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Abstract:  
 

Patterns of mitochondrial DNA (mtDNA) variation were used to analyse the population genetic 
structure of southwestern Indian Ocean green turtle (Chelonia mydas) populations. Analysis of 
sequence variation over 396 bp of the mtDNA control region revealed seven haplotypes among 288 
individuals from 10 nesting sites in the Southwest Indian Ocean. This is the first time that Atlantic 
Ocean haplotypes have been recorded among any Indo-Pacific nesting populations. Previous studies 
indicated that the Cape of Good Hope was a major biogeographical barrier between the Atlantic and 
Indian Oceans because evidence for gene flow in the last 1.5 million years has yet to emerge. This 
study, by sampling localities adjacent to this barrier, demonstrates that recent gene flow has occurred 
from the Atlantic Ocean into the Indian Ocean via the Cape of Good Hope. We also found compelling 
genetic evidence that green turtles nesting at the rookeries of the South Mozambique Channel (SMC) 
and those nesting in the North Mozambique Channel (NMC) belong to separate genetic stocks. 
Furthermore, the SMC could be subdivided in two different genetic stocks, one in Europa and the 
other one in Juan de Nova. We suggest that this particular genetic pattern along the Mozambique 
Channel is attributable to a recent colonization from the Atlantic Ocean and is maintained by oceanic 
conditions in the northern and southern Mozambique Channel that influence early stages in the green 
turtle life cycle. 
 
  
 
Keywords: Chelonia mydas, mitochondrial DNA, control region, phylogeography, Mozambique 
Channel, Indian Ocean. 
 



