less productive ones (Waide et al. 1999). Lalèyè (2000) indicated that although the number and areas covered by acadjas in Benin have increased their productivity has decreased over the years (5.625 t.ha.⁻¹ yr⁻¹ in 1959; 3.9 t.ha.⁻¹ yr⁻¹ in 1970; 4.1 t.ha.⁻¹ yr⁻¹ in 1981 and 1.92 t.ha.⁻¹ yr⁻¹, 1998) mainly due to the decline in density and quality of branches used.

577

578 De Silva (1998) indicated that aquacultures depend on two critical environmental 579 factors: quality and quantity of water. These factors, in turn, depend upon an ecosystem's 580 assimilative capacity for wastes and replenishment of oxygen (Beveridge et al., 1997). It 581 was noted by Lalèyè et al. (2003a) that in Lake Nokoué, dissolved oxygen reaches 0 582 during the night indicating that oxygen is totally utilized by the system (high respiration 583 rates). High oxygen depletion in other coastal lagoons in the Gulf of Guinea has also 584 been indicated by Scheren et al. (2002). The TPP/TR ratio in Lake Nokoué (1.126) 585 indicates a level close to "eutrophic status" as total system respiration approaches its 586 production, which is a common feature in highly polluted systems. Ébrié lagoon seems 587 less eutrophic due to its higher TPP/TR ratio (5.155) which may be due to lower 588 pollution loads during the period (early 80's) considered for this study. This may be no 589 longer true if based on recent environmental domestic and industrial pollution loads 590 indicated by Scheren et al. (2002) in this lagoon compared to coastal waters in Benin. 591 According to Mann et al. (1989), system ascendancy (A) and TST can also be used as 592 indicators of eutrophication in ecosystems. This is characterized by an increased value in 593 A, as a function of elevated TST parallel to a fall in information (1) (Ulanowicz, 1986). In

Lake Nokoué, an elevated A (47,224 flowbits) is compensated by a low value of I (0.815) compared to that in Ébrié where A is 7,656 flowbits with an I of 1.147 (Table 6).

596

597 Conclusion

598

599 Coastal ecosystems function is a life support system of poor populations and their 600 destruction is a real cause of growing poverty and deprivation relating to a whole 601 spectrum of economic and social problems (John and Lawson, 1990; Ibe and Sherman, 602 2002; Scheren et al., 2002; Lalèyè et al., 2003c). The most reported detrimental impacts 603 are conversion of wetlands, destruction of valuable habitats (i.e. mangrove forests), loss 604 of biodiversity, pollution of local waters, biological discharge of waste nutrients, rivalry 605 between endemic and introduced exotic species and amplified pressure on natural wild 606 stock (Beardmore et al., 1997; Baran and Hambrey, 1998; Berger et al., 1999; Lalèyè, 607 2000; Laegdsgaard and Johnson, 2001; Scheren et al., 2002; Glaser, 2003). Apart from 608 various industrialized and agricultural activities, over-fishing is responsible for a wide 609 variety of impacts on fish communities including even modification of population 610 composition and ecosystem adaptations to a changing environment due to stress 611 conditions. 612 613 West African coastal ecosystems, as well as in most part of the world, have

experienced both long-term trends and rapid environmental changes. Recent accelerating
human impacts have brought in other elements that prevent predictions of impact
resulting from change. Associated organisms have evolved under these changing
environmental conditions and have responded to past natural disturbances, i.e. climate

618 change and species interactions, with adaptation or migration while others have become619 extinct.

621	Based on the present study, phytoplanktonic production showed a positive effect
622	in supporting groups in higher TLs in the Ébrié lagoon while detritus played a major role
623	in Lake Nokoué. Ébrié lagoon showed a greater ecological diversification and higher
624	structural organization of biological communities due to higher species assemblages
625	leading to favorable patterns of reliable flows. Lake Nokoué on the other hand, is more
626	stable and shows more signs of maturity mainly due to the abundance of tolerant species
627	that drive the recovery processes after perturbation.
628	
629	The relationship discussed between organism functions, environments and
630	responses to stress have implications for understanding environmental perturbations on
631	ecological communities. It is evident that ecosystem changes cause a profound
632	restructuring of local communities which can not be predicted without a clear
633	understanding of the mechanisms that retain species' assemblages and functions. The
634	value of an ecosystem-based evaluation, as elucidated here, should be important not only
635	for basic science but for anticipating the likely impacts of environmental perturbations on
636	ecosystem functions and socio-economic challenges they may involve.
637	
638	Acknowledgements
639	
640	This work was partly carried out during M.C. Villanueva's thesis work at the
641	Institut National Polytechnique de Toulouse (INPT). The authors are grateful to M.
642	Bouvy, JM. Écoutin and M. Pagano (Institut de Recherche pour le Développement,

643	IRD), P.	Gnohossou and	C. Niyonkuru	(University oj	f Abomey-Calavi,	UAC), G.
-----	----------	---------------	--------------	----------------	------------------	----------

- 644 Gourène and O. Ouattara (Université d'Abobo-Adjamé, UAA) and A. Dauta (Centre
- 645 National de Recherche Scientifique, CNRS) for valuable contributions. M.C. Villanueva
- 646 gratefully acknowledges V. Christensen and C. Ainsworth of the Fisheries Centre
- 647 (University of British Columbia) for helpful comments on modelled ecosystems. This
- 648 contribution was supported by an IRD project entitled, "Réponses adaptives des
- 649 populations et peuplements de Poissons aux pressions de l'environnement (RAP)", and a
- 650 UAC-CAMPUS project n° 99.00.26 entitled, "Fonctionnement écologique d'une lagune
- ouest africaine, lac Nokoué au Bénin". Lastly, we would like to thank the anonymous
- 652 referees whose comments have greatly improved the quality of this work.
- 653
- 654 References
- 655
- Adingra, A.A., Arfi, R. 1998. Organic and bacterial pollution in the Ébrié lagoon, Côte

657 d'Ivoire. Mar. Pollution Bull. 36 (9), 689-695.

- 658 Adité, A. 1996. Evolution des parameters physico-chimiques des principaux plans d'eau
- du sud-Bénin (1987-1991). Rapport de travaux realises pour le compte du Projet
- 660 Pêche Lagunaire GTZ, Bénin 1, 180 p.
- Adité, A., Winemiller, K.O. 1997. Trophic ecology and ecomorphology of fish
- assemblages in coastal lakes of Benin, West Africa. Ecoscience 4 (1), 16-23.
- 663 Adounvo, U., Dauta A., Lalèyè P., Villanueva M.C., Moreau J. 2005. Primary production
- 664 in Lake Nokoué. Paper presented in the International Conference of the French
- 665 Association of Limnology [Association Français de Limnologie, AFL], « Connaître
- 666 les écosystèmes d'eau douce pour mieux les gérer (CILO) ».

- 667 Albaret, J.-J. 1999. Les peuplements des estuaires et des lagunes. In Lévêque, C., Paugy,
- 668 D. (Eds.), Les poissons des eaux continentales africaines: diversité, écologie,
- 669 utilisation par l'homme. Éditions de l'IRD, Paris, pp. 325-349.
- 670 Albaret, J.-J., Écoutin, J.-M. 1990. Influence des saisons et des variations climatiques sur
- 671 les peuplements de poissons d'une lagune tropicale de l'Afrique de l'Ouest. Acta
 672 Oecologia 11, 557-583.
- 673 Arreguín-Sánchez, F., Valero-Pacheco, E., Chávez, E.A. 1993. A trophic box model of
- 674 the coastal fish communities of the southern Gulf of Mexico. In Christensen, V.,
- 675 Pauly, D. (Eds.), Trophic models of aquatic ecosystems. ICLARM Conf. Proc. 26,
 676 197-213.
- Banse, K., Mosher, S. 1980. Adult body mass and annual production/biomass of field
 populations. Ecol. Monogr. 50 (3), 335-379.
- Baran, E. 2000. Biodiversity of estuarine fish faunas in West Africa. Naga. 23(4), 4-9.
- 680 Baran, E., Hambrey, J. 1998. Mangrove conservation and coastal management in
- 681 Southeast Asia: what impact on fishery resources? Mar. Pollution Bull. 37 (8-12),
 682 431-440.
- Beardmore, J.A., Mair, G.C., Lewis, R.I. 1997. Biodiversity in aquatic systems in relation
 to aquaculture
- 685 Beck, M.W., Heck, K.L. Jr., Able, K.W., Childers, D.L., Eggleston, D.B., Gillanders,
- 686 B.M., Halpern, B., Hays, C.G., Hoshino, K., Minello, T.J., Orth, R.J., Sheridan,
- 687 P.F., Weinstein, M.P. 2001. The identification, conservation and management of
- 688 estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633-641.
- 689 Bengtsson, J., Nilsson, S.G., Franc, A., Menozzi, P. 2000. Biodiversity, disturbances,
- 690 ecosystem function and management of European forests. Forest Ecol. Manage.
- 691 132, 39**-**50.

- 692 Berger, U., Glaser, M., Koch, B., Krause, G., Lara, R., Saint-Paul, U., Schories, D.,
- Wolff, M. 1999. An integrated approach to mangrove dynamics and management. J.
 Coastal Cons. 5, 125-134.
- Berlow, E. L., Neutel, A.-M., Cohen, J.E., De Ruiter, P.C., Ebenman, B., Emmerson, M.,
- 696 Fox, J.W., Jansen, V.A.A., Jones, J.I., Kokkoris, G.D., Logofet, D.O., Mckane,
- A.J., Montoya, J.M., Petchey, O. 2004. Interaction strengths in food webs: issuesand opportunities. J. Anim. Ecol. 73, 585-598.
- Beveridge, M.C.M; Phillips, M.J., Macintosh, D.J. 1997. Aquaculture and the
- 700 environment: The supply of and demand for environmental goods and services by
- Asian aquaculture and the implication for sustainability. Aquaculture Res. 18, 797807.
- Blaber, S.J.M. 2000. Tropical estuarine fishes: Ecology, exploitation and conservation.
 Blackwell Science Ltd., Oxford.
- Blaber, S.J.M. 2002. Fish in hot water: the challenges facing fish and fisheries research in
 tropical estuaries. J. Fish Biol. 62 (supplement A), 1-20.
- Brando, V.E., Ceccarelli, R., Libralato, S., Ravagnan, G. 2004. Assessment of
 environmental management effects in a shallow water basin using mass-balance
 models. Ecol. Model. 172, 213-232.
- 710 Cap Blanc, J., Dauta, A. 1999. Photosynthesis simulator ver 2.1. CNRS, Toulouse.
- 711 Carrada, G.C., Fresi, E. 1988. Le lagune salmastre costiere. Alcune riflessioni sui
- 712 problemi e sui metodi. In Carrada, G.C., Cicogna, F., Fresi, E. (Eds.), Le lagune
- 713 costiere: ricerca e gestione. CLEM, Massa Lubrense, pp. 35–56.
- 714 Carrer, S., Optiz, S. 1999. Trophic network model of a shallow water area in the northern
- 715 part of the lagoon of Venice. Ecol. Model. 124, 193-219.