 3 

Introduction 58 
 59 
The green turtle (Chelonia mydas) is a large, long lived, herbivorous reptile that grazes on 60 
marine macrophytes in shallow tropical and sub-tropical waters around the world (Limpus et al. 61 
1994, Limpus & Chaloupka 1997). Because green turtle hatchlings are rarely seen between the 62 
time they leave their natal beach and when they first appear in shallow water foraging habitats 63 
(Musick & Limpus 1997), Carr (1987) named this interval the lost year. Available evidence 64 
now indicates that this lost year involves at least several years of drifting in oceanic gyre 65 
systems in a passive migration that may circumnavigate entire ocean basins (Bowen et al. 1995; 66 
Lahanas et al. 1998; and Bolten et al. 1998). Green turtles grow slowly, often taking some 25 to 67 
30 or more years to reach maturity (Limpus and Walter 1980). During this developmental 68 
period, they occupy a series of foraging habitats dispersed over an extensive area. Upon 69 
reaching adulthood, reproductive females typically make long distance migrations between 70 
feeding sites and their natal breeding beaches (Limpus et al. 1992). They show great fidelity to 71 
both nesting (Meylan 1982) and feeding grounds (Limpus et al. 1992), even though these may 72 
be separated by thousands of kilometers (Mortimer & Carr 1987). They typically lay multiple 73 
clutches within a season (Carr & Ogren 1960), with 1 to 9 or more years separating successive 74 
breeding seasons (Le Gall et al. 1985; Limpus et al. 1994; Miller 1996; Limpus et al. 2001). 75 
 76 
Attempts have been made to define green turtle population boundaries for this globally 77 
distributed endangered species in order to identify functional units of management. Although 78 
flipper tagging (Le Gall & Hugues 1987), satellite (Pelletier et al. 2003) and acoustic telemetry 79 
(Taquet et al. 2006) provide useful information about contemporary demography, site fidelity 80 
and migrations of individual animals, the data produced are strongly biased toward females and 81 
intensively surveyed locations, especially nesting beaches. In contrast, genetic studies tend to 82 
focus population rather than individual level and can offer unique perspectives on historical 83 
population dynamics. When complemented by tagging stud ies, genetic tools can elucidate the 84 
geographical boundaries of breeding populations and provide information about their 85 
migrations through feeding, breeding and developmental ranges (Bowen & Karl 1997).  86 
 87 
Mitochondrial DNA (mtDNA) has proven particularly effective for detecting population 88 
structure in marine turtles (FitzSimmons et al. 1999), and several studies have successfully 89 
used mtDNA variants to resolve population boundaries among breeding sea turtles (Bowen et 90 
al. 1992; Bowen et al. 1994; Broderick et al. 1994; Norman et al. 1994; Encalada et al. 1996; 91 
Bass et al. 1996; Bowen et al. 1998; Dutton et al. 1999). In general, these studies have revealed 92 
a significant level of population subdivision on both regional and global scales and found that 93 
rookeries, often separated by hundreds of kilometers, may form genetically discrete populations 94 
or Management Units (Moritz 1994). The maternal inheritance of mtDNA also tends to 95 
accentuate genetic differences among populations compared to nuclear genes because it has a 96 
smaller effective population size. In many circumstances, female- inherited markers offer a 97 
distinct advantage because they provide perspectives on female reproductive behaviour that are 98 
paramount to species survival (FitzSimmons et al. 1999). Nevertheless, mtDNA does not 99 
capture the entire population genetic history of a particular species and inferences of population 100 
connectivity and isolation can be misleading especially if male–mediated gene flow is 101 
substantially different to that of females, as it was shown in some green turtle populations (Karl 102 
et al. 1992; FitzSimmons et al. 1997a,b; FitzSimmons et al. 1999; Roberts et al. 2004). 103 
 104 
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Among the significant green turtle rookeries that occur in the South West Indian Ocean, some 105 
have been well described. At the French Eparses Islands (Europa, Juan de Nova, Tromelin and 106 
Glorieuses) green turtle populations have been monitored since the 1980’s (Le Gall et al. 1985; 107 
Le Gall & Hughes 1987; Le Gall 1988). The green turtles of the Seychelles archipelago are 108 
well known (Frazier 1984; Mortimer 1984, Mortimer et al. in press), especially those at 109 
Aldabra (Frazier 1971; Mortimer 1988). Other studies include those of green turtles at Mayotte 110 
(Ciccione S unpublished data), Comoros (Frazier 1984; Ciccione S unpublished data), North 111 
East of Madagascar (Bourjea J unpublished data), Kenya (Okemwa et al. 2004), and Tanzania 112 
(Muir 2005). These studies have shown that the patterns of movements and behaviour of green 113 
turtles in this region conform to those found elsewhere in the world, but a detailed appraisal of 114 
the entire region has yet to emerge. In fact, information on nesting turtles is either sparse or 115 
lacking in other adjacent countries, especially Mozambique, South of Madagascar and Somalia, 116 
where both nesting and foraging habitat as well as human exploitation of this species occur (Le 117 
Gall & Hughes 1987; Rakotonirina & Cooke 1994).  118 
 119 
The South West Indian Ocean, especially the Mozambique Channel, is of particular 120 
biogeographic interest. Suitable green turtle feeding habitat, due to warm water flows, are 121 
found very close to the tip of South Africa while suitable habitat is absent from the west coast 122 
of South Africa due to upwelling and cold water flows. Previous protein and total mtDNA 123 
RFLP genetic studies inferred that cold waters of South Africa have been a major 124 
biogeographic barrier for green turtle dispersal (Bonhomme et al. 1987; Bowen et al. 1992). 125 
Bowen et al. (1992) found no evidence of gene flow occurring between Indian and Atlantic 126 
Oceans over the last 1.5 million years but did not sample rookeries in the Mozambique 127 
Channel. If there is any contact between green turtles in the Indian and Atlantic Oceans, then 128 
the Mozambique Channel is the most likely place for this to occur. 129 
 130 
The purpose of this study is to survey the patterns of mtDNA control region sequence variation 131 
of nesting green turtles at 10 different rookeries in the South West Indian Ocean, principally 132 
along the Mozambique Channel. The patterns of mtDNA variation will be used to i) define 133 
groups of rookeries that comprise discrete genetic populations, ii) investigate the patterns of 134 
dispersal and subdivision of rookeries in this region and iii) determine if there is any evidence 135 
of contact between green turtles from Indian and Atlantic Oceans. 136 
 137 
 138 
Material and Methods  139 
 140 
Sampling 141 
 142 
A total of 288 nesting females were sampled on different dates from 10 different nesting sites in 143 
the western Indian Ocean (Figure 1A and Table 1), that geographically fall into three groups. 144 
Those from the South Mozambique Channel (called here SMC) include Europa and Juan de 145 
Nova (French Eparses islands); while those from the North Mozambique Channel (called here 146 
NMC) include the Mohéli (Comoros), Mayotte (French territory), Nosy Iranja (Madagascar), 147 
Glorieuses (French Eparses Island), and three sites in the Republic of Seychelles. The last 148 
group, out of the Mozambique Channel, is composed only by Tromelin (French Eparses 149 
Island). In the French Eparses islands, Europa was sampled in 1997 (n=24) and again in 2003 150 
(n=9), for a total of 33 samples; Tromelin (n=44), Juan de Nova (n=20) and Glorieuses (n=39) 151 
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were sampled respectively in 1997, 1999 and 2004. Mayotte (n=41), Mohéli (n=34), Nosy 152 
Iranja (n=13) were sampled in 2004. In the Republic of Seychelles, Aldabra (n=31), Cosmoledo 153 
(n=26), and Farquhar (n=7) were sampled in 1996.  154 
 155 
Typically, the source of mtDNA for the majority of turtles was either skin or blood. Blood 156 
samples were taken from the cervical sinus (after Owens & Ruiz 1980) and stored in either 157 
lysis buffer or frozen in ACD-B (Becton Dickinson solution). Skin samples were taken from 158 
either the neck or flipper region and stored in 20% DMSO (Dimethyl Sulfoxide) saturated salt 159 
solution (Dutton 1996). All adult turtles encountered in this study were tagged. In some cases 160 
however, mtDNA was obtained from tissues of dead embryos or hatchlings found in the bottom 161 
of hatched-out nests (Mortimer & Day 1999) with only one sample per clutch and per female to 162 
avoid resampling the same matriline. 163 
 164 
 165 
Mitochondrial DNA control region extraction, amplification and sequencing 166 
 167 
DNA was extracted from small amounts of blood (20 µl) or tissue (0.1g) by overnight digestion 168 
at 56°C in a 1x TE buffer, proteinase K (0.5mg/ml) and SDS (0.01%) solution. Digested 169 
proteins and cellular material were salted out by centrifugation (13 000 rpm for 20 min at 4°C) 170 
in the presence of Ammonium acetate. The DNA was subsequently pelleted by adding 1 171 
volume of cold EtOH to the supernatant and further centrifugation (13 000 rpm for 20 min at 172 
4°C). Residual salts were removed by rinsing the DNA pellet twice with 100% and 70% EtOH, 173 
respectively wash. The DNA was resuspended in 1x TE buffer. An alternative rapid protocol 174 
was also used and involves a proteinase K (0.2 mg/ml) digestion in 0.5 ml of 1x TE buffer and 175 
5% Chelex (Biorad) solution for 4 to 12 hours at 55-60°C with frequent vortexing. The 176 
suspension was heated at 95°C for 5 min and then centrifuged for 5 min at 13 000 rpm. The 177 
supernatant was collected and used as template for subsequent PCR amplifications.  178 
 179 
A portion (~ 396 bp) of the mtDNA control region was amplified by PCR using the TCR-5 (5’-180 
TTGTACATCTACTTATTTACCAC-3’) and TRC-6 (5’-GTACGTACAAGTAAAACTACCGTATGCC-3’) primers (Norman 181 
et al. 1994). Amplifications were performed in a total volume of 25 µl containing 5-50 ng of 182 
whole DNA, 10 mM of each dNTP, 10 µM of each primer, 0.5 Units of high fidelity Advantage 183 
2 polymerase mix (BD Biosciences) and the corresponding reaction buffer (1x). Cycling 184 
parameters were 93°C for 1 min, followed by 35 cycles at 93°C for 40 sec, 55°C for 50 sec, and 185 
72°C for 40 sec, and a final extension at 72°C for 2 min (Fitzimmons et al. 1997a). 186 
Amplification was verified by electrophoresis of 4µl of each reaction in a 1% agarose gel, 187 
together with a 100 bp DNA ladder (New England Biolabs). 188 
 189 
Products were purified with the SEQueasy Kleen Kit (Biorad) and run through a 3730XL 190 
sequencing analyser (Applied Biosystems). The sequencing reactions (forward and reverse) 191 
were performed with dye terminators (Bigdye 3.1, Applied Biosystems) on a Primus 96 192 
thermocycler (MWG Biotech).  193 
 194 
 195 
Data Analysis 196 
 197 
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Sequence alignments were performed with the software Clustal W (Thompson et al. 1994). 198 
Neighbor-joining analysis (Saitou & Nei 1987) was implemented with the NEIGHBOR 199 