- 716 Christensen, V. 1995. Ecosystem maturity towards quantification. Ecol. Model. 77,
 717 3–32.
- Christensen, V. 1998. Fishery-induced changes in a marine ecosystem: insight from the
 models of the Gulf of Thailand. J. Fish Biol. 53, 128-142.
- 720 Christensen, V., Pauly, D. (Eds). 1993. Trophic Models of Aquatic Ecosystems,
 721 ICLARM Conf. Proc. Vol. 26, Manila.
- Christensen, V., Walters, C.J., Pauly, D. 2000. Ecopath with Ecosim: A user's guide.
 October 2000 Edition. Fisheries Centre, University of Bristish Columbia,
 Vancouver, Canada and ICLARM, Penang, Malaysia.
- 725 Charles-Dominique, E. 1982. Exposé synoptique des données biologiques sur
 726 l'ethmalose (*Ethmalosa fimbriata*, S. Bowdich, 1825). Rev. Hydrobiol. Trop. 15(4),
 727 373-397.
- 728 COFAD GmbH 2002. Back to Basics: Traditional inland fisheries management and
- renhancement systems in sub-Saharan Africa and their potential for development.
- 730 Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH. Eschborn,
- 731 203 p.
- 732 Costa, H.H., Wijeyaratne, M.J.S. 1994. Utilization of mangrove species in brushpark
- 733 construction and their effect on Negombo Estuary fishery (Sri Lanka). J. Appl.
- 734 Ichthyol. 10, 96–103.
- 735 De Merona, B. 1983. Modèle de croissance des poissons d'eaux douces d'Afrique. Rev.
- 736 Hydrobiol. Trop. 19, 1-12.
- 737 De Silva, S.S. 1998. Tropical aquaculture: Current status and prospects, pp. 17-59. In De
- 738 Silva, S.S. (Ed.), Tropical aquaculture. Academic Press, Cornwall, England.

- De Sylva, D.P. 1985. Nektonic food webs in estuaries. In Yáñez-Arancibia, A. (Ed.), Fish
 community ecology in estuaries and coastal lagoons: Towards ecosystem
 integration. UNAM Press, Mexico, pp. 233-246.
- Diallo, I., Cissé I., Bah, A. 2003. Modèle trophique du système côtier du plateau
 continental Guinéen. *In* Pauly, D., Palomares M.L., Vakily, J.M. (Eds.), Trophic
 Models of Northwest African Marine Ecosystems. SIAP/EP/DT/03, pp. 98-115.
- 745 Dufour, P. 1994. Les microphytes, pp 109–136. In Durand, J.-R., Dufour, P., Guiral, D.,
- 746 Zabi, S.G.F. (Eds.), Environnement et ressources aquatiques de Côte d'Ivoire.
- 747 Tome II Les milieux lagunaires. ORSTOM, Paris.
- 748 Duarte, C.M. 1995. Submerged aquatic vegetation in relation to different nutrient
 749 regimes. Ophelia 41, 87-112.
- Duponchelle, F., Pouyaud, L., Legendre, M. 1998. Evidence of environmental effects on
 reproductive characteristics of Nile tilapia (*Oreochromis niloticus*) populations
 from man-made lakes of Ivory Coast. Aquat. Living Res. 11 (3), 137-144.
- Durand, J.-R., Dufour, P., Guiral, D., Zabi, S.G.F. (Eds.). 1994. Environnement et
 ressources aquatiques de Côte d'Ivoire. Tome II Les milieux lagunaires.
 ORSTOM, Paris.
- 756 Écoutin, J.-M., Durand, J.-R., Laë, R., Hié Daré, J.P. 1994. L'exploitation des stocks. In
- 757 Durand, J.-R., Dufour, P., Guiral, D., Zabi, S.G.F. (Eds.), Environnement et
- 758 ressources aquatiques de Côte d'Ivoire. Tome II Les milieux lagunaires.
- 759 ORSTOM, Paris, pp. 399-444.
- 760 Ekram Azim, M., Wahab, M.A. Verdegem, M.C.J., van Dam, A.A., van Rooij, J.M.,
- 761 Beveridge, M.C.M. 2002. The effects of artificial substrates on freshwater pond
- 762 productivity and water quality and the implications for periphyton-based
- aquaculture. Aquat. Living Resour. 15, 231–241.

- Entsua-Mensah, M. 2002. The contribution of coastal lagoons to the continental shelf
 ecosystem of Ghana. In McGlade, J.M., Cury, P., Koranteng, K.A., HardmanMountford, N.J. (Eds.), The Gulf of Guinea Large Marine Ecosystems, Elsevier
 Science, Amsterdam, pp. 161-187.
 Finn, J.T. 1976 Measures of ecosystem structure and function derived from analysis. J.
 Theo. Biol. 56, 363-380.
- 770 Froese, R., Binohlan, C. 2000. Empirical relationships to estimate asymptotic length,
- length at first maturity and yield at maximum yield per recruitment in fishes, with a
- simple method to evaluate length frequency data. J. Fish Biol. 56, 758-773.
- 773 Froese, R., Pauly, D. (Eds). 2004. Fishbase. World Wide Web electronic publication:
- 774 <u>http://www.fishbase.org</u>
- 775 Garcia, S. 1977. Evaluation des mortalités chez la crevette rose, Penaeus notialis, en
- 776 Côte-d'Ivoire: analyse des variations saisonniéres de capturabilité. Cah.
- 777 O.R.S.T.O.M., ser. Océanogr., 15(3), 251-260.
- 778 Gayanilo, F.C. Jr., Sparre, P., Pauly, D. (Eds.) 2002. The FAO-ICLARM Stock
- Assessment Tools II (FiSAT II Ver. 1.0). FAO. Site URL:
- 780 <u>http://www.fao.org/fi/statist/fisoft/fisat</u>
- 781 Glaser, M. 2003. Interrelations between mangrove ecosystem, local economy and social
- sustainability in Caeté Estuary, North Brazil. Wetlands Ecol. Manage. 11, 265-272.
- 783 Glaser, M., da Silva Oliveira, R. 2004. Prospects for the co-management of mangrove
- ecosystems on the North Brazilian coast: Whose rights, whose duties and whose
- 785 priorities ? Nat. Res. Forum 28, 224-233.
- 786 Gnohossou, P. 2002. Influence de la pollution organique sur les invertébrés du lac
- 787 Nokoué. Mémoire de D.A.A. Institut National Polytechnique de Toulouse/ENSAT,
- 788 48 p.

- Grimm, V., Schmidt, E., Wissel, C. 1992. On the application of stability concepts in
 ecology. Ecol. Modell. 63, 143-161.
- 791 Guiral, D. 1999. Les écosystèmes à mangroves. In Comier-Salem, M.-C. (Ed.), Rivières
- du Sud: sociétés et mangroves ouest-africaines. Éditions IRD, Paris, pp. 63-130.
- 793 Guiral, D., N'Da Étien, 1994. Les macrophytes. In Durand, J.-R., Dufour, P., Guiral, D.,
- 794 Zabi, S.G.F. (Eds.) Environnement et ressources aquatiques de Côte d'Ivoire.
- 795 Tome II Les milieux lagunaires. ORSTOM, Paris, pp 137-154.
- Gunderson, L.H. 2000. Ecological resilience in theory and application. Ann. Rev. Ecol.
- 797 System. 31, 425-439.
- Hairston, N.G. Jr., Hairston, N.G. Sr. 1993. Cause effect relationships in energy flow,
- trophic structure, and interspecific interactions. Am. Nat., 142, 379–411.
- Heymans, J.M., Baird, D. 2000. Network analysis of the Northern Benguela ecosystem
 by means of NETWRK and Ecopath. Ecol. Model. 131, 97-119.
- 802 Heymans, J.J., Shannon, L.J., Jarre, A. 2004. Changes in the northern Benguela
- 803 ecosystem over three decades: 1970s, 1980s and 1990s. Ecol. Modell. 172, 175804 195.
- 805 Heymans, J.J., Ulanowicz, R.E., Bondavalli, C. 2002. Network analysis of the South
- 806 Florida Everglades graminoid marshes and comparison with nearby cypress
- 807 ecosystems. Ecol. Model. 149, 5–23.
- 808 Hirata, H. 1995. Information theory and ecological networks. In: Patten, B.C., Jørgensen,
- 809 S.E., Auerbach, S.I. (Eds.), Complex ecology: The part-whole relation in
- 810 ecosystems. Prentice Hall PTR, New Jersey, pp. 623-642.
- 811 Ibe, C., Sherman, K. 2002. The Gulf of Guinea Large Marine Ecosystem Project: Turning
 812 challenges into achievements. In McGlade, J.M., Cury, P., Koranteng, K.A.,

- 813 Hardman-Mountford, N.J. (Eds.), The Gulf of Guinea Large Marine Ecosystem.
- Elsevier Science B.V., Amsterdam, pp. 27-39.
- 815 Jarre-Teichmann, A. 1998. The potential role of mass-balanced models for the
- 816 management of upwelling ecosystems. Ecol. App. 8 (1), 93-103.
- 817 John, D.M., Lawson, G.W. (1990). A review of mangrove and coastal ecosystems in
- 818 West Africa and their possible relationships. Est. Coast. Shelf Sci. 31, 505-518.
- 819 King, R.P. 1993. Seasonal plasticity in faunal dietary status, diversity and foraging
- 820 performance of *Ilisha africana* (Clupeidae) in Qua Iboe estuary, Nigeria. Cybium
- 821 17(4), 287-298.
- 822 Kay, J.J., Graham, L.A., Ulanowicz, R.E. 1989. A detailed guide to network analysis. In
- 823 Wulff, F., Field, J.G., Mann, K.H. (Eds.), Network Analysis in Marine Ecology:

824 Methods and Applications. Springer-Verlag, Berlin, pp. 15–60.

- Konan-Brou, A.A., Guiral, D. 1994. Available algal biomass in tropical brackish water
 artificial habitats. Aquaculture 119, 175-190.
- 827 Laë, R. 1997a. Does overfishing lead to a decrease in catches and yields? An example of

two West African Coastal Lagoons. Fish. Manage. Ecol. 4, 149-164.

- 829 Laë, R. 1997b. Effects of climatic changes and developments on continental fishing in
- 830 West Africa: the examples of the Central delta of the Niger in Mali and coastal
- lagoons in Togo. In Remane, K. (Ed.), African Inland fisheries, aquaculture and
 environment. FAO, Italy, pp. 66-86.
- 833 Laegdsgaard, P. Johnson, C. 2001. Why do juvenile fish utilise mangrove habitats? J.
- 834 Exp. Mar. Biol. Ecol. 257, 229-253.
- 835 Lalèyè, P. 2000. Acadja fisheries enhancement systems in Benin: Their productivity and
- 836 environmental impacts. In Abban, E.K., Casal, C.M.V., Dugan, P., Falk, T.M.