procedure of the program Phylip 3.5 (Felsenstein 1993). Bootstrap analysis was computed 200 
using of the SEQBOOT (500 replicates) and CONSENSE procedures from the Phylip package. 201 
The neighbor-joining tree was drawn with the software Tree View 1.5 (Page 1996). 202 
 203 
Differentiation between populations was assessed with Wright’s fixation index Fst (10000 204 
replicates; Wright 1951), estimated by ? (Weir & Cockerham 1984) with the Genetix 4.02 205 
software package (Belkhir et al. 2001). This software was also used to estimate the number of 206 
migrants per generation (Nm). AMOVA (analysis of molecular variance approach, Excoffier et 207 
al. 1992) was performed using Arlequin, v. 2.0 (Markov chain length: 10 000; Schneider et al. 208 
2000) to examine genetic structuring among rookeries and among different groups of regional 209 
rookeries.  210 
 211 
Correlation between genetic (measured as Fst/(1-Fst) following Rousset 1997) and geographic 212 
distance matrices was tested with a Mantel non parametric permutation test (Mantel 1967) as 213 
implemented in Genetix 4.02. The geographic distances between the different nesting sites 214 
corresponded to the shortest sea distance between rookeries.  215 
 216 
 217 
Results 218 
 219 
Mitochondrial DNA polymorphism 220 
 221 
A total of 40 polymorphic sites were found (Table 2) corresponding to 39 substitutions, one 222 
insertion and one deletion. Seven mtDNA haplotypes were observed among the 288 green 223 
turtles sampled from 10 rookeries in the south-western Indian Ocean (Table 1 and Figure 1A). 224 
Six of the 7 haplotypes described here have been found elsewhere: CM8 (GenBank accession 225 
nos. Z50130) occurs in South Atlantic and West African Rookerie s (Encalada et al. 1996) and 226 
is the first time this variant has been found in the Indian Ocean.  Haplotypes C3, D2, A1 and 227 
A2 are known to occur in several other rookeries throughout the Indo-Pacific (Dethmers et al. 228 
Submitted; GenBank accession nos. AY955204, AY955205, AY955215 and AY955219, 229 
respectively). May23 haplotype was found in the Comoros (Formia 2002) and registered in 230 
GenBank as accession nos. AF529030. A new haplotype is described here for the first time: 231 
Glo33 (GenBank accession nos. DQ256086). 232 
 233 
The observed 7 haplotypes differed by between 1 and 25 substitutions, corresponding to 0.3% – 234 
6.5% (mean = 4.2%) estimated sequence divergence. The neighbour-joining tree of the 7 235 
haplotypes (Figure 2) identified three distinct clades of haplotypes: clade 1 (CM8 alone), clade 236 
2 (including A1 and A2) and clade 3 (including C3 and the rare haplotypes May23, D2 and 237 
Glo33). The new haplotype Glo33 forms a clade with common C3 haplotype and differs by 238 
only two substitutions.  239 
 240 
 241 
Within population diversity 242 
 243 
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Within population diversity range from 1 haplotype at Nosy Iranja (n=13) to 6 (haplotype 244 
diversity: h = 0.3708; Table 1) at Mohéli (n=34; Table 1 and Figure 1A). The northern (NMC-245 
Tromelin) regional set of rookeries has higher levels of haplotypic heterogeneity (mean 3.3 246 
haplotypes, h = 0.3723) compared to those from the south (SMC, mean 2.5 haplotypes, h = 247 
0.3425). All 7 haplotypes were found in the NMC rookeries, with C3 at high frequencies, A2 at 248 
intermediate frequencies and several rarer haplotypes (CM8, May23, D2, A1 and Glo33). In 249 
contrast for the SMC only 3 haplotypes were found in Juan de Nova (h = 0.5632; CM8 at high 250 
frequency, C3 at intermediate frequency and a single occurrence of haplotype A2; Table 1) and 251 
only 2 haplotypes were found in Europa (h = 0.1174; CM8 in high frequency and C3 in low 252 
frequency). Nucleotide diversities on the other hand were similar in both the NMC and 253 
Tromelin (π  = 0.0184) and SMC (π  = 0.0221) because most rookeries are comprised of a 254 
mixture of divergent haplotypes. 255 
 256 
 257 
Differentiation among nesting sites population structure  258 
 259 
Tests for population differentiation were estimated using Wright’s fixation index (Fst) based on 260 
haplotype frequency. Results are presented in Table 3. Comparisons between SMC rookeries 261 
(Europa and Juan de Nova) and all other rookeries were highly significant (Fst = [0.307-0.912]; 262 
P<0.001). There is also a significant differentiation inside SMC between Europa and Juan de 263 
Nova populations (Fst = 0.303; P<0.05). Farquhar has a small sample size but it is also slightly 264 
but significantly differentiated from most other NMC rookeries (Fst = [0.147-0.501]; P<0.05) 265 
with the exception of Glorieuses, Cosmoledo and Aldabra (Fst = [0.160 – 0.012]; P = [0.066; 266 
0.340). But all comparisons among the NMC rookeries exclud ing Farquhar were not significant 267 
(Fst<0.17 – P = [0.056; 0.610]). Comparisons between pooled NMC rookeries and Tromelin 268 
were also statistically insignificant (Fst<0.0466 – P = [0.081; 0.558]). We therefore recognise 269 
two genetic stocks in SMC (Europa and Juan de Nova) and a single genetic stock in the NMC 270 
comprising Aldabra, Cosmoledo, Glorieuses, Nosy Iranja, Mohéli, Mayotte, Farquhar and 271 
Tromelin. 272 
 273 
The screening of mtDNA variation shows a frequency shift of haplotypes from Europa to 274 
Tromelin Atolls. The CM8 haplotype is the most common in the SMC (Europa and Juan de 275 
Nova) whereas the C3 haplotype is most frequent in the NMC (Seychelles, Nosy Iranja, 276 
Mohéli, Mayotte and Glorieuses) and in Tromelin. The change in frequency of the CM8 277 
haplotype from south to north Mozambique Channel is particularly informative. It is nearly 278 