- (Eds), The World Fish Center/ICLARM. Biodiversity and sustainable use of fish in
 the coastal zone. ICLARM Conf. Proc. 63, 51-52.
- 839 Lalèyè, P., Adounvo, U., Niyonkuru, C., Villanueva, M.C., Moreau, J. 2003a. Spatio-840 temporal variations of some water physico-chemical parameters in Lake Nokoué 841 (Benin), recent evolutions. Abstract. Third International Conference of the 842 PanAfrican Fish and Fisheries Association, Cotonou, Benin 10-14 November 2003. 843 Lalèyè, P., Chikou, A., Niyonkuru, C., Moreau, J. 2001. The acadjas in Lake Nokoué and 844 Porto-Novo lagoon (Benin, West Africa): Influence of an artificial substrat on 845 natural fish populations: a quantitative analysis. Proceedings of the 2nd Symposium 846 for the European Freshwater SEFS2, 8-13 July 2001, Toulouse. 847 Lalèyè, P., Niyonkuru, C., Moreau, J., Teugels, G. 2003b. Spatial and seasonal 848 distribution of the ichtyofauna of Lake Nokoué, Benin, West Africa. Afr. J. Aquat. 849 Sci. 28, 151-161. 850 Lalèyè, P., Philippart, J.C. 1997. Contribution à l'écologie du Lac Nokoué/Lagune de Porto-Novo au Bénin. Abstract, p 121. 5^{ème} Conférence Internationale des 851 852 Limnologues d'expression française. CILEF5, Namur, Belgique, 6 - 11 July 1997. 853 Lalèyè, P., Villanueva, M.C., Moreau, J., Enstua-Mensah, M. 2003c The lagoons of the 854 Gulf of Guinea: a review of the current knowledge of their aquatic resources and 855 management issues. Abstract. Third International Conference of the PanAfrican 856 Fish and Fisheries Association, Cotonou, Benin 10-14 November 2003. 857 Lhomme, F. 1994. Les crustacés exploitables. In Durand, J.-R., Dufour, P., Guiral, D., 858 Zabi, S.G.F. (Eds.), Environnement et ressources aquatiques de Côte d'Ivoire.
- 859 Tome II Les milieux lagunaires. ORSTOM, Paris, pp. 229-238.

860	Lin, HJ., Shao, KT., Kuo, SR., Hsieh, HL., Wong, SL., Chen, IM., Lo, WT.,
861	Hung, JJ. 1999. A trophic model of a Sandy Barrier Lagoon at Chiku in
862	Southwestern Taiwan. Est. Coast. Shelf Sci. 48, 575-588.
863	Longhurst, A. 1983. Benthic-pelagic coupling and export of organic carbon from a
864	tropical Atlantic Continental shelf – Sierra Leone. Est. Coast. Shelf Sci. 17, 261-
865	285.
866	Loreau, M. 2000 Biodiversity and ecosystem functioning: Recent theorectical advances.
867	Oïkos 91, 3-17.
868	Lorenzen, K., Amarasinghe, U.S., Bartley, D.M., Bell, J.D., Bilio, M., de Silva, S.S.,
869	Garaway, C.J., Hartmann, W.D., Kapetsky, J.M. Lalèyè, P., Moreau, J., Sugunan,
870	V.V., Swar, D.B. 2001. Strategic review of enhancements and culture-based
871	fisheries. In Subasinghe, R.P., Bueno, P., Phillips, M.J., Hough, C., McGladdery,
872	S.E. (Eds.), Aquaculture in the Third Millenium. Technical Proceedings of the
873	Conference on Aquaculture in the Third Millenium, Bangkok, Thailand, 20-25
874	February 2000, pp. 221-237.
875	Mann, K.H., Field, J.G. and Wulff, F. 1989. Network analysis in marine ecology: an
876	assessment. In: F. Wulff, J.G. Field and K.H. Mann (Eds.), Network Analysis in
877	Marine Ecology. Methods and Applications. Springer-Verlag, Berlin, pp. 261–282.
878	Manickchand-Heileman, S., Arreguín-Sánchez, F., Lara-Domínguez, A., Soto, L.A.
879	1998. Energy flow and network analysis of Terminos Lagoon, SW Gulf of Mexico.
880	J. Fish Biol. 53, 179-197.
881	Monaco, M.E., Ulanowicz, R.E. 1997. Comparative ecosystem trophic structure of three
882	U.S. mid-Atlantic estuaries. Mar. Ecol. Prog. Ser. 161, 239-254.
883	Moore, J.C., Berlow, E.L., Coleman, D.C., de Ruiter, P.C., Dong, Q., Hastings, A.,
884	Collins Johnson, N., Mc Cann, K.S., Melville, K., Morin, P.J., Nadelhoffer, K.,

885	Rosemond, A.D., Post, D.M., Sabo, J.L., Scow, K.M., Vanni, M.J., Wall, D. 2004.
886	Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584-600.
887	Naeem, S., Li, S. 1997. Biodiversity enhances ecosystem reliability. Nature, 390, 507-
888	509.
889	Nielsen, K.J. 2001. Bottom-up and top-down forces in tide pools: test of a food chain
890	model in an intertidal community. Ecol. Monographs. 71, 187-217.
891	Nilsson, C., Grelsson, G. 1995. The fragility of ecosystems: A review. J. Appl. Ecol. 32,
892	677-692.
893	Niyonkuru, C. 2001. Etudes des variations spatio-temporelles de la faune ichtyologique
894	du lac Nokoué en République du Bénin. L'Université d'Abomey Calavi, Cotonou.
895	Mémoire de DESS, 125p + annexes.
896	Niyonkuru, C., Lalèyè, P., Villanueva, M.C., Moreau, J. 2003. Population parameters of
897	main fish species of Lake Nokoué in Benin. Abstract. Third International
898	Conference of the PanAfrican Fish and Fisheries Association, Cotonou, Benin 10-
899	14 November 2003.
900	Ofori-Danson, P.K., de Graaf, G.J., Vanderpuye, C. 2002. Population parameter
901	estimates for Chrysichthys auratus and Chrysichthys nigrodigitatus (Pisces:
902	Cloroteidae) in Lake Volta, Ghana. Fish. Res. 54, 267-277.
903	Odum, E.P. 1969. The strategy of ecosystem development. Science 104, 262-270.
904	Odum, E.P. 1971. Fundamentals of ecology. W.B. Saunders Co, Philadelphia.
905	Pagano, M., Saint-Jean, L. 1994. Le zooplancton. In Durand, JR., Dufour, P., Guiral,
906	D., Zabi, S. G. F. (Eds.), Environnement et ressources aquatiques de Côte d'Ivoire.
907	Tome II – Les milieux lagunaires. ORSTOM, Paris, pp 155-188.

- 908 Palomares, M.L.D., Pauly, D. 1998. Predicting food consumption of fish populations as
- 909 functions of mortality, food type, morphometrics, temperature and salinity. Mar.

910 Freshwater Res. 49, 447-453.

- 911 Panfili, J., Mbow, A., Durand, J.-D., Diop, K., Diouf, K., Thior, D., Ndiaye P., Laë, R.
- 912 2004. Influence on the life-history traits of the West African black-chinned tilapia
- 913 (*Sarotherodon melanotheron*): Comparison between the Gambia and the Saloum
- 914 estuaries. Aquat. Living Res. 17, 65-74.
- 915 Paugy, D., Bénech, V. 1989. Les poissons d'eau douce des bassins côtiers du Togo
- 916 (Afrique de l'Ouest). Rev. Hydrobiol. Trop. 22 (4), 295-316.
- 917 Pauly, D. 1976. The biology, fishery and potential for aquaculture of *Tilapia*
- 918 *melanotheron* in a small West African lagoon. Aquaculture 7, 33-49.
- Pauly, D. 2002. Spatial modelling of trophic interactions and fisheries impacts in coastal
 ecosystems: A case study of Sakumo lagoon. In McGlade, J.M., Cury, P.,
- 921 Koranteng, K.A., Hardman-Mountford, N.J. (Eds.), The Gulf of Guinea Large
- 922 Marine Ecosystem. Elsevier Science B.V., Amsterdam, pp. 289-296.
- 923 Pauly, D. Soriano-Bartz, M., Palomares, M.L.D. 1993. Improved construction,
- 924 parametrization and interpretation of steady-state ecosystem models. In Christensen
- 925 V., Pauly, D. (Eds.), Trophic models of aquatic systems. ICLARM Conf. Proc. 26,
- 926 1-13.
- Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres, Jr. F.C. 1998. Fishing down
 marine food webs. Science 279, 860-863.
- 929 Pauly, D., Palomares, M.L.D., Moreau, J. 1988. Detritus and energy consumption and
- 930 conversion efficiency of *Sarotherodon melanotheron* (Cichlidae) in a West African
 931 lagoon. J. App. Ichthyol. 4, 190-193.

932 Pérez-España, H., Arreguín-Sánchez, F. 1999. A measure of ecosystem maturity. Ecol.
933 Model. 119, 79–85.

934	Ray, S., Ulanowicz, R.E., Majee, N.C., Roy, A.B. 2000. Network analysis of a benthic
935	food web model of a partly reclaimed island in the Sundarban mangrove system,
936	India. J. Biol. Syst. 8 (3), 263-278.
937	Scheren, P.A., Ibe, A.C., Janssen, F.J., Lemmens, A.M. 2002. Environmental pollution in
938	the Gulf of Guinea: a regional approach. Mar. Pollut. Bull. 44, 633-641.
939	Silvestre, G., Pauly, D. 1997. Management of tropical coastal fisheries in Asia: an
940	overview of key challenges and opportunities. In Silvestre, G., Pauly, D. (Eds.),
941	Status and management of tropical coastal fisheries in Asia. ICLARM Conf. Proc.
942	53, 8-25.
943	Simier, M., Écoutin, JM., Ndiaye, E. 2003. Pêchexp 2003: Base de Données RAP,
944	Volet Pêches Expérimentales : Notice descriptive. IRD Document Interne, Dakar,
945	38 p.
946	Sorokin, Y.I., Sorokin, P., Giovanardi, O., Dalla Venezia, L., 1996. Study of ecosystem
947	of the Lagoon of Venice, with emphasis on anthropogenic impact. Mar. Ecol. Progr.
948	Ser. 141, 247–261.
949	Thayer, G.W, Schaff, W.E., Angelovic, J.W., LaCroix, M.W. 1973. Caloric
950	measurements of some estuarine organisms. Fish. Bull. 71 (1), 289-296.
951	Ulanowicz, R.E. 1986. Growth and development. Ecosystem phenomenology. Springer-
952	Verlag, Berlin.
953	Ulanowicz, R.E. 1987. NETWRK: a package of computer algorithms to analyze
954	ecological flow networks. 4. University of Maryland, Solomons.

955	Ulanowicz, R.E. 1995. The part-whole relation in ecosystems. In Patten, B.C., Jorgensen,
956	S. E., Auerbach, S.I. (Eds.), Complex ecology. Prentice Hall, New Jersey, pp. 549-
957	560.
958	Ulanowicz, R.E. 1997. Ecology, the ascendant perspective. Columbia University Press,
959	New York.
960	USEPA. 2000. Estuarine and coastal marine waters: Bioassessment and biocriteria
961	technical guidance . U.S. Environmental Protection Agency Report EPA-822-B00-
962	024, Washington D.C.
963	Van Thielen, R. 1990. Visite du Lac Nokoué: une introduction à la pêche au Bénin.
964	Projet Pêche Lagunaire (Bénin). A GTZ Project. Available in the Deparment of
965	Fisheries, Cotonou.
966	Vasconcellos, M., Mackinson, S., Sloman, K., Pauly, D., 1997. The stability of trophic
967	mass-balance models of marine ecosystems-a comparative analysis. Ecol. Model.
968	100, 125–134.
969	Villanueva, M.C. 2004. Biodiversité et relations trophiques dans quelques milieux
970	estuariens et lagunaires de l'Afrique de l'Ouest: adaptations aux pressions
971	environnementales. Thèse de Doctorat. Institut National Polytechnique de
972	Toulouse, 246 p + CD [URL site : <u>http://ethesis.inp-toulouse.fr/archive/00000115</u>].
973	Waide, R.B., Willig, M.R., Steiner, C.F., Mittelbach, G., Gough, L., Dodson, S.I., Juday,
974	G.P., Parmenter, R. 1999. The relationship between productivity and species
975	richness. Annu. Rev. Ecol. Syst. 30, 257-300.
976	Wahab, M. A., Azim, M.E., Ali, M.H., Beveridge, M.C. M., Khan, S. 1999. The potential
977	of periphyton-based culture of the native major carp calbaush, Labeo calbasu
978	(Hamilton). Aquaculture Res. 30, 409-419.

- Welcomme, R.L. 1999. A review of a model for qualitative evaluation of exploitation
 levels in multi-species fisheries. Fish. Manage. Ecol. 6, 1-19.
- 981 Welcomme, R.L. (2002) An evaluation of tropical brush and vegetation park fisheries.
- 982 Fish. Manage. Ecol. 9, 175-188.
- 983 Winemiller, K.O. 1995. Aspects structurels et fonctionnels de la biodiversité des
- 984 peuplements de poissons. Bull. Fr. Pêche Piscic. 337/338/339, 23-45.
- 985 Wulff, F., Ulanowicz, R.E. 1989. A comparative anatomy of the Baltic Sea and
- 986 Chesapeake ecosystems. In Wulff, F., Field, J.G., Mann, K.H. (Eds.), Network
- 987 analysis in Marine Ecology. Methods and Applications. Springer-Verlag, Berlin,
 988 pp. 232-256.
- 11
- 989 Yáñez-Arancibia, A., Dominguez, L.L., Pauly, D. 1994. Coastal lagoons as fish habitats.
- 990 In Kjerfve (Ed.), Coastal lagoon processes. Elsevier Oceanog. Ser. 60, 363-376.
- 991 Yodzis, P., Winemiller, K.O. 1999. In search of operational trophospecies in a tropical
- 992 aquatic food web. Oïkos. 87, 327-340.
- 993 Zetina-Rejón, M. J., Arreguín-Sánchez, F., Chávez, E. A. 2003. Trophic structure and
- flows of energy in the Huizache-Caimanero lagoon complex on the Pacific coast of
- 995 Mexico. Estuar. Coastal Shelf Sci. 57, 1-13.

Legends of figures:

Figure 1. The Lagoon Ébrié in Ivory Coast (left) and the Lake Nokoue in Benin (right).

Figure 2. Detailed trophic structure of biomass (tkm⁻², left) and ecologic production (tkm⁻²·yr⁻¹, right), of fish groups as summarized using Ecopath: (a) Lagoon Ébrié and (b) Lake Nokoué.

Figure 3. Simplified trophic flow models of Lagoon Ébrié (A) and Lake Nokoué (B) showing discrete trophic levels. Detritus (part of TL I) has been separated to show its significance as energy source in each ecosystem. Percentage (%) values indicate trophic efficiencies per trophic level. Numbers on arrows indicate flow of energy expressed in $tkm^{-2}yr^{-1}$.

Figure 1 Villanueva et al.

Trophic level

Figure 2 Villanueva et al.