fixed at Europa (94%), dominant  at Juan de Nova (55%), present at Mayotte (12%), rare at 279 
Mohéli (3%) and is absent from the other NMC rookeries surveyed (Figure 1A). 280 
  281 
Estimates of gene flow (Table 3) show that there is little exchange between SMC and NMC 282 
rookeries (Nm<1) compared to exchange among rookeries within each of these regions 283 
(typically Nm>1).  There was some evidence for restricted gene flow between Farquhar and 284 
some of the more distant rookeries within the NMC rookeries (Nm = [0.34 –1.65]) compared to 285 
the closest rookery Cosmoledo (Nm = 19.98).  286 
 287 
AMOVA was used to compare four hypotheses about hierarchical structuring among South 288 
West Indian Ocean rookeries (Table 4).  The first model (GP1) had two groups, all the NMC 289 
rookeries and all the SMC rookeries. The second model (GP2) had three groups, Farquhar, the 290 
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remainder of the NMC rookeries and SMC rookeries. The third model (GP3) had three groups, 291 
Europa, Juan de Nova and all the NMC rookeries.  The fourth model (GP4) had four groups 292 
Europa, Juan de Nova, Farquhar and the remainder of the NMC rookeries. According to 293 
among-group variance (FCT) component test results, all four models were statistically 294 
significant but the GP3 model explained the highest among group variance (FCT) and is 295 
consistent with our earlier identification of just three genetic stocks within this region.  296 
 297 
We used a Mantel test to determine if the observed patterns of population genetic structure 298 
were consistent with a one-dimension isolation-by-distance model (Figure 3) and found a 299 
significant correlation (P <0.001, R²=0.3565; slope = 0.002) between genetic and geographic 300 
pairwise distance measures. Concerned that the divergent SMC rookeries might be driving this 301 
pattern we ran the same model without Europa and Juan de Nova and found no correlation 302 
between the genetic and geographic distance measures (P = 0.147; R²=0.018; slope = 0.00004). 303 
 304 
 305 
Discussion  306 
 307 
Evidence for gene flow around the Cape of Good Hope 308 
 309 
Most of the haplotypes identified in this study conform to expectations and occur elsewhere in 310 
Indo-Pacific Oceans rookeries (Dethmers et al. Submitted) or are novel and occur in low 311 
frequency. The remarkable discovery of an Atlantic Ocean haplotype (CM8, Encalada et al. 312 
1996) represents the first time that any Atlantic Ocean haplotype has been recorded among any 313 
Indo-Pacific nesting populations. The observation of this Atlantic variant mixed with Indo-314 
Pacific haplotypes in a same rookery (Table 1) reinforces the fact that Atlantic and Indo-Pacific 315 
lineages are not cryptic species. Until now, several green turtle genetic studies have shown that 316 
there is a fundamental phylogenetic split distinguishing all green turtles in Atlantic Ocean and 317 
the Mediterranean Sea from those in Indian and Pacific Oceans (Bonhomme et al. 1987; Avise 318 
et al. 1992; Bowen et al. 1992). Because of prevailing cold water conditions, the Cape of Good 319 
Hope has been commonly assumed to be an absolute barrier to the mixing of Atlantic and Indo-320 
Pacific populations of green turtles but it has not been an impermeable barrier to all tropical 321 
species (Briggs 1974).  322 
 323 
Had Bowen’s et al (1992) total mtDNA study surveyed populations from the southwest Indian 324 
Ocean, they would have found the same remarkable  pattern despite the present studies 325 
enhanced power using mtDNA sequence data. Using microsatellite data Roberts et al. (2004) 326 
demonstrated recent or ongoing male-mediated gene flow among populations within Indian and 327 
Atlantic Ocean Basins. Although their study did not include samples from the southwest Indian 328 
Ocean it did provide compelling evidence that at least the occasional male was capable of 329 
rounding the Cape of Good Hope. Our study of southwest Indian Ocean rookeries demonstrates 330 
for the first time a recent matrilineal link between Atlantic and Indian Ocean green turtle 331 
populations. The observation that an Atlantic mtDNA haplotype occurs in adjacent Indian 332 
Ocean waters and not vice versa is a significant observation as it indicates that the direction of 333 
matrilineal gene flow is likely to be from the Atlantic to the Indian Ocean. Likewise, the 334 
observation that only a single Atlantic haplotype has been observed and that it occurs in high 335 
frequency among SMC rookeries suggests that gene flow is not ongoing. If the Indian and 336 
Atlantic Oceans were connected by substantial amounts of contemporary gene flow then we 337 
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would expect to detect additional Atlantic haplotypes in the SMC. If the colonization event was 338 
more ancient then we would expect to have detected novel variants of the CM8 haplotype with 339 
our intensive sampling of the SMC region. 340 
 341 
A growing number of studies document an Indian and East Atlantic phylogeographic 342 
connection in different marine species, like bigeye tuna (Chow et al. 2000; Durand et al. 2005), 343 
hammerhead sharks (Duncan et al. 2006), trumpetfishes (Bowen et al. 2001) or the urchin 344 
diadema (Lessios et al. 2001). Almost all cases of marine dispersal in this region are from the 345 
Indian to the Atlantic Ocean, usually attributed to passive drift by larvae in the Agulhas current. 346 
However, in a recent study on hammerhead shark (Sphyrna lewini), Duncan et al. (2006) 347 
showed a connection between these two oceans. The authors strongly support that the Indo-348 