Figure 3

Villanueva et al.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Group name	TL	В	<i>P/B</i>	Q/B	Y	OI
2 Polydacyha guadrifilis (3.2) 0.199 1.560 8.225 0.187 0.142 3 Galeoides decadacylus* (3.4) 0.214 1.380 15.201 0.030 0.124 4 Pseudotolithus senegalensis* (3.7) 0.115 0.687 5.352 0.010 0.152 6 Elops lacerta* (3.3) 0.854 2.790 15.450 1.282 0.101 7 Arius lastiscutatus* (3.3) 0.160 0.430 7.290 0.004 0.126 9 Chloroscombrus chrysurus (3.1) 0.117 2.150 23.817 0.054 0.159 10 Caranx hippos* (3.5) 0.177 3.350 17.576 0.025 0.091 12 Citharichthys stampfili (3.5) 0.177 3.350 17.576 0.020 0.306 12 Citharichthys stampfili (3.4) 0.250 0.530 3.726 0.020 0.306 12 Dregayatis margarita* (3.4) <	1	Sphyraena afra*	(3.9)	0.010	2.060	8.427	0.020	0.204
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	Polydactylus quadrifilis	(3.2)	0.199	1.560	8.225	0.187	0.142
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	Galeoides decadactylus*	(3.4)	0.214	1.380	15.201	0.030	0.124
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	Pseudotolithus elongatus	(3.6)	0.079	1.460	10.235	0.060	0.214
6 Elops lacerta* (3.3) 0.854 2.790 15.450 1.282 0.101 7 Arius lastiscutatus* (3.3) 0.160 0.430 7.290 0.004 0.126 8 Pomadasys jubelin* (3.4) 0.018 2.130 12.058 0.022 0.076 9 Chloroscombrus chrysurus (3.1) 0.117 2.150 23.817 0.054 0.159 10 Caranx hippos* (3.5) 0.108 1.710 16.004 0.040 0.125 11 Trachinous teraia* (3.3) 0.117 3.350 17.576 0.025 0.036 12 Citharichthys stampflii (3.5) 0.177 3.350 17.576 0.025 0.201 13 Geres nigri* (3.4) 0.244 3.870 19.762 0.658 0.138 15 Drepane africana* (2.8) 0.024 0.020 0.326 14 Geres nigri* (3.4) 0.250 0.530 3.726 0.020 0.125	5	Pseud otolithus senega lensis*	(3.7)	0.115	0.687	5.352	0.010	0.152
7Arūs kastiscutatus* (3.3) 0.160 0.430 7.290 0.004 0.126 8Pomada sy jubelini* (3.4) 0.018 2.130 12.058 0.022 0.076 9Chloroscombrus chrysurus (3.1) 0.117 2.150 23.817 0.054 0.159 10Caranx hippos* (3.5) 0.108 1.710 16.004 0.040 0.125 11Trachinotus teraia* (3.3) 0.119 0.930 6.885 0.056 0.364 12Citharichthys stampflii (3.5) 0.177 3.350 17.576 0.025 0.092 13Cynoglossus senegalensis* (3.4) 0.224 3.870 19.762 0.658 0.138 15Drepane africana* (2.8) 0.083 0.910 8.207 0.020 0.125 16Dasyatis margarita* (3.4) 0.250 0.530 3.726 0.020 0.125 17Ilsha africana (3.0) 0.221 1.559 15.071 0.030 0.123 18Brachydeuterus auritus (3.0) 0.004 4.860 16.315 0.030 0.123 19Hemichromis fasciatus* (3.3) 0.014 3.680 16.315 0.030 0.123 20Schilbe intermedius* (3.0) 0.027 1.375 12.310 0.005 0.245 21Hydrocynus forskahli* (3.3) 0.271 1.350 2.6022 0.070 0.669 <t< td=""><td>6</td><td>Elops la certa*</td><td>(3.3)</td><td>0.854</td><td>2.790</td><td>15.450</td><td>1.282</td><td>0.101</td></t<>	6	Elops la certa*	(3.3)	0.854	2.790	15.450	1.282	0.101
8 Pomadasys jubelini* (3.4) 0.018 2.130 12.058 0.022 0.076 9 Chloroscombrus chrysurus (3.1) 0.117 2.150 23.817 0.054 0.159 10 Carax hippos* (3.3) 0.119 0.930 6.885 0.056 0.364 12 Citharichthys stampflii (3.5) 0.177 3.350 17.576 0.025 0.092 13 Cynoglossus senegalensis* (3.4) 0.156 0.510 6.424 0.020 0.396 14 Gerres nigri* (3.1) 0.244 3.870 19.762 0.658 0.138 15 Drepane africana* (2.8) 0.083 0.910 8.207 0.020 0.396 16 Dasyatis margarita* (3.4) 0.217 1.559 15.071 0.030 0.123 20 Schibe intermedius* (3.0) 0.002 20.980 0.020 0.180 21 Strongylura senegalensis* (3.2) 0.147 1.050<	7	Arius lastiscutatus*	(3.3)	0.160	0.430	7.290	0.004	0.126
9 Chloroscombrus chrysurus (3.1) 0.117 2.150 23.817 0.054 0.159 10 Caranx hippos* (3.5) 0.108 1.710 16.004 0.040 0.125 11 Trachinotus teraia* (3.3) 0.119 0.930 6.885 0.056 0.364 12 Citharichthys stampflii (3.5) 0.177 3.350 17.576 0.025 0.021 14 Gerres nigri* (3.1) 0.244 3.870 19.762 0.658 0.138 15 Drepane africana* (2.8) 0.083 0.910 8.207 0.020 0.396 16 Dasyatis margarita* (3.4) 0.250 0.530 3.726 0.020 0.125 17 Ilisha africana (3.0) 0.017 1.559 15.071 0.030 0.123 20 Schilbe intermedius* (3.0) 0.0024 4.200 20.980 0.020 0.180 21 Hydrocynus forskahlii* (3.3) 0.027 1.375 12.310 0.005 0.425 22 Hydrocynus for	8	Pomadasys jubelini*	(3.4)	0.018	2.130	12.058	0.022	0.076
10Caranx hippos* (3.5) 0.108 1.710 16.004 0.040 0.125 11Trach inotus teraia* (3.3) 0.119 0.930 6.885 0.056 0.364 12Citharichthys stampflii (3.5) 0.177 3.350 17.576 0.025 0.092 13Cynoglossus senegalensis* (3.4) 0.156 0.510 6.424 0.025 0.201 14Gerres nigri* (3.1) 0.244 3.870 19.762 0.658 0.138 15Drepane africana* (2.8) 0.083 0.910 8.207 0.020 0.396 16Dasyatis margarita* (3.4) 0.250 0.530 3.726 0.020 0.125 17Ilisha africana (3.0) 0.217 1.559 15.071 0.030 0.124 19Hemichromis fasciatus* (3.3) 0.014 3.680 16.315 0.030 0.123 20Schilbe intermedius* (3.0) 0.009 4.200 20.980 0.020 0.180 21Strongyluru senegalensis* (3.2) 0.147 1.050 9.840 0.010 0.135 22Hydrocynus forskahlii* (3.3) 0.027 1.375 12.310 0.005 0.245 23Pellonula leonensis (3.1) 0.047 3.560 26.022 0.70 0.69 24Eleotris senegalensis* (3.3) 1.027 1.375 1.890 18.450 0.080 0.14	9	Chloroscombrus chrysurus	(3.1)	0.117	2.150	23.817	0.054	0.159
11Trachinolus teraia* (3.3) 0.119 0.930 6.885 0.056 0.364 12Citharichithys stampflii (3.5) 0.177 3.350 17.576 0.025 0.092 13Cynoglossus senegalensis* (3.4) 0.156 0.510 6.424 0.025 0.201 14Gerres nigri* (3.1) 0.244 3.870 19.762 0.658 0.138 15Drepane africana* (2.8) 0.083 0.910 8.207 0.020 0.396 16Dasyatis margarita* (3.4) 0.250 0.530 3.726 0.020 0.396 17Ilisha africana (3.0) 0.221 1.559 15.071 0.030 0.147 18Brachydeuterus auritus (3.0) 0.002 4.220 23.047 0.050 0.024 19Hemichromis fasciatus* (3.0) 0.009 4.200 20.980 0.020 0.180 21Strongylura senegalensis* (3.3) 0.027 1.375 12.310 0.005 0.245 23Pellonula leonensis (3.1) 0.047 3.560 26.022 0.070 0.069 24Eleorir senegalensis* (3.3) 0.277 1.375 12.310 0.050 0.245 25Prysichthys nigrodigitatus* (3.3) 0.277 1.375 12.310 0.066 0.144 25Chrysichthys nigrodigitatus* (3.3) 0.271 1.357 0.233 0.266 <td< td=""><td>10</td><td>Caranx hippos*</td><td>(3.5)</td><td>0.108</td><td>1.710</td><td>16.004</td><td>0.040</td><td>0.125</td></td<>	10	Caranx hippos*	(3.5)	0.108	1.710	16.004	0.040	0.125
12Citharichthys stampflii (3.5) 0.177 3.350 17.576 0.025 0.092 13Cynoglossus senegalensis* (3.4) 0.156 0.510 6.424 0.025 0.201 14Geres nigri* (3.1) 0.244 3.870 19.762 0.658 0.138 15Drepane africana* (2.8) 0.083 0.910 8.207 0.020 0.396 16Dasyatis margarita* (3.4) 0.250 0.530 3.726 0.020 0.136 17Ilisha africana (3.0) 0.217 1.559 15.071 0.030 0.147 18Brachydeuterus auritus (3.0) 0.002 4.220 23.047 0.050 0.024 19Hemichromis fasciatus* (3.3) 0.009 4.200 20.980 0.020 0.180 21Strongylura senegalensis* (3.2) 0.147 1.050 9.840 0.010 0.135 22Hydrocynus forskahli* (3.3) 0.027 1.375 12.310 0.005 0.245 23Pellonula leonensis (3.1) 0.047 3.560 26.022 0.070 0.069 24Eleorirs senegalensis* (3.3) 1.027 1.130 7.682 0.674 0.037 25Chrysichthys nigrodigitatus* (3.1) 0.150 0.500 5.454 0.001 0.309 27Synodontis gambiensis* (2.8) 0.026 1.600 12.760 0.016 0.2	11	Trachinotus teraia*	(3.3)	0.119	0.930	6.885	0.056	0.364
13 $Cynoglossus senegalensis*$ (3.4)0.1560.5106.4240.0250.20114 $Gerres nigrit*$ (3.1)0.2443.87019.7620.6580.13815 $Drepane africana*$ (2.8)0.0830.9108.2070.0200.39616 $Dasyatis margarita*$ (3.4)0.2500.5303.7260.0200.12517 $llisha africana$ (3.0)0.2171.55915.0710.0300.14718 $Brachydeuterus auritus$ (3.0)0.0024.22023.0470.0500.02419 $Hemichromis fasciatus*$ (3.0)0.0094.20020.9800.0200.18021 $Strongylura senegalensis*$ (3.2)0.1471.0509.8400.0100.13522 $Hydrocynus forskahlii*$ (3.3)0.0271.37512.3100.0050.24523 $Pellonula leonensis$ (3.1)0.0473.56026.0220.0700.06924 $Eleotris senegalensis*$ (3.3)1.0271.1307.6820.6740.03726 $Trichiurus lepturus$ (3.1)0.1292.24020.0210.0560.22828 $Monodat cylus sebae$ (3.1)0.1292.24020.0210.0560.02529 $Ethmalosa finbriata$ (2.7)1.1254.71018.5153.3700.23330 $Sardinella maderensis*$ (2.9)0.5504.18025.2290.6700.105<	12	Citharichthys stampflii	(3.5)	0.177	3.350	17.576	0.025	0.092
14Gerres nigri*(3.1) 0.244 3.870 19.762 0.658 0.138 15Drepane africana*(2.8) 0.083 0.910 8.207 0.020 0.396 16Dasyatis margarita*(3.4) 0.250 0.530 3.726 0.020 0.125 7Ilisha africana(3.0) 0.217 1.559 15.071 0.030 0.147 18Brachydeuterus auritus(3.0) 0.022 4.220 23.047 0.050 0.024 19Hemichromis fasciatus*(3.3) 0.014 3.680 16.315 0.030 0.123 20Schilbe intermedius*(3.0) 0.009 4.200 20.980 0.020 0.180 21Strongylura senegalensis*(3.2) 0.147 1.050 9.840 0.010 0.135 22Hydrocynus forskahlii*(3.3) 0.027 1.375 12.310 0.005 0.245 23Pellonula leonensis(3.1) 0.047 3.560 26.022 0.070 0.069 24Eleotris senegalensis*(3.3) 1.027 1.130 7.682 0.674 0.037 26Trichiurus lep turus(3.1) 0.050 0.600 5.454 0.0011 0.238 28Monodactylus sebae(3.1) 0.129 2.240 20.021 0.056 0.225 29Ethmalosa finbriata(2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella mad	13	Cynoglossus senegalensis*	(3.4)	0.156	0.510	6.424	0.025	0.201
15Drepane africana* (2.8) 0.083 0.910 8.207 0.020 0.396 16Dasyatis margarita* (3.4) 0.250 0.530 3.726 0.020 0.125 17Ilisha africana (3.0) 0.217 1.559 15.071 0.030 0.147 18Brachydeuterus auritus (3.0) 0.022 4.220 23.047 0.050 0.024 19Hemichromis fasciatus* (3.0) 0.009 4.200 20.980 0.020 0.180 21Strongylura senegalensis* (3.2) 0.147 1.050 9.840 0.010 0.135 22Hydrocynus forskahlii* (3.3) 0.027 1.375 12.310 0.005 0.245 23Pellonula leonensis (3.1) 0.047 3.560 26.022 0.070 0.069 44Eleotris senegalensis* (3.3) 1.027 1.130 7.682 0.674 0.037 26Trichiurus lepturus (3.1) 0.050 0.600 5.454 0.001 0.309 27Synodontis gambiensis* (2.8) 0.026 1.600 12.760 0.010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 </td <td>14</td> <td>Gerres nigri*</td> <td>(3.1)</td> <td>0.244</td> <td>3.870</td> <td>19.762</td> <td>0.658</td> <td>0.138</td>	14	Gerres nigri*	(3.1)	0.244	3.870	19.762	0.658	0.138
16Dasyatis margarita* (3.4) 0.250 0.530 3.726 0.020 0.125 17Ilisha africana (3.0) 0.217 1.559 15.071 0.030 0.147 18Brachydeuterus auritus (3.0) 0.022 4.220 23.047 0.050 0.024 19Hemichromis fasciatus* (3.0) 0.009 4.200 20.980 0.020 0.180 20Schilbe intermedius* (3.0) 0.009 4.200 20.980 0.020 0.180 21Strongylura senegalensis* (3.2) 0.147 1.050 9.840 0.010 0.135 22Hydrocynus forskahlii* (3.3) 0.027 1.375 12.310 0.005 0.245 23Pellonula leonensis (3.1) 0.047 3.560 26.022 0.070 0.069 24Eleotris senegalensis* (3.3) 1.027 1.130 7.682 0.674 0.037 26Trichiurus lepturus (3.1) 0.050 0.600 5.454 0.001 0.309 27Synodontis gambiensis * (2.8) 0.026 1.600 12.760 0.010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 20.596 0.174 0.229	15	Drepane africana*	(2.8)	0.083	0.910	8.207	0.020	0.396
17Ilisha africana (3.0) 0.217 1.559 15.071 0.030 0.147 18Brachydeuterus auritus (3.0) 0.022 4.220 23.047 0.050 0.024 19Hemichromis fasciatus* (3.0) 0.009 4.200 20.980 0.020 0.180 20Schilbe intermedius* (3.0) 0.009 4.200 20.980 0.020 0.180 21Strongylura senegalensis* (3.2) 0.147 1.050 9.840 0.010 0.135 23Pellonula leonensis (3.1) 0.047 3.560 26.022 0.070 0.069 24Eleotris senegalensis* (3.3) 0.377 1.890 18.450 0.080 0.144 25Chrysichthys nigrod gitatus* (3.3) 1.027 1.130 7.682 0.674 0.037 26Trichiurus lepturus (3.1) 0.026 1.600 12.760 0.010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.225 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 <	16	Dasyatis margarita*	(3.4)	0.250	0.530	3.726	0.020	0.125
18Brachydeuterus auritus (3.0) 0.022 4.220 23.047 0.050 0.024 19Hemichromis fasciatus* (3.3) 0.014 3.680 16.315 0.030 0.123 20Schilbe intermedius* (3.0) 0.009 4.200 20.980 0.020 0.180 21Strongylura senegalensis* (3.2) 0.147 1.050 9.840 0.010 0.135 22Hydrocynus forskahlii* (3.3) 0.027 1.375 12.310 0.005 0.245 23Pellonula leonensis (3.1) 0.047 3.560 26.022 0.070 0.069 24Eleotris senegalensis* (3.3) 0.377 1.890 18.450 0.080 0.144 25Chrysichthys nigrodigitatus* (3.3) 1.027 1.130 7.682 0.674 0.037 26Trichiurus lepturus (3.1) 0.050 0.600 5.454 0.0010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326	17	Ilisha africana	(3.0)	0.217	1.559	15.071	0.030	0.147