West Pacific hammerhead shark haplotypes most closely related to the Atlantic lineage are the 349 
product of a recent dispersal from the Atlantic into the Indo-Pacific, and that gene flow in this 350 
opposite direction is possible because this species is an active swimmer at every life stage 351 
(Duncan et al. 2006). Green turtle s are also active swimmers at every life stage and may present 352 
the second example of active dispersal from the Atlantic into the Indian Ocean. 353 
 354 
 355 
Regional differentiation 356 
 357 
The analysis of the genetic variability of nesting turtles in the South West Indian Ocean shows 358 
a significant population differentiation between those in the SMC including Europa and Juan de 359 
Nova, and the remaining nesting sites that were sampled in the NMC including Mohéli, 360 
Mayotte, Glorieuses, Nosy Iranja, Seychelles and Tromelin (Figure 1A, Table 3). For example, 361 
there is a high genetic differentiation (Fst=0.646, Table 3) between Europa and Mayotte 362 
although the two populations are less than 1200 kilometers apart. Inside SMC, there is a 363 
significant population differentia tion between Europa and Juan de nova. Our data also show 364 
that Farquhar may be differentiated from both rookeries in the NMC (excluding Cosmoledo) 365 
and Tromelin (Table 3). This result must be taken with caution as the sample size of Farquhar is 366 
small (n=7) due to the limited number of nesting females present at this remote island when the 367 
survey was conducted. However, more intensive sampling may not necessarily lead to the 368 
identification of further population genetic structuring here as the well sampled and more 369 
distant comparisons of Tromelin and pooled SMC rookeries were also insignificant. 370 
 371 
It is rare to see such clear patterns of isolation by distance (IBD) in marine turtles even though 372 
it is expected in a species that has natal homing. Our results showed a pattern of IBD (Figure 3) 373 
when run on the entire data set. However there was no relationship between genetic and 374 
geographic distance for comparisons among rookeries in the NMC and Tromelin. The 375 
decreasing frequency of the CM8 variant from SMC rookeries to NMC rookeries points to IBD 376 
operating within the Mozambique Channel but not among rookeries in the rest of the southwest 377 
Indian Ocean. This pattern is consistent with a colonization process whereby rookeries closest 378 
to the Atlantic Ocean source populations (eg Europa) receive more immigrants than those more 379 
distant (eg Juan de Nova). In subsequent generations migration and possible selection could act 380 
to further disperse the CM8 lineage throughout the Mozambique Channel beyond the initial 381 
founder populations. 382 
 383 
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Data from turtle tagging studies in the Mozambique Channel (Hughes 1982; Le Gall & Hughes 384 
1987) are consistent with the general observation that most nesting turtles migrate less than 385 
1000 km between breeding and foraging habitat; although distances greater than 2600km have 386 
been recorded for sea turtles (Miller 1997). These observations indicate that the length of the 387 
Mozambique Channel is not a biological barrier during the migration of adult turtles. As 388 
highlighted by Pelletier et al. (2003) we suggest that the unique and unusual oceanography in 389 
the Mozambique Channel may contribute to the green turtle population structure observed in 390 
the Mozambique Channel, influencing particularly the early stages in the life cycle of green 391 
turtles.  392 
 393 
 394 
Oceanography in the Mozambique Channel 395 
 396 
At the seabird nesting islands in the Mozambique Channel, studies have shown that subspecies 397 
of Phaethon lepturus (Le Corre & Jouventin 1999), Puffinus lherminieri (Le Corre 2000b) and 398 
Sula sula (Le Corre 1999), nesting in Europa (South Mozambique Channel), have phenotypic 399 
patterns that differ from the equivalent species nesting in other islands of the Indian Ocean. Le 400 
Corre (1999; 2000a,b) suggested that few successful exchanges of individuals occur between 401 
the North and South Mozambique Channel and that Europa seabird populations are isolated 402 
from the other nesting colonies of the Indian Ocean. This biogeographic pattern may be linked 403 
to oceanic conditions in the Mozambique Channel particularly at the south end where there is a 404 
peculiar pattern of sea-surface temperatures (Le Corre 2000b).  405 
 406 
Several authors have already emphasized the unusual oceanic conditions that occur in the 407 
southern Mozambique Channel, where there is an increase of sea-surface temperature (Piton et 408 
al 1981), the occurrence of meanders (Ludjeharms et al 1981; Donguy & Piton 1991) and a 409 
convergence zone between different currents (Piton & Magnier 1976; Piton & Laroche 1993). 410 
Recent studies in the Mozambique Channel showed that the average drift in the southern part is 411 
a dynamic area swept by an intermittent train of large anticyclonic eddies (~200 km in 412 
diameter) leading to a southward transport along the African coast (De Ruijter et al. 2002; 413 
Schouten et al. 2003; Quartly & Srokosz 2004; Lutjeharms et al. 2000; Figure1B). These 414 
currents are likely to play a role in hatchling dispersal as they spend the first few years of their 415 
life in oceanic waters (Carr 1987). Hatchlings emerging from nests south of the Mozambique 416 
Channel should drift southward. On the western side of the Mozambique Channel, oceanic 417 
movement consists of strong anti-clockwise eddies (De Ruijter et al. 2002), whereas on the 418 