19Hemichromis fasciatus* (3.3) 0.014 3.680 16.315 0.030 0.123 20Schilbe intermedius* (3.0) 0.009 4.200 20.980 0.020 0.180 21Strongylura senegalensis* (3.2) 0.147 1.050 9.840 0.010 0.135 22Hydrocynus forskahlii* (3.3) 0.027 1.375 12.310 0.005 0.245 23Pellonula leonensis (3.1) 0.047 3.560 26.022 0.070 0.669 24Eleotris senegalensis* (3.3) 0.377 1.890 18.450 0.080 0.144 25Chrysichthys nigrodigitatus* (3.3) 1.027 1.130 7.682 0.674 0.037 26Trichiurus lepturus (3.1) 0.050 0.600 5.454 0.001 0.309 27Synodontis gambiensis* (2.8) 0.026 1.600 12.760 0.010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354	18	Brachydeuterus auritus	(3.0)	0.022	4.220	23.047	0.050	0.024
20Schilbe intermedius* (3.0) 0.009 4.200 20.980 0.020 0.180 21Strongylura senegalensis* (3.2) 0.147 1.050 9.840 0.010 0.135 22Hydrocynus forskahlii* (3.3) 0.027 1.375 12.310 0.005 0.245 23Pellonula leonensis (3.1) 0.047 3.560 26.022 0.070 0.069 24Eleotris senegalensis* (3.3) 0.377 1.890 18.450 0.080 0.144 25Chrysichthys nigrodigitatus* (3.3) 1.027 1.130 7.682 0.674 0.037 26Trichiurus lepturus (3.1) 0.050 0.600 5.454 0.001 0.309 27Synodontis gambiensis* (2.8) 0.026 1.600 12.760 0.010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 </td <td>19</td> <td>Hemichromis fasciatus*</td> <td>(3.3)</td> <td>0.014</td> <td>3.680</td> <td>16.315</td> <td>0.030</td> <td>0.123</td>	19	Hemichromis fasciatus*	(3.3)	0.014	3.680	16.315	0.030	0.123
21Strongylura senegalensis* (3.2) 0.147 1.050 9.840 0.010 0.135 22Hydrocynus forskahlii* (3.3) 0.027 1.375 12.310 0.005 0.245 23Pellonula leonensis (3.1) 0.047 3.560 26.022 0.070 0.069 24Eleotris senegalensis* (3.3) 0.377 1.890 18.450 0.080 0.144 25Chrysichthys nigrodigitatus* (3.3) 1.027 1.130 7.682 0.674 0.037 26Trichiurus lepturus (3.1) 0.050 0.600 5.454 0.001 0.309 27Synodontis gambiensis * (2.8) 0.026 1.600 12.760 0.010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34Tilapia guineensis (2.0) 0.473 1.440 34.547 0.151 <td>20</td> <td>Schilbe intermedius*</td> <td>(3.0)</td> <td>0.009</td> <td>4.200</td> <td>20.980</td> <td>0.020</td> <td>0.180</td>	20	Schilbe intermedius*	(3.0)	0.009	4.200	20.980	0.020	0.180
22Hydrocynus forskahlii* (3.3) 0.027 1.375 12.310 0.005 0.245 23Pellonula leonensis (3.1) 0.047 3.560 26.022 0.070 0.069 24Eleotris senegalensis* (3.3) 0.377 1.890 18.450 0.080 0.144 25Chrysichthys nigrodigitatus* (3.3) 1.027 1.130 7.682 0.674 0.037 26Trichiurus lepturus (3.1) 0.050 0.600 5.454 0.001 0.309 27Synodontis gambiensis * (2.8) 0.026 1.600 12.760 0.010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34Tilapia guineensis (2.0) 0.473 1.440 34.547 0.151 0.020 35Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 <td>21</td> <td>Strongylura senegalensis*</td> <td>(3.2)</td> <td>0.147</td> <td>1.050</td> <td>9.840</td> <td>0.010</td> <td>0.135</td>	21	Strongylura senegalensis*	(3.2)	0.147	1.050	9.840	0.010	0.135
23Pellonula leonensis (3.1) 0.047 3.560 26.022 0.070 0.069 24Eleotris senegalensis* (3.3) 0.377 1.890 18.450 0.080 0.144 25Chrysichthys nigrodigitatus* (3.3) 1.027 1.130 7.682 0.674 0.037 26Trichiurus lepturus (3.1) 0.050 0.600 5.454 0.001 0.309 27Synodontis gambiensis* (2.8) 0.026 1.600 12.760 0.010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34Tilapia gui neensis (2.0) (4.390) 2.228 6.285 1.956 0.310 35Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 36Crabs (2.9) (4.390) 2.228 6.285 1.956 0.310 3	22	Hydrocynus forskahlii*	(3.3)	0.027	1.375	12.310	0.005	0.245
24Eleotris senegalensis* (3.3) 0.377 1.890 18.450 0.080 0.144 25Chrysichthys nigrodigitatus* (3.3) 1.027 1.130 7.682 0.674 0.037 26Trichiurus lepturus (3.1) 0.050 0.600 5.454 0.001 0.309 27Synodontis gambiensis * (2.8) 0.026 1.600 12.760 0.010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34Tilapia guineensis (2.0) 0.473 1.440 34.547 0.151 0.020 35Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 36Crabs (2.9) (4.542) 3.965 28.000 $ -$ 37Mollusks (2.0) 2.740 65.000 268.200 $ -$ 38Zoobenthos	23	Pellonula leonensis	(3.1)	0.047	3.560	26.022	0.070	0.069
25Chrysichthys nigrod igitatus* (3.3) 1.027 1.130 7.682 0.674 0.037 26Trichiurus lepturus (3.1) 0.050 0.600 5.454 0.001 0.309 27Synodontis gambiensis* (2.8) 0.026 1.600 12.760 0.010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34Tilapia guineensis (2.0) 0.473 1.440 34.547 0.151 0.020 35Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 36Crabs (2.9) (4.390) 2.228 6.285 1.956 0.310 37Mollusks (2.0) 2.740 65.000 268.200 $ -$ 38Zoobenthos (2.0) 2.740 65.000 268.200 $ -$ 39Zooplankton (1.0)	24	Eleotris senegalensis*	(3.3)	0.377	1.890	18.450	0.080	0.144
26Trichiurus lepturus (3.1) 0.050 0.600 5.454 0.001 0.309 27Synodontis gambiensis * (2.8) 0.026 1.600 12.760 0.010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34Tilapia guineensis (2.0) 0.473 1.440 34.547 0.151 0.020 35Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 36Crabs (2.9) (4.390) 2.228 6.285 1.956 0.310 37Mollusks (2.0) (4.542) 3.965 28.000 38Zoobenthos (2.0) 2.740 65.000 268.200 39Zooplankton (1.0) 22.355 93.491 41Phytobenthos (1.0) 19.20 <td>25</td> <td>Chrysichthys nigrodigitatus*</td> <td>(3.3)</td> <td>1.027</td> <td>1.130</td> <td>7.682</td> <td>0.674</td> <td>0.037</td>	25	Chrysichthys nigrodigitatus*	(3.3)	1.027	1.130	7.682	0.674	0.037
27Synodontis gambiensis * (2.8) 0.026 1.600 12.760 0.010 0.288 28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34Tilapia guineensis (2.0) 0.473 1.440 34.547 0.151 0.020 35Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 36Crabs (2.9) (4.390) 2.228 6.285 1.956 0.310 37Mollusks (2.3) (12.518) 3.685 10.680 - $-$ 38Zoopenthos (2.0) 2.740 65.000 268.200 39Zooplankton (1.0) 22.355 93.491 41Phytobenthos (1.0) 19.20 0.220	26	Trichiurus lepturus	(3.1)	0.050	0.600	5.454	0.001	0.309
28Monodactylus sebae (3.1) 0.129 2.240 20.021 0.056 0.025 29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34Tilapia guineensis (2.0) 0.473 1.440 34.547 0.151 0.020 35Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 36Crabs (2.9) (4.390) 2.228 6.285 1.956 0.310 37Mollusks (2.3) (12.518) 3.685 10.680 - $-$ 38Zoopenthos (2.0) 2.740 65.000 268.200 39Zooplankton (1.0) 22.355 93.491 41Phytobenthos (1.0) 19.20 0.220	27	Synodontis gambiensis *	(2.8)	0.026	1.600	12.760	0.010	0.288
29Ethmalosa fimbriata (2.7) 1.125 4.710 18.515 3.370 0.233 30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34Tilapia guineensis (2.0) 0.473 1.440 34.547 0.151 0.020 35Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 36Crabs (2.9) (4.390) 2.228 6.285 1.956 0.310 37Mollusks (2.3) (12.518) 3.685 10.680 - 0.206 38Zoobenthos (2.0) 2.740 65.000 268.200 39Zooplankton (1.0) 22.355 93.491 41Phytobenthos (1.0) 19.20 0.220	28	Monodactylus sebae	(3.1)	0.129	2.240	20.021	0.056	0.025
30Sardinella maderensis* (2.9) 0.550 4.180 25.229 0.670 0.105 31 Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32 Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33 Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34 Tilapia guineensis (2.0) 0.473 1.440 34.547 0.151 0.020 35 Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 36 Crabs (2.9) (4.390) 2.228 6.285 1.956 0.310 37 Mollusks (2.3) (12.518) 3.685 10.680 - 0.206 38 Zoobenthos (2.0) 2.740 65.000 268.200 39 Zooplankton (2.0) 2.740 65.000 268.200 41 Phytobenthos (1.0) 6.480 83.333 42 Detritus (1.0) 19.20 0.220	29	Ethmalosa fimbriata	(2.7)	1.125	4.710	18.515	3.370	0.233
31Liza grandisquamis* (2.4) 0.469 0.880 26.596 0.174 0.229 32 Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33 Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34 Tilapia guineensis (2.0) 0.473 1.440 34.547 0.151 0.020 35 Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 36 Crabs (2.9) (4.390) 2.228 6.285 1.956 0.310 37 Mollusks (2.3) (12.518) 3.685 10.680 38 Zoobenthos (2.0) 2.740 65.000 268.200 39 Zooplankton (1.0) 22.355 93.491 41 Phytobenthos (1.0) 19.20 0.220 42 Detritus (1.0) 19.20 0.220	30	Sardinella maderensis*	(2.9)	0.550	4.180	25.229	0.670	0.105
32Tylochromis jentinki (3.0) 0.386 1.400 10.508 0.354 0.269 33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34Tilapia guineensis (2.0) 0.473 1.440 34.547 0.151 0.020 35Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 36Crabs (2.9) (4.390) 2.228 6.285 1.956 0.310 37Mollusks (2.3) (12.518) 3.685 10.680 - 0.206 38Zoobenthos (2.0) (4.542) 3.965 28.000 39Zooplankton (2.0) 2.740 65.000 268.200 - 0.010 40Phytoplankton (1.0) 22.355 93.491 41Phytobenthos (1.0) 19.20 0.220	31	Liza grandisquamis*	(2.4)	0.469	0.880	26.596	0.174	0.229
33Sarotherodon melanotheron (2.1) 1.456 1.200 23.820 0.326 0.066 34Tilapia guineensis (2.0) 0.473 1.440 34.547 0.151 0.020 35Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 36Crabs (2.9) (4.390) 2.228 6.285 1.956 0.310 37Mollusks (2.3) (12.518) 3.685 10.680 - 0.206 38Zoobenthos (2.0) (4.542) 3.965 28.000 39Zooplankton (2.0) 2.740 65.000 268.200 - 0.010 40Phytoplankton (1.0) 22.355 93.491 41Phytobenthos (1.0) 19.20 0.220 42Detritus (1.0) 19.20 0.220	32	Tylochromis jentinki	(3.0)	0.386	1.400	10.508	0.354	0.269
34 Tilapia guin eensis (2.0) 0.473 1.440 34.547 0.151 0.020 35 Shrimps (2.6) 0.910 3.146 22.000 0.565 0.322 36 Crabs (2.9) (4.390) 2.228 6.285 1.956 0.310 37 Mollusks (2.3) (12.518) 3.685 10.680 - 0.206 38 Zoobenthos (2.0) (4.542) 3.965 28.000 - - 39 Zooplankton (2.0) 2.740 65.000 268.200 - 0.010 40 Phytoplankton (1.0) 22.355 93.491 - - - 41 Phytobenthos (1.0) 6.480 83.333 - - - 42 Detritus (1.0) 19.20 - - 0.220	33	Sarotherodon melanotheron	(2.1)	1.456	1.200	23.820	0.326	0.066
35Shrimps(2.6)0.9103.14622.0000.5650.32236Crabs(2.9)(4.390)2.2286.2851.9560.31037Mollusks(2.3)(12.518)3.68510.680-0.20638Zoobenthos(2.0)(4.542)3.96528.00039Zooplankton(2.0)2.74065.000268.200-0.01040Phytoplankton(1.0)22.35593.49141Phytobenthos(1.0)6.48083.33342Detritus(1.0)19.200.220	34	Tilapia guineensis	(2.0)	0.473	1.440	34.547	0.151	0.020
36 Crabs (2.9) (4.390) 2.228 6.285 1.956 0.310 37 Mollusks (2.3) (12.518) 3.685 10.680 - 0.206 38 Zoobenthos (2.0) (4.542) 3.965 28.000 - - 39 Zooplankton (2.0) 2.740 65.000 268.200 - 0.010 40 Phytoplankton (1.0) 22.355 93.491 - - - 41 Phytobenthos (1.0) 6.480 83.333 - - - 42 Detritus (1.0) 19.20 - - 0.220	35	Shrimps	(2.6)	0.910	3.146	22.000	0.565	0.322
37Mollusks(2.3)(12.518)3.68510.680-0.20638Zoobenthos(2.0)(4.542)3.96528.00039Zooplankton(2.0)2.74065.000268.200-0.01040Phytoplankton(1.0)22.35593.49141Phytobenthos(1.0)6.48083.33342Detritus(1.0)19.200.220	36	Crabs	(2.9)	(4.390)	2.228	6.285	1.956	0.310
38Zoobenthos(2.0)(4.542)3.96528.00039Zooplankton(2.0)2.74065.000268.200-0.01040Phytoplankton(1.0)22.35593.49141Phytobenthos(1.0)6.48083.33342Detritus(1.0)19.200.220	37	Mollusks	(2.3)	(12.518)	3.685	10.680	-	0.206
39Zooplankton(2.0)2.74065.000268.200-0.01040Phytoplankton(1.0)22.35593.49141Phytobenthos(1.0)6.48083.33342Detritus(1.0)19.200.220	38	Zoobenthos	(2.0)	(4.542)	3.965	28.000	-	-
40Phytoplankton(1.0)22.35593.49141Phytobenthos(1.0)6.48083.33342Detritus(1.0)19.200.220	39	Zooplankton	(2.0)	2.740	65.000	268.200	-	0.010
41 Phytobenthos (1.0) 6.480 83.333 - - - - 0.220 42 Detritus (1.0) 19.20 - - 0.220	40	Phytoplankton	(1.0)	22.355	93.491	-	-	-
<u>42 Detritus</u> (1.0) 19.20 0.220	41	Phytobenthos	(1.0)	6.480	83.333	-	-	-
	42	Detritus	(1.0)	19.20	-	-	-	0.220

Table 1. Basic inputs and estimated outputs (bold) of the Ébrié lagoon model during the early eighties.

TL: trophic level; *B*: biomass (tkm⁻²); *P/B*: annual production rate, Q/B: annual consumption rate, *Y*: catch (tkm⁻²yr⁻¹) and *OI*: omnivory index.

	Group name	TL	В	Р/В	Q/B	Y	01
1	Polydactylus quad rifilis	3.2	0.489	2.000	17.848	0.088	0.127
2	Elops la certa	3.4	3.969	1.900	17.183	1.429	0.097
3	Pomada sys jubelini	3.3	0.367	1.670	14.714	0.088	0.092
4	Caranx hippos	3.4	0.030	2.250	21.487	0.010	0.054
5	Citarich thys stampflii	3.5	0.070	2.670	14.477	0.088	0.082
6	Cynog lossus sen ega lensis*	3.2	0.880	1.500	10.861	0.088	0.111
7	Eucinostomus melanopterus*	3.2	1.118	3.560	26.909	0.840	0.202
8	Lutjanus goreensis*	3.3	0.326	1.900	14.397	0.088	0.081
9	Hemichromis fasciatus*	3.3	0.191	2.560	18.900	0.088	0.115
10	Schilbe intermedius*	3.1	0.406	1.800	25.200	0.292	0.164
11	Strongylura senegalensis*	3.2	0.218	2.087	20.232	0.088	0.164
12	Hyporhamphus picarti*	3.0	0.157	3.500	28.377	0.088	0.123
13	Hepsetus od oe*	3.4	0.048	1.500	16.013	0.011	0.280
14	Pellonula leonensis	3.0	0.047	5.600	37.550	0.088	0.048
15	Eleotris vitatta *	3.4	0.293	2.390	15.770	0.088	0.127
16	Gobionellus occidentalis*	2.4	15.501	2.500	19.887	7.797	0.253
17	Chrysichthys nigrodigitatus*	3.1	14.492	1.590	12.364	3.681	0.102
18	Synodontis schall*	2.9	0.105	1.700	13.257	0.048	0.311
19	Monodactylus sebae	3.2	0.259	2.700	21.087	0.088	0.022
20	Ethmalosa fimbriata	2.5	42.191	2.250	14.300	12.362	0.303
21	Liza falcipinnis*	2.2	5.659	2.100	37.033	3.339	0.156
22	Sarotherodon melanotheron	2.1	38.928	2.300	32.803	30.364	0.073
23	Tilapia guineensis	2.1	6.673	2.300	43.800	3.003	0.124
24	Shrimps	2.4	18.267	3.100	22.000	10.595	0.260
25	Crabs	2.8	20.439	2.982	8.500	27.260	0.369
26	Mollusks	2.3	47.227	3.277	10.680	-	0.233
27	Zoobenthos	2.1	87.760	16.475	45.000	-	0.073
28	Zooplankton	2.1	147.230	39.094	120.000	-	0.053
29	Phytoplankton	1.0	29.200	270.000	-	-	-
30	Phytobenthos	1.0	14.600	270.000	-	-	-
31	Detritus	1.0	33.20	-	-	-	0.286

Table 2. Basic inputs and outputs (bold) of the Lake Nokoué. For fish groups with more than one species, a key species is considered and is indicated by (*).

TL: trophic level; B: biomass (tkm⁻²); P/B: annual production rate, Q/B: annual consumption rate, Y : catch (tkm⁻²·yr⁻¹) and OI: omnivory index.

	Predator																				
	Prey	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	Sphyra ena a fra*																				
2	Po lyda cty lu s quadrifilis	0.010																			
3	Galeoides decadactylus*	0.100	0.005		0.020	0.020															
4	Pseudo to lithus elonga tus	0.005	0.005																		
5	Pseudo to lithus senega lensis*	0.050																			
6	Elops lacerta*	0.030			0.002		0.005														
7	Arius lastiscutatus*																				
8	Pomadasys jub elini*	0.020																			
9	Chloroscombrus chrysurus																				
10	Caranx hippos*	0.020																			
11	Trachinotus teraia*																				
12	Citharich thys stamp flii																				
13	Cynoglossus senegalensis*	0.020																			
14	Gerres nigri*	0.050				0.005	0.010														
15	Drepan e africana*																				
16	Dasyatis margarita*																				
17	Ilisha africana	0.030						0.005			0.010	0.010							0.001		
18	Brachydeuterus auritus	0.010									0.010	0.005									0.010
19	Hemich romis fascia tu s*				0.001																
20	Schilbe intermedius*					0.005															
21	Strongylura senegalensis*	0.010			0.005																
22	Hydrocynus forskahlii*	0.010				0.001															
23	Pello nu la leon en sis	0.010				0.005	0.005														
24	Eleo tris senegalensis*	0.030			0.050	0.039				0.005	0.010	0.010	0.010	0.005				0.010	0.004		
25	Chrysichthys n ig rod ig ita tu s*				0.030	0.025															
26	Trich iu rus lepturus	0.007			0.002																
27	Synodontis gambien sis *																			0.005	
28	Monodactylus sebae	0.010																			
29	Ethmalosa fimbriata	0.100	0.005		0.100	0.115	0.030	0.030		0.005	0.100	0.020						0.010	0.005		0.010
30	Sard in ella mad er en sis *	0.100	0.020		0.100	0.030	0.050	0.020		0.005	0.055	0.015						0.005			0.010
31	Liza grandisquamis*	0.020	0.005		0.010	0.005	0.005	0.005	0.010					0.010						0.005	0.010
32	Tylo ch romis jentink i	0.030	0.005			0.010	0.003														
33	Sarotherodon melanotheron	0.050	0.030	0.005	0.050	0.025	0.040		0.030		0.050		0.020	0.025						0.150	
34	Tilapia guineensis	0.050	0.010	0.005	0.060	0.020			0.030		0.025		0.020	0.030						0.010	
35	Shrimps	0.228	0.150	0.050	0.100	0.050	0.020	0.020	0.080		0.020	0.050	0.050	0.050	0.005	0.005	0.001	0.010	0.050	0.100	
36	Crabs		0.075	0.250	0.200	0.500	0.060	0.200	0.200		0.225	0.200	0.250	0.240		0.100	0.250			0.200	
37	Mollusks		0.100	0.400			0.372	0.350	0.650	0.550	0.400	0.540	0.650	0.490	0.600	0.100	0.449	0.225		0.230	0.450
38	Zoobenthos													0.100	0.100	0.150	0.300	0.150	0.450		0.130
39	Zooplankton		0.570	0.290	0.270	0.145	0.400	0.370		0.330	0.095				0.200	0.300		0.490	0.490	0.300	0.260
40	Phytoplankton															0.100					
41	Phytobenthos															0.145					
42	Detritus		0.020							0.105		0.150		0.050	0.095	0.100		0.100			0.120

Table 3. Diet matrix composition (%) of functional groups considered in the Ébrié lagoon model.