eastern side the flow is weak and variable. In the northern part of the Mozambique Channel, the 419 
flow seems to be quite variable, but on average may consist of an anti-clockwise gyre in the 420 
Comoro Basin (Lutjerharms 2005). The South Equatorial Current carries water westward in 421 
North of the Comoros, but part of this will go south into the Mozambique Channel, part 422 
northward as the East African Coastal Current (Figure 1B; Schouten et al. 2003). As Girard et 423 
al. (2005) have showed that currents around Europa act as a constraint for adult green turtles, 424 
one theory would be that juveniles from the NMC do move part northward and part southward, 425 
but are mostly retained in this way in the intense western Mozambique Channel eddies. This 426 
would mean that they would only occasionally pass close to Juan de Nova and on the whole 427 
would not reach Europa Island. A test for this theory would come from the haplotypes found at 428 
the Mozambique and south west Madagascar coasts: if these have Indo-Pacific genetic 429 
characteristics, the unusual characteristics at Europa Island would be a localised exception.  430 
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 431 
Those oceanic elements may contribute to the green turtle genetic structuring in the 432 
Mozambique Channel, slowing down the exchanges between these two opposite zones. Further 433 
studies are needed to fully elucidate the genetic structure of green turtles nesting along the 434 
Mozambique Channel and to distinguish the relative importance of ongoing oceanographic 435 
processes from historical patterns of colonization.  An expanded study incorporating rookeries 436 
from the East African coast, and eastern and southwestern coasts of Madagascar will help us to 437 
better understand the mechanisms responsible for structuring among NMC-Tromelin and the 438 
SMC green turtle populations. Of particular interest would be the relationships between genetic 439 
characteristics of the nesting green turtles, oceanography and seasonality of nesting. For 440 
instance, do nesting green turtles in Mozambique coast, at the same latitude of Europa 441 
(22°21’S), have the same mtDNA genetic structure as those nesting at Europa? 442 
 443 
 444 
Green turtle Management Units  445 
 446 
Several rookeries of the South West Indian Ocean are important nesting sites for green turtles 447 
(Frazier 1984; Mortimer 1984; Le Gall 1988; Mortimer 1988; Van Buskirk & Crowder 1994; 448 
Mortimer & Day. 1999). Genetic analysis of sea turtle population structure can provide an 449 
essential management tool to identify genetically distinct Management Units (MUs) within a 450 
region (Dizon et al. 1992; Moritz 1994). Our genetic data suggest that rookeries of green turtles 451 
in Europa, Juan de Nova and the NMC-Tromelin belong to three separate genetic populations 452 
and should be considered as independent MUs. Our inability to differentiate Tromelin from 453 
other NMC rookeries most likely reflects the limitations of a single locus marker and a recent 454 
shared history rather than ongoing gene flow.  455 
 456 
The genetic markers we have characterised for each Management Unit are suitable for 457 
assessing stock composition in regional harvested and resident populations of green turtle. The 458 
assessment of multiple harvests and feeding assemblages throughout this region will help to 459 
define the geographic extent of migration and threatening processes that impact on green turtle 460 
populations. The delineation of Management Areas for each Management Unit relies on a 461 
combination of tag returns, satellite tracking and genetic analysis of foraging and harvested 462 
populations all of which are currently being evaluated for this region. 463 
 464 
 465 
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 786 
Figure Legends: 787 
 788 
Figure 1: A. Geographical locations of the ten green turtle nesting sites sampled in the South 789 
West Indian Ocean. The pie-chart shows the frequencies of the haplotypes per nesting site. B. 790 
Main oceanic movements in the South West Indian Ocean and nesting green turtle population 791 
boundaries inferred from mtDNA data. The following abbreviations were used; SEC: South 792 
Equatorial Current; SEMC: South East Madagascar Current; EACC: East African Coastal 793 
Current; AC: Agulhas Current; CB: Comoro Basin. The numbers (1, 2, 3, and 4) in red show 794 
the different nesting green turtle genetic stocks proposed in this study. 795 
 796 
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Figure 2: Neighbour-joining tree based on the mtDNA control region sequences. Bootstrap 797 
values (500 replicates) are indicated on the branches. Three clades of haplotypes were 798 
identified, called respectively 1, 2 and 3. Haplotype Cm8 is nested in the Atlantic Ocean clade 799 
B of Encalada et al. (1996). Haplotypes A1 & A2 and haplotypes C3 & D2 are nested in the 800 
Indo-Pacific Ocean clades V and I respectively of Dethmers et al. (submitted).   801 
 802 
Figure 3: Regression of genetic distances, Fst/(1-Fst), versus geographic distances (km) in the 803 
ten green turtle nesting sites sampled for mitochondrial DNA data. Regressions were performed 804 
with (x) and without (o) Europa and Juan de Nova. 805 
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Tables and Figures:  806 
 807 
Table 1: Mitochondrial DNA variants detected among green turtle population nesting in ten 808 
different sites in the South West Indian Ocean. Haplotype (h) and nucleotide diversity (π) for 809 
the ten populations in the North Mozambique Channel (NMC) and South Mozambique Channel 810 
(SMC). 811 
 812 