Table 3. Cont.

		Predator																		
	Prev	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
1	Sphyraena afra* Pohylaetylus avadrifilis																			
3	Galeoides decadactylus*																			
4	Pseudo to lithus elonga tus																			
5	Pseudo to lithus senega lensis*						0.002													
6	Elops lacerta*																			
7	Arius lastiscutatus*																			
8	Pomadasys jub elini*																			
9	Chloroscombrus chrysurus																			
10	Caranx hippos*																			
11	Trachinotus teraia*																			
12	Citharich thys stamp flii																			
13	Cynoglossus senegalensis*		0.010																	
14	Gerres nigri*																0.003			
15	Drepan e africana*																			
16	Dasyatis margarita*	0.050					0.000		0.000											
17	Ilisha africana	0.050					0.008		0.002											
18	Bracnyaeuterus auritus						0.010		0.002											
19	Hemich romis fasciatus*																			
20	Schube intermedius*		0.020																	
21	Hydrocymus fosk ah lii*		0.030																	
22	Pellonula leonensis		0.050																	
23	Fleatris senegalensis*	0.020	0.005																	
25	Chrysichthys nig rod ig ita tu s*	0.020	0.000																	
26	Trichiums lenturus		0.001																	
27	Synodontis gambien sis *		0.001																	
28	Monodactvlus sebae																			
29	Ethmalosa fimbriata	0.100	0.020	0.050	0.050	0.004	0.050		0.005								0.015			
30	Sardinella maderensis*	0.050		0.050	0.020		0.050		0.005								0.010			
31	Liza grandisquamis*	0.005	0.010				0.005		0.005								0.001			
32	Tylo ch romis jentink i	0.005	0.005		0.005								0.006							
33	Sarotherodon melanotheron	0.050	0.005		0.010	0.005	0.020						0.006							
34	Tilap ia gu in eensis	0.020	0.003	0.010	0.010	0.001	0.004						0.006							
35	Shrimps		0.020	0.050	0.005	0.005	0.010		0.030		0.010		0.010							
36	Crabs		0.100		0.190	0.045	0.100										0.026			
37	Mollusks	0.000	0.300	0.050	0.160	0.710	0.121	0.350	0.105	0.010	0.080	0.000	0.600			0.200	0.450			
38	Zoobenthos	0.300	0.200	0.090	0.370	0.000	0.400	0.350	0.300	0.010	0.060	0.200	0.159	0.050	0.000	0.000	0.259	0.000		0.010
39	Zooplankton	0.400	0.200	0.700	0.180	0.230	0.490	0.150	0.546	0.635	0.750	0.150	0.100	0.070	0.020	0.300		0.280		0.010
40	Phytopiankton							0.150		0.325		0.200	0.100	0.280	0.180	0.300	0.021	0.300	0.150	0.850
41	Phytobenthos		0.050				0.120	0.050		0.010	0.100	0.150	0.114	0.050	0.200	0.200	0.031	0.150	0.150	0.140
42	Deu nus		0.050				0.130	0.100		0.010	0.100	0.300	0.114	0.000	0.600	0.200	0.205	0.270	0.850	0.140

Table 4. D	Diet matrix o	composition (%) of	groups consid	lered in L	Lake No	koué model.
------------	---------------	---------------	-------	---------------	------------	---------	-------------

		P re dato r																											
	Prey	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
1	Polydactylus quadrifilis		0.020					0.005		0.010																			
2	Elops la certa		0.020					0.005		0.010																			
3	Pomada sys jubelini																												
4	Caranx hippos																												
5	Citharichthys stampflii																												
6	Cyn og lossus sen ega lensis*																												
7	Eucinostomus		0.010																							0.003			
	melan opterus*																												
8	Lutjanus goreensis*		0.002			0.025																							
9	Hemichromis fasciatus*									0.005																			
10	Schilbe intermedius*													0.100															
11	Strongylura senegalensis*											0.003																	
12	Hyporhamphus picarti*											0.010																	
13	Hepsetus od oe*									0.005				0.005															
14	Pellonula leonensis		0.001	0.001		0.005	0.001		0.005	0.005		0.002		0.005		0.005													
15	Eleotris vitatta*			0.020							0.010																		
16	Gobionellus occidentalis*		0.150	0.030		0.070		0.050	0.050	0.050	0.050	0.050		0.070															
17	Chrysichthys nigrodigitatus*								0.065	0.050		0.030		0.100		0.050													
18	Synodontis schall*										0.005			0.080															
19	Monodactylus sebae																												
20	Ethma losa fimbriata	0.050	0.100	0.050	0.050	0.050	0.050	0.250	0.150	0.150	0.055	0.045		0.050		0.020					0.020					0.025			
21	Liza falcipinnis*		0.050	0.040	0.050	0.030		0.060		0.020						0.005													
22	Sarotherodon melanotheron	0.100	0.100	0.055	0.050	0.030	0.050	0.100		0.100	0.100	0.070		0.210		0.010		0.005			0.015								
23	Tilapia guin eensis	0.050	0.050	0.014	0.050	0.010		0.035		0.100	0.030	0.040		0.200		0.030		0.005											
24	Shrimps	0.100	0.150	0.400	0.400	0.400	0.200	0.050	0.250	0.100	0.050	0.150			0.010	0.290	0.005	0.050		0.300	0.010			0.005					
25	Crabs	0.100	0.170	0.100	0.150	0.250	0.050	0.050		0.050	0.010	0.100				0.200		0.050								0.027			
26	Mollusks	0.050	0.007	0.010	0.100	0.010	0.150	0.200	0.050	0.150	0.300	0.100	0.200		0.050	0.200		0.300	0.400	0.200	0.020	0.010		0.010		0.300			
27	Zoobenthos	0.150	0.030	0.020	0.050	0.020	0.250	0.030	0.230	0.150	0.200	0.200	0.500	0.100	0.150	0.070	0.175	0.450	0.210	0.100	0.050	0.050	0.020	0.050	0.250	0.300		0.020	
28	Zooplankton	0.350	0.160	0.250	0.100	0.100	0.200	0.070	0.200	0.045	0.100	0.150	0.200	0.030	0.750	0.100	0.150	0.090	0.100	0.400	0.350	0.100	0.050	0.050	0.100		0.300	0.050	0.050
29	Phytoplankton														0.040		0.100				0.250	0.150	0.150	0.300	0.010		0.150	0.010	0.100
30	Phytobenthos							0.050		0.010	0.015	0.050	0.050				0.150		0.100		0.050	0.250	0.150	0.300	0.040	0.030	0.050	0.100	0.050
31	Detritus	0.050		0.010			0.049	0.050			0.075		0.050	0.050		0.020	0.420	0.050	0.190		0.235	0.440	0.630	0.285	0.600	0.315	0.500	0.820	0.800

TL	Biomass		Contribution per TL (%)		Catch		Contribution per TL (%)	
	Ε	Ν	Ε	Ν	Ε	Ν	Ε	Ν
VI	0.002	-	-	-	-	-	-	-
V	0.112	0.296	1.2	0.2	0.051	0.106	0.6	-
IV	1.260	5.230	13.3	4.0	0.871	1.746	10.1	2.7
III	5.400	45.000	57.0	34.0	5.668	16.200	66.0	25.3
II	2.700	82.000	28.5	62.0	2.000	46.200	23.3	72.0

Table 5. Relative distribution of biomass (tkm^{-2}) and catch $(tkm^{-2}yr^{-1})$ among the various TLs in Ébrié Lagoon (E) and in Lake Nokoué (N). Note that biomass and/or catch of non-fish groups are not included.

Parameter	Value		
	Ébrié	Nokoué	
Ecosystem theory indices			
Sum of all consumption $(tkm^{-2}yr^{-1})$	1 207.682	25 731.420	
Sum of all exports (tkm ⁻² ·yr ⁻¹)	2 119.768	1 327.479	
Sum of all respiratory flows (tkm ⁻² yr ⁻¹)	510.942	10 498.570	
Sum of all flows into detritus (tkm ⁻² ·yr ⁻¹)	2 402.998	20 410.000	
Total system throughput (TST, t km ⁻² yr ⁻¹)	6 240.000	57 967.000	
Sum of all production $(tkm^2 yr^{-1})$	2 902.000	19 595.000	
Mean trophic level of the catch	2.88	2.46	
Gross efficiency (GE, catch/net p.p.)	0.004226	0.008625	
Calculated total net primary production (tkm ⁻² yr ⁻¹)	2 629.989	11 826.000	
Total primary production/total respiration (TPP/TR)	5.155	1.126	
Net system production (PP-TR, t km ⁻² ·yr ⁻¹)	2 119.047	1 327.430	
Total primary production/total biomass (PP/B, yr ⁻¹)	41.596	23.788	
Total biomass/total system throughput (<i>B</i> -TST, yr^{-1})	0.010	0.009	
Total biomass (excluding detritus) (t km ⁻²)	63.304	497.141	
Total catches (tkm ⁻² ·yr ⁻¹)	11.115	101.999	
Connectance Index (CI)	0.191	0.266	
System Omnivory Index (SOI)	0.145	0.156	
Cycling indices			
Throughput cycled excluding detritus (t ⁻ km ⁻² yr ⁻¹)	8.16	980.57	
Throughput cycled (including detritus) (tkm ⁻² ·yr ⁻¹)	5.09	4.98	
Finn's cycling index (FCI, %)	2.57	34.00	
Predatory cycling index (PCI, %)	0.57	5.72	
Finn's mean path length	2.373	4.902	
Finn's straight-through path length (excluding detritus)	2.733	1.525	
Finn's straight-through path length (including detritus)	2.312	3.235	
Information indices			
Ascendancy (A, flowbits)	7 656.10	47 224.00	
Overhead (\emptyset , flowbits)	13 876.70	186 154 30	
Capacity (C, flowbits)	21 032.90	233 378.30	
Information (I)	1.147	0.815	
A/C	0.340	0.202	

Table 6. Summary statistics and network flow indices of the two ecosystems considered.