 

Location 

Date of 
sampling CM8 C3 May23 D2 Glo33 A1 A2 total 

Haplotype 
diversity (h) 

Nucleotide 
diversity (π) 

Europa 1997/2003 31 2      33 0.1174  0.0076 

Juan de Nova 
1999 

11 8     1 20 0.5632 0.0360 SM
C

 

Total SMC  42 10     1 53 0.3425 0.0221 
Nosy Iranja 2004  13      13 0 0 

Mayotte 2004 5 30 2   1 3 41 0.4524 0.0231 
Mohéli 2004 1 27 2 1  1 2 34 0.3708 0.0133 

Glorieuses 2004  31   1  7 39 0.3441 0.0168 
Cosmoledo 1996  24    3 4 31 0.3871 0.0210 

Aldabra  1996  18    1 7 26 0.4646 0.0249 
Farquhar 1996  3    1 3 7 0.7143 0.0342 

N
M

C
 

Total NMC  6 146 4 1 1 7 26 191 0.3964 0.01962 
 Tromelin 1997  38     6 44 0.2410 0.0132 
 Total  48 194 4 1 1 7 33 288 0.5063 0.0289 
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 21 

Table 2: Polymorphic sites corresponding to the 7 green turtle haplotypes detected in the South West Indian Ocean from a 396bp 814 
fragment of mtDNA control region sequence.  815 
 816 

Base 
positions 32 45 71 82 87 88 89 92 93 95 108 109 110 111 112 135 136 146 147 149 

Haplotypes                     
Glo33 T C A G T A C T C G A A T A C G G C T T 
May23 T C A A T A C T T G A A G A C G G C T T 
D2 T C A G T A C T T G A A G A C G G C T T 
CM8 T C G A T G C C T G A A G C T A A C C C 
A2 C C A A C G T T T A G G A A C G A C C C 
A1 C - A A C G T T T A A G A A C A A T C C 
C3 T C A G T A C T T G A A G A C G G C T T 
                     
 151 153 155 163 222 226 236 248 290 307 328 329 336 343 344 345 347 353 359 360 
Haplotypes                     
Glo33 A C A C C A A G A T A T A T G G T A C - 
May23 A C A C C A A G A T A T A T G G T A C - 
D2 A C A C C A A G A T A C A T G G T A C - 
CM8 G T G T T G C G G C G T A T A A T G T T 
A2 A T G T T A A A A T A T G C A A T A C - 
A1 A T G T T A A A A T A T G T A A C A C - 
C3 A C A C C A A G A T A T A T G G T A C - 

 817 



 22 

Table 3: Genetic differentiation (Fst) between the 10 locations sampled in the South West Indian Ocean (above diagonal) and 818 
estimation of the number of migrant per generation (Nm; below diagonal). The significance of permutation test (10 000 permutations) 819 
are shown for P <0.05 (*) and P <0.001 (***). 820 
 821 

             Fst 
Nm 

Europa Juan de 
Nova 

Nosy 
Iranja  Mayotte Mohéli Glorieuses  Cosmoledo Aldabra Farquhar Tromelin  

Europa   0.3030 * 0.9113 *** 0.6465 *** 0.7343 *** 0.7497 *** 0.7125 *** 0.7388 *** 0.7368 *** 0.8031*** 

Juan de Nova 1.22   0.5831 *** 0.3151 *** 0.4160 *** 0.4502 *** 0.5280*** 0.3757 *** 0.4189 *** 0.5280*** 
Nosy Iranja  0.03 0.19   0.0793 0.0406 0.0842 0.1742 0.078 0.5011* 0.0466 

Mayotte 0.13 0.49 4.46   -0.0106 - 0.017 0.0304 0.004 0.1473* 0.0326 
Mohéli 0.09 0.32 14.97 ∞   -0.0023 0.0374 -0.0111 0.2027* 0.0023 

Glorieuses  0.08 0.27 5.07 14.97 ∞   0.0035 -0.0112 0.1604 -0.0118 
Cosmoledo 0.1 0.39 1.52 7.03 6.43 70.41   -0.0001 0.0124 0.0425 

Aldabra 0.09 0.32 4.6 89.66 ∞ ∞ ∞   0.1317 0.0014 
Farquhar 0.09 0.54 0.34 1.39 0.98 1.09 19.98 1.65  0.2911* 
Tromelin  0.06 0.2 10.17 7.12 106.43 ∞ 5.63 173.86 0.61  

 822 
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Table 4: Analysis of variance (AMOVA) results for the South West Indian Ocean groups of 823 
green turtle nesting sites. AG is the among-groups component variance; AP/WG is the among-824 
populations/within-group component of variance; WP is the within-population component of 825 
variance. The significance of permutation test (10 000 permutations) are shown for P <0.05 (*), 826 
P <0.01 (**) and P <0.001 (***). 827 
 828 

Name Grouping scheme Variance 
component 

% of 
variance 

F - statistics 

   AG 55.84 FCT  = 0.55835* 
GP1 Group 1 Europa - Juan de nova AP/WG 2.9 FSC = 0.06562* 

 Group 2 Other islands WP 41.27 FST = 0.58733*** 
      
 Group 1 Europa - Juan de nova AG 53.96 FCT  = 0.53959* 

GP2 Group 2 Farquhar AP/WG 2.43 FSC = 0.05272* 
 Group 3 Other islands WP 43.61 FST = 0.56388*** 
      
 Group 1 Europa AG 57.18 FCT  = 0.57178* 

GP3 Group 2 Juan de nova AP/WG 1.46 FSC = 0.03413* 
 Group 3 Other islands WP 41.36 FST = 0.58640*** 
      
 Group 1 Europa AG 55.65 FCT  = 0.55653** 

GP4 Group 2 Juan de nova AP/WG 0.76 FSC = 0.01720 
 Group 3 Other islands WP 43.58 FST =0.56416*** 
 Group 4 Farquhar    

 829 
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Figure 1  830 
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Figure 2 851 
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Figure 3 853 
